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Part I
- classical and quantum phase transitions, relation to path integrals
- finite-size scaling to study critical points
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Classical (thermal) phase transition
- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν
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Path integrals and quantum field theories
The path integral maps the quantum 
system in D dimensions onto an 
equivalent system in D+1 dimensions

Coarse graining → Continuum field theory in D+1 dimensions
- important approach for studying phase transitions

Finding the correct quantum field theory can be challenging
- Often difficult to derive rigorously from a lattice-scale model
- Quantum mechanics introduces complications; phases
- Symmetries and dimensionality not always enough! Topological defects...

Solving the field theory is in general difficult
- Important exchanges between field theory and lattice numerics
   - classical and quantum Monte Carlo (QMC) simulations

The space dimensions can be 
taken to infinity; L→∞

The time dimension is finite for T > 0 
- Lτ = 1/T = β 
- Lτ → ∞ when T → 0
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Squared magnetization for L×L Ising lattices

critical scaling
(non-trivial 
power-law)

disordered
(trivial power-
law 1/N = 1/L-2)

ordered
(size independent)

MC: Compute time-average of <m2> to carry out finite-size scaling

M
N
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Order parameter
(magnetization)

Phase transition, spontaneous symmetry breaking (Ising model)

←Mean-field
    solution

5



Finite-size scaling hypothesis
In general there are two relevant length scales
- system length L, physical correlation length ξ(T) (defined on infinite lattice) 

For ξ << L or ξ >> L one argument becomes irrelevant: 
g ! g(L) or g ! g(⇠) = f(T )

Use in “data collapse”. Example: susceptibility � = (hm2i � h|m|i2)/T
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t $= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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t = |T � Tc|
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In general physical quantities depend on both
hAi = f(T, L) = g(⇠, L)

Close to critical point: ξ(T) ~ |T-Tc|-ν (ν is a critical exponent) and when L ~ ξ(T): 

g ! Lg(⇠/L) ⇠ Lg(|T � Tc|�⌫L�1) = Lg⇤(|T � Tc|L1/⌫)
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Binder ratios and cumulants

Consider the dimensionless ratio

We know R2 exactly for N→∞

R2 =
�m4⇥
�m2⇥2

• for T<Tc: P(m)→δ(m-m*)+δ(m+m*)
       m*=|peak m-value|.  R2→1

• for T>Tc: P(m)→exp[-m2/a(N)]
     a(N)∼N-1 R2→3  (Gaussian integrals)

The Binder cumulant is defined as (n-component order parameter; n=1 for Ising)

U2 =
3
2

�
n + 1

3
� n

3
R2

⇥
⇥

⇤
1, T < Tc

0, T > Tc

Curves for different
L asymptotically cross 
each other at Tc

Extrapolate crossing
for sizes L and 2L
to infinite size
• converges faster than 
   single-size Tc defs.

2D Ising model; MC results

order parameter distribution
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Part II
- criticality in dimerized S=1/2 Heisenberg models in 2D, 3D
- valence-bond solids and “deconfined” quantum criticality in 2D
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Starting point: 2D S=1/2 Heisenberg antiferromagnet
H = J

�

�i,j⇥

Si · Sj

Long-range order: <ms2> > 0 for N→∞

⌃ms =
1
N

N�

i=1

�i
⌃Si, �i = (�1)xi+yi (2D square lattice)

Sublattice magnetization

 Quantum Monte Carlo 
- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young 1988
ms = 0.30(2)
� 60 % of classical value
AWS & HG Evertz 2010

ms = 0.30743(1)

L⨉L lattices up to 256⨉256, T=0
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T=0 Néel-paramagnetic quantum phase transition
Example: Dimerized S=1/2 Heisenberg models
• every spin belongs to a dimer (strongly-coupled pair)
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class; QMC confirmed

Singlet formation on strong bonds ➙ Néel - disordered transition
  Ground state (T=0) phases

� = spin gaps

weak interactions

strong interactions

Experimental realization (3D coupled-dimer system): TlCuCl3
10
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FIGURE 5. QMC results for the squared sublattice magnetization in the two-dimensional Heisenberg
model with columnar dimerization. (a) shows results versus the coupling ratio g for different lattice sizes
and (b) shows the size dependence for several values of g. A quantum phase transition where the Néel
order vanishes occurs at g≈ 1.9.

renormalization-group treatments of one such field theory—the nonlinear σ -model in
2+1 dimensions [5, 84]. Based on symmetry arguments alone, one would then expect
the transition to be in the universality class of the 3D classical Heisenberg model. There
are, however, subtle issues in the quantum-classical mapping, and QMC simulations are
therefore needed to test various predictions. We will see examples of such comparisons
between results of simulations and field theories in Sec. 5.While results for the transition
in the bilayer (a) [85] and columnar dimer (b) [86] systems in Fig. 4 (and several
other cases [87, 88]) are in good agreement with the expectations, recent studies of
the staggered dimers (c) show unexpected deviations [89] that are still not understood.

2.4.2. Frustrated systems

The prototypical example of frustration is a system with antiferromagnetic inter-
actions on a triangular lattice. Looking at this problem first within the Ising model,
the spins on a single triangle cannot simultaneously be anti-parallel to both their
neighbors—there are six configurations with minimum energy, and these all have one
“frustrated” bond (two parallel neighbors), as shown in Fig. 6. Being a consequence of
the lattice, this is often referred to as geometric frustration. Upon increasing the system
size, the ground-state degeneracy grows with the system size, and in the ensemble in-
cluding all these configurations there is no order of any kind [90, 91]. In the case of the
classical XY (planar vector) or Heisenberg (vectors in three dimensions) model, there is,
however, order at T = 0 (but not at T > 0, according to the Mermin-Wagner theorem).
The energy is minimized by arranging the spins in a plane at 120◦ angle with respect
to their neighbors on the same triangle, as shown for a single triangle in Fig. 6. This is
referred to as a three-sublattice Néel state. There have been many studies of the S = 1/2
variant of this model. This was, in fact, the system for which the RVB spin-liquid state
was initially proposed [92]. There is now, however, compelling numerical evidence for
the three-sublattice Néel order actually surviving the quantum fluctuations [93, 94].
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SSE calculations to locate the critical point

Columnar
dimer system
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FIGURE 75. Binder cumulant (left) and spin stiffness (in the x direction) multiplied by the system
length (right) of the dimerized Heisenberg model. The crossing points of these curves for different L tend
toward the critical value of the coupling ratio g. Error bars are much smaller than the symbols.

quantities of interest. This approach is discussed for various dimerized systems in, e.g.,
Refs. [85, 88] (as well as in many older works). Another approach is to study systems
at inverse temperature β = Lz, where z is the dynamic critical exponent (which we dis-
cussed in Sec. 3.6) [231]. This is motivated in the following way, by a generalization of
the finite-size scaling hypothesis (64): In a quantum system the scaling function f (ξ/L)
should be replaced by a function with two arguments, f (ξ/L,ξτ/Lτ), where the correla-
tion length in the imaginary time dimension depends on the spatial correlation length ξ
according to ξτ ∼ ξ z (which defines the dynamic exponent) and the length of the system
in the imaginary time direction is Lτ = c/T ∼ β (where c is a velocity). If we choose
β ∝ Lz, then the scaling function can be written as f [ξ/L,(ξ/L)z], which is a function
of the single argument ξ/L. Thus, the finite-size scaling procedures can be used exactly
as in the classical systems discussed in Sec. (3.3.2). This is the case also if we take the
limit β → ∞ for each L (in practice finite β large enough for convergence to this limit),
because then ξτ/Lτ → 0, and there is again only one argument ξ/L left in the scaling
function.
There is plenty of evidence already that z = 1 in dimerized Heisenberg models, and

we will here use systems with β = L. This allows for studies of larger systems than in
the β → ∞ limit, although it is not a priori clear which approach is in the end better,
since the corrections to the leading finite-size scaling behavior can be different. Here we
use L up to L = 128. We will also test explicitly that systems with β = L exhibit behavior
consistent with z = 1, by studying quantities which depend on z.
We first locate the critical coupling by examining quantities that should be size

independent at gc. Fig. 75 shows the g dependence of both the Binder cumulant and the
spin stiffness, with the latter multiplied by L to compensate for the expected quantum
critical scaling form ρs ∼ 1/L, obtained the classical form (99) with d→ d + z = 3.
The Binder cumulant is defined according to (77), with the number of components

n = 3. Note, however, that (77) is defined with the full scalar product m2 = m ·m in
(75), whereas with the SSE method we here only compute the z component expectation
values 〈m2z 〉 and 〈m4z 〉 (the off-diagonal components being more difficult to evaluate
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Curve crossing analysis: dimensionless quantities
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Crossing points drift as 
the system size is increased
- extrapolations necessary
- can use (L,2L) crossing points

gc(L) = gc(1) + aL�b
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FIGURE 76. Size dependent critical coupling for the dimerized Heisenberg model extracted from
(L,2L) crossing points of the Binder cumulant, the spin stiffness constants, and the correlation lengths.
The curves show fits to the form gc(L) = gc(∞)+ a/Lω .

[232]). One can easily find the geometrical factors relating these by integrating the z
component cos(Θ) of a classical 3D unit vector over the the angles, giving 〈m2〉= 3〈m2z 〉
and 〈m4〉= 5〈m2z 〉. For locating the critical point, these factors play no role, and we could
also use the plain Binder ratio defined as R2z = 〈m4z 〉/〈m2z 〉2.
Since the dimerized lattice does not have 90◦ rotational symmetry, the stiffness con-

stants in the x and y directions are different. Although the numerical values are indeed
quite different, their scaling behaviors close to the critical point is very similar, how-
ever [the x stiffness is approximately a factor 2 larger—the dimers are oriented in the x
direction as in Fig. 4(b)]. Only the x stiffness is shown in Fig. 75(b).
Curve crossings are indeed seen in Fig. 75 for both U2 and ρsL, and after some

significant drift of the crossing points (e.g., for systems of size L and 2L) for small
L, they seem to converge to roughly the same value in both cases. Note that the crossing
points for U2 and ρs approach gc from opposite directions, which can be useful for
bracketing the critical value [85, 88]. Crossing points can be located numerically by
fitting a polynomial of suitable order to some of the data points, repeating the procedure
several times with added Gaussian noise to compute error bars. Fig. 76 shows results
of such procedures for the Binder ratio, the x and y stiffness constants, as well as
the correlation lengths [computed using the definition (70)] in both the x and the y
direction. Fits to the data points of the form gc(L) = gc(∞) + a/Lω are also shown.
This form describes well all the data for L ≥ 10 (the sizes shown in the figure). All the
extrapolated values of gc fall within the range [1.9094,1.9096], and if the L = 10 data are
excluded the range narrows even further. The exponent ω is in the range 2∼ 2.5 for all
quantities (being largest forU2). Treating all five values obtained in these extrapolations
as independent statistical data gives gc = 1.90948(4) as a final estimate for the critical
point. This is in good agreement with (but with smaller error bar than) a recent estimate
gc = 1.9096(2) obtained using T → 0 data for the same quantities on lattices with L up
to 64. The crossing point shift exponents ω are also in good agreement.
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Different quantities give
consistent results: gc=1.90948(4)

Sz
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N

X
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e�iqrSz
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z
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Knowing gc, we can analyze the ordering process
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Critical exponents from finite-size scaling

The existence of a limiting value of the location gc at which the Lρs curves cross does
not prove that z= 1. One also should check that the values of Lρs are well behaved, i.e.,
that a crossing point in the plane (g,ρsL) really forms. A plot such as Fig. 76 for ρsL at
the crossing points for lattices of size L and 2L confirms that this is the case. Examining
the Binder cumulant in a larger window of couplings, one can not find any indications of
negative values, which would be a sign of phase coexistence at a first-order transition (as
discussed in Sec. 3.4). Thus, the scaling behavior so far supports at continuous quantum
critical point with z= 1.
We could now proceed to perform data collapse fits in order to find the correlation

length exponent ν , as we discussed for classical systems in Sec. 3.3. This has been done
for dimerized Heisenberg model, including also scaling corrections [85, 88], and the
results are in good agreement with the expected 3D classical Heisenberg universality
class. Here we instead just discuss the exponent η appearing in the critical correlation
function (53), where we should again replace d by d+ z = 3. The staggered structure
factor S(π,π) is the spatial integral (sum on the 2D lattice) of the correlation function
(269), while the Kubo integral (271) for the staggered susceptibility χ(π,π) corresponds
to a 3D space-time integral (a 2D lattice sum and an imaginary time integral). Performing
these integrals with the above critical form of the correlation function, with a cut-off
equal to the system size L, gives S(π,π)∼ Ld−z−η and χ(π,π)∼ Ld−η . We will test this
behavior of the critical system and extract the exponent η , using the value of gc found
above. Instead of performing new simulations at this point (which is known only to
within a statistical error), one can perform polynomial interpolations within the existing
data sets. One can then also easily check the behavior for points slightly off the best
estimate of gc (plus and minus one error bar), to check the sensitivity of the fitted η to
the location of the critical point. The simplest way to analyze the critical behavior is to
fit a straight line to ln(S) and ln(χ) versus ln(L) (as was done for S(π,π) of this model
in [88]). Some corrections to scaling are always expected, and if the data have small
error bars a straight line can only be fitted to large lattices. With the data sets used here,
statistically acceptable linear fits are only obtained when using system sizes L≥ 48. We
will therefore also include subleading corrections and assume the following forms

S(π,π) = aL1−η +bLω , χ(π,π) = aL2−η +bLω , (290)

where one would expect the subleading exponent ω to be much smaller (possibly even
negative) than the leading exponents. One could in principle perform a combined fit with
η fixed to be the same for the two quantities (with ω and the constants different), but
here we will fit the data sets independently.
In order to more clearly see the role of the subleading correction, S(π,π) and χ(π,π)

are graphed in Fig. 77 with the dominant L and L2 factors divided out. The asymptotic
L→ ∞ behavior is then in both cases ∼ L−η , where η is expected to be small. The cur-
rently best estimate for the classical 3D Heisenberg universality class is η = 0.0375(5)
[113]. The fits to (290) give η = 0.029(2) for S(π,π) and η = 0.020(3) for χ(π,π).
In principle the forms (290) should of course work only exactly at gc, but in practice,
for a finite range of system sizes, they fit the data well in some window around the
true critical point. As seen in Fig. 77, the interpolated values of the two quantities at
gc plus and minus one error bar deviate visibly from those at the midpoint, but the fits
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results are in good agreement with the expected 3D classical Heisenberg universality
class. Here we instead just discuss the exponent η appearing in the critical correlation
function (53), where we should again replace d by d+ z = 3. The staggered structure
factor S(π,π) is the spatial integral (sum on the 2D lattice) of the correlation function
(269), while the Kubo integral (271) for the staggered susceptibility χ(π,π) corresponds
to a 3D space-time integral (a 2D lattice sum and an imaginary time integral). Performing
these integrals with the above critical form of the correlation function, with a cut-off
equal to the system size L, gives S(π,π)∼ Ld−z−η and χ(π,π)∼ Ld−η . We will test this
behavior of the critical system and extract the exponent η , using the value of gc found
above. Instead of performing new simulations at this point (which is known only to
within a statistical error), one can perform polynomial interpolations within the existing
data sets. One can then also easily check the behavior for points slightly off the best
estimate of gc (plus and minus one error bar), to check the sensitivity of the fitted η to
the location of the critical point. The simplest way to analyze the critical behavior is to
fit a straight line to ln(S) and ln(χ) versus ln(L) (as was done for S(π,π) of this model
in [88]). Some corrections to scaling are always expected, and if the data have small
error bars a straight line can only be fitted to large lattices. With the data sets used here,
statistically acceptable linear fits are only obtained when using system sizes L≥ 48. We
will therefore also include subleading corrections and assume the following forms

S(π,π) = aL1−η +bLω , χ(π,π) = aL2−η +bLω , (290)

where one would expect the subleading exponent ω to be much smaller (possibly even
negative) than the leading exponents. One could in principle perform a combined fit with
η fixed to be the same for the two quantities (with ω and the constants different), but
here we will fit the data sets independently.
In order to more clearly see the role of the subleading correction, S(π,π) and χ(π,π)

are graphed in Fig. 77 with the dominant L and L2 factors divided out. The asymptotic
L→ ∞ behavior is then in both cases ∼ L−η , where η is expected to be small. The cur-
rently best estimate for the classical 3D Heisenberg universality class is η = 0.0375(5)
[113]. The fits to (290) give η = 0.029(2) for S(π,π) and η = 0.020(3) for χ(π,π).
In principle the forms (290) should of course work only exactly at gc, but in practice,
for a finite range of system sizes, they fit the data well in some window around the
true critical point. As seen in Fig. 77, the interpolated values of the two quantities at
gc plus and minus one error bar deviate visibly from those at the midpoint, but the fits
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It is often necessary to include scaling corrections. At gc:

0 20 40 60 80 100 120
L

0.310

0.315

0.320

0.325

0.330

S(
π,
π)

/L

 g=1.90944
 g=1.90948
 g=1.90952

0 20 40 60 80 100 120
L

0.180

0.185

0.190

0.195

0.200

χ(
π,
π)

/L
2

 g = 1.90944
 g = 1.90948
 g = 1.90952

FIGURE 77. Finite-size scaling of the staggered structure factor (left) and susceptibility (right) in close
proximity of the estimated critical coupling ratio gc = 1.90948(4). The powers of L corresponding to z = 1
and η = 0 have been divided out. The remaining asymptotic size dependence should then be governed by
the actual value of η . The fits to the forms in (290) give η = 0.029(3) from S(π ,π) and η = 0.020(4)
from χ(π ,π). The fits were based on L≥ 8 data, but the resulting curves also go through the L = 4 and 6
points. The dashed curves shows the behavior at g = 1.90948 without the scaling corrections (i.e., with η
and a kept at their values obtained in the fit including the corrections).

are statistically acceptable in all three cases. The statistical errors quoted above arise
predominantly from the uncertainty in the critical coupling. The subleading exponents
in (290) are ω =−0.2(2) for S(π,π) and ω = 0.6(2) for χ(π,π).
Fig. 77 also shows the fitted functions with the subleading corrections disregarded

(with the other parameters kept at their values obtained in the fit with corrections).
Clearly the corrections are quite significant, being completely responsible for the maxi-
mums in both curves at L ≈ 10. One can of course obtain much better fits to the larger
lattices without subleading corrections. As mentioned above, with the rather small er-
ror bars of the data used here, only systems with L ≥ 48 can be included in such a fit.
Even then, there must be some influence of the neglected corrections. The values of η
do in fact come out somewhat lower if no corrections are included. With the corrections,
all the data (L ≥ 4) can be included, but to be on the safe side only L ≥ 8 data were
included in the fits quoted here and graphed in the figure. These fits still do pass very
closely through the L = 4 and 6 data points, which further reinforces the quality of the
functional form used.
The η values obtained here, and also in Ref. [88], are a bit lower (by a few error

bars) than the best available classical 3D Heisenberg value [113] quoted above. Most
likely, these small discrepancies are due to further scaling corrections, but it would still
be good to push QMC calculations for various dimerized Heisenberg models to even
higher precision (using larger lattices, a denser grid of lattices sizes, and also reducing
the error bars of the computed quantities) in order to establish the agreement with the
classical exponents for sure. This is particularly interesting and important in light of
the fact that the staggered dimer model illustrated in Fig.4(c) (and also some other
dimerization patterns) seems to show small but statistically significant deviations from
the expected 3D Heisenberg exponents [89, 233, 234]. These systems may still not be in
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Do fits at the critical point and close to it (for error estimate)

(dashed curves: correction terms removed)
Result: η=0.029(3) from S and 0.020(4) from Χ 
- consistent with 3D O(3) (Heisenberg) universality class
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What’s so special about quantum-criticality?
- large T>0 quantum-critical “fan” where T is the only relevant energy scale
- physical quantities show power laws governed by the T=0 critical point

Changing T is changing the imaginary-time size Lτ: 
- Finite-size scaling at gc leads to power laws

⇠ ⇠ T�1

C ⇠ T 2

�(0) ⇠ T

(correlation length)

(specific heat)

(uniform magnetic susceptibility)

2D Neel-paramegnet
“cross-over diagram”
[Chakravarty, Halperin, 
Nelson, PRB 1988]

T = 0 Néel order non-magnetic

high-T , lattice e�ects

�
⇢s

QC: Universal quantum
critical scaling regime
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�(0) ⇠ T ) �(0)/T ! constant when T ! 0

This prediction is for the thermodynamic limit
- has to use system size large enough for L➝∞ convergence

Test of predictions. Example, susceptibility
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FIGURE 79. Susceptibility divided by temperature for the dimerized system at the critical point (g =
1.9095) computed using different lattice sizes. The peaks seen in the left panel for small systems is a finite-
size feature which moves toward T = 0 as 1/L. The solid curve in the right panel is a cubic polynomial
fit to the L = 512 data (T/J1 ≤ 0.20), which gives the prefactor a/c2 = 0.0916(1) in Eq. (293). For
comparison, in the right panel, size-converged results for for g = 1.9090 are also shown (the lowest curve,
marked with +). In this temperature range, quantum critical behavior is seen also at this coupling, which
is slightly on the nonmagnetic side of the transition (and hence χ/T → 0 eventually as T → 0)

L = 256. As expected, the results converge quickly at high temperatures, with finite-size
effects entering at approximately T ∼ 1/L (which can be expected on account of the
dynamic exponent z = 1). The right panel of Fig. 79 shows the low-T results on a more
detailed scale, including also results for L = 512. Based on this comparison of results
for different sizes, one can conclude that the thermodynamic limit can be studied with
L≤ 512 lattices down to T/J1 = 0.03 (and probably even a bit below that).
The right panel of Fig. 79 also shows a fit of χ/T to a cubic polynomial at low

temperatures. The corrections to the asymptotic linear form (293), is quite prominent,
leading to an ≈ 8% increase in χ/T [which can be considered as effective temperature
dependent prefactor a/c2 in (293)] from the minimum around T/J1≈ 0.3 to the eventual
T → 0 value. In principle the extrapolated T = 0 value a/c2 = 0.0916 can be used to
extract the spin wave velocity, but since the prefactor a is not known exactly [84], this
estimate would likely not be very precise. Another use of the result obtained here would
be to use it in combination with an accurate estimate of c obtained in some other way,
which would allow a test of the approximate calculation [84] of the prefactor. This is
beyond the scope of the discussion here, however.
Fig. 80(a) shows the temperature dependence of χ at g = gc and at two values some

distance away on either side of the critical point. There is a broad maximum at T ≈ J1,
which corresponds to the cross-over into the eventual high-temperature Curie behavior.
Below the maximum, these near-critical systems all exhibit an approximately T -linear
susceptibility, in accord with the form (293) with b < 0 and b > 0 for g > gc and
g < gc, respectively. At still lower temperatures, there will be cross-overs into RC or
QD behavior, which are not seen clearly here because the temperatures are still too high.
In the QD regime χ→ 0 exponentially for T below the gap Δ. The RC form is also linear,
like the QC form, but the slope changes in the cross-over region. Such a cross-over can
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FIGURE 80. Temperature dependence of the susceptibility (left) and the correlation length (right) in
critical (g = 1.9095) and near-critical systems. The solid lines show the asymptotic quantum-critical T -
linear behavior of χ (from the T = 0 value of the fit in Fig. 79) and the 1/T -linear behavior of χx [following
the form (292) with a small negative constant correction].

actually be seen in the standard 2D Heisenberg model, corresponding to g = 1, which
may appear to be too far away from the critical point. In the left panel of Fig. 73 one can
nevertheless see an approximately linear behavior of χ in the range T/J ∈ [0.3∼ 0.5],
before the RC behavior sets in at lower temperatures. The slope of χ in the narrow
window is in very good agreement with that obtained with the known spin wave velocity
and the approximately calculated prefactor a in (79), which indicates that this behavior
really is a manifestation of quantum critical behavior far from a quantum critical point
[84, 225] (although the very good agreement may be to some extent fortuitous, since, as
we concluded above, there are significant corrections to the purely linear form exactly
at gc, at much lower temperatures than the QC window at g = 1).
Fig. 80(b) shows the correlation length in the x direction (which is about 30% larger

than the y correlation length at gc) at the same near-critical couplings as in Fig. 80(a).
While the behavior is very linear, with a small constant correction to the asymptotic
form (292) with z = 1, the results for the systems slightly off the critical point deviate
significantly from linearity below T/J1 ≈ 0.3. Being a divergent quantity for g≤ gc, the
correlation length has much larger corrections to the critical form than the non-divergent
uniform susceptibility.

5.3.5. Néel–VBS transitions in J-Q models

With the J-Q models introduced in Sec. 2.4.3, one can study quantum phase transi-
tions at which not only the antiferromagnetic long-range order vanishes, but a different
symmetry is broken in the nonmagnetic state as a VBS forms. Superficially, a VBS may
seem rather similar to the nonmagnetic state of a dimerized Heisenberg model, because
in both cases the system exhibits a pattern of strongly and weakly correlated nearest-
neighbor pairs. These states are fundamentally very different, however, because in a
“manually” dimerized Heisenberg model the hamiltonian itself breaks the translational
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Away from the critical point
(in the quantum-critical fan)
the behavior is still linear:

�(0) = a+ bT
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Making connections with quantum field theory
Low-energy properties described by the (2+1)-dimensional nonlinear σ-model
- Chakravarty, Halperin, Nelson (1989), Chubukov, Sachdev, Ye (1994)
Expand O(3) order-parameter symmetry to O(N), large-N calculations
T>0 properties at quantum-critical coupling (N=3):

�(T ) =
1.0760

⇡c2
T E(T ) = E0 +

12 · 1.20206
5⇡c2

T 3

QMC results for bilayer model: gc = 2.5220(1), c(gc)=1.9001(2)
- L×L lattices with L up to 512 (no size-effects for T/J1 ≳ 0.03)

T and T3 prefactors agree with theory to within 3%
16
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Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3
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Thallium copper chloride is a quantum spin liquid of S!1/2 Cu2" dimers. Interdimer superexchange
interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer
coupling. This gap is closed by an applied hydrostatic pressure of approximately 2 kbar or by a magnetic field
of 5.6 T, offering a unique opportunity to explore both types of quantum phase transition and their associated
critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered
and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions
may be considered as the Bose–Einstein condensation of triplet magnon excitations, and the respective phases
of staggered magnetic order as linear combinations of dimer-singlet and dimer-triplet modes. We focus on the
evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the
gapless !Goldstone" modes in the ordered regimes which correspond to phase fluctuations of the ordered
moment. The bond-operator description yields a good account of the magnetization curves and of magnon
dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental
predictions for pressure-dependent measurements.

DOI: 10.1103/PhysRevB.69.054423 PACS number!s": 75.10.Jm, 75.40.Cx, 75.40.Gb

I. INTRODUCTION

Thallium copper chloride1–3 presents an insulating, quan-
tum magnetic system of dimerized S!1/2 Cu2" ions. Inelas-
tic neutron scattering !INS" measurements of the elementary
magnon excitations4,5 reveal a strong dispersion in all three
spatial dimensions indicative of significant interdimer inter-
actions. The dispersion minimum gives a spin gap #0
!0.7 meV, which is significantly smaller than the antiferro-
magnetic !AF" dimer superexchange parameter J$5 meV.
The corresponding critical field, Hc!5.6 T, makes TlCuCl3
one of the few known inorganic systems in which the gap
may be closed by application of laboratory magnetic fields.2
Neutron-diffraction measurements at fields H#Hc revealed
that a field-induced AF order in the plane normal to the ap-
plied field appears simultaneously with the uniform
moment.6 Recent INS measurements of the magnon spectra
in finite fields,7 including those exceeding Hc ,8 have pro-
vided dynamical information concerning the elementary ex-
citations, in particular the linear Goldstone mode,9 in the
phase of field-induced magnetic order.
TlCuCl3 !Fig. 1" is one member of a group of related

compounds. The potassium analog KCuCl3 !Refs. 1,2,10–
13,7" is similarly dimerized, but has significantly weaker in-
terdimer couplings,14 resulting in a large spin gap of 2.6
meV. A further material in the same class, NH4CuCl3, has no
spin gap and exhibits magnetic order with a very small mo-
ment, but also shows a complicated low-temperature struc-
ture which gives rise to magnetization plateaus only at 1/4
and 3/4 of the saturation value.15 While the apparent increase
of interdimer couplings with anion size may suggest a con-
tribution of the anion to superexchange processes, it should
be noted that the physical origin of the properties of
NH4CuCl3 may be rather different from the other
members.16 Turning from chemical to physical pressure,

Tanaka et al.17 found by magnetization measurements under
hydrostatic pressure that TlCuCl3 has a pressure-induced
magnetically ordered phase, with a very small critical pres-
sure for the onset of magnetic order, Pc%2 kbar. Oosawa
et al.18 have shown very recently by elastic neutron-
scattering measurements under a pressure of 1.48 GPa that
the pressure-induced ordered phase has a strong staggered
moment !60% of the saturation value", again reflecting the
low value of Pc . The magnetic Bragg reflections are found
at reciprocal-lattice points Q!(0,0,2&) !following the nota-
tion of Ref. 4", as in the field-induced ordered phase of
TlCuCl3. The aim of the present work is to compare and
contrast the field- and pressure-induced ordered phases of the
system, and to provide a complete description of the static
magnetization and dynamical excitations at all fields and
pressures.

FIG. 1. Structure of TlCuCl3: small circles represent Cl$ ions,
medium-sized circles Cu2" ions, and large circles Tl" ions.
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0163-1829/2004/69!5"/054423!20"/$22.50 ©2004 The American Physical Society69 054423-1

Figure 4.1: Crystal structure of TlCuCl
3

: small circles represent Cl� ions, medium-sized

circles Cu2+ ions, and large circles Tl+ ions. Dimers are formed between S = 1

2

Cu2+ pairs,

with superexchange via Cl� [3–9]. This graph is from Ref. [10].

couplings are di↵erent.

A universal aspect of the ordering temperature, from systems close to the quantum-

critical point to deep inside the Néel phase, is uncovered based on an unbiased quantum

Monte Carlo calculation. A scaling procedure of direct relevance to experiments is devel-

oped. The results also provide new insights into the relevant energy scales present in the 3D

Néel state and demonstrate an e↵ective decoupling of thermal and quantum fluctuations.

4.1 TlCuCl3 and Dimer Spin Models

The strong interdimer interaction of TlCuCl
3

is revealed by elementary magnon exitation

with neutron scattering experiment [6, 88]. Quantum phase transitions can be realized in

3D Network of dimers
- couplings can be 
  changed by pressure
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Quantum and classical criticality in a dimerized
quantum antiferromagnet
P. Merchant1, B. Normand2, K. W. Krämer3, M. Boehm4, D. F. McMorrow1 and Ch. Rüegg1,5,6*

A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations.
The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors,
quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal
fluctuations near such a point. However, direct and continuous control of these fluctuations has been di�cult to realize, and
complete thermodynamic and spectroscopic information is required to disentangle the e�ects of quantum and classical physics
around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum
dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram,
we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the
unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of
two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum
and thermal fluctuations can behave largely independently near a QCP.

In classical isotropic antiferromagnets, the excitations of
the ordered phase are gapless spin waves emerging on the
spontaneous breaking of a continuous symmetry1. The classical

phase transition, occurring at the critical (Néel) temperature TN,
is driven by thermal fluctuations. In quantum antiferromagnets,
quantum fluctuations suppress long-range order, and can destroy it
completely even at zero temperature2. The ordered and disordered
phases are separated by a QCP, where quantum fluctuations restore
the broken symmetry and all excitations become gapped, giving
them characteristics fundamentally di�erent from the Goldstone
modes on the other side of the QCP (Fig. 1). At finite temperatures
around a QCP, the combined e�ects of quantum and thermal
fluctuations bring about a regime where the characteristic energy
scale of spin excitations is the temperature itself, and this quantum
critical regime has many special properties3.

Physical systems do not often allow the free tuning of a
quantum fluctuation parameter through a QCP. The quantum
critical regime has been studied in some detail in heavy-fermion
metals with di�erent dopings, where the quantum phase transition
(QPT) is from itinerant magnetic phases to unusual metallic or
superconducting ones4–6, in organic materials where a host of
insulating magnetic phases become (super)conducting7,8, and in
cold atomic gases tuned from superfluid toMott-insulating states9,10.
However, the dimerized quantum spin system TlCuCl3 occupies
a very special position in the experimental study of QPTs. The
quantum disordered phase at ambient pressure and zero field has
a small gap to spin excitations. An applied magnetic field closes
this gap, driving a QPT to an ordered phase, a magnon condensate
in the Bose–Einstein universality class, with a single, nearly
massless excitation11,12.

Far more remarkably, an applied pressure also drives a QPT
to an ordered phase13, occurring at the very low critical pressure

pc = 1.07 kbar (ref. 14) and sparking detailed studies15,16. This
ordered phase is a di�erent type of condensate, whose defining
feature is a massive excitation, a Higgs boson or longitudinal
fluctuationmode of theweakly orderedmoment17,18. This excitation,
which exists alongside the two transverse (Goldstone) modes
of a conventional well-ordered magnet, has been characterized
in detail by neutron spectroscopy with continuous pressure
control through the QPT (ref. 19) and subsequently by di�erent
theoretical approaches20,21. TlCuCl3 is therefore an excellent system
for answering fundamental questions about the development of
criticality, the nature of the quantum critical regime, and the
interplay of quantum and thermal fluctuations by controlling both
the pressure and the temperature.

Here we present inelastic neutron scattering (INS) results that
map the evolution of the spin dynamics of TlCuCl3 throughout the
quantum critical phase diagram in pressure and temperature. The
spin excitations we measure exhibit di�erent forms of dynamical
scaling behaviour arising from the combined e�ects of quantum
and thermal fluctuations, particularly on crossing the quantum
critical regime and at the line of phase transitions to magnetic
order (Fig. 1). To probe these regions, we collected spectra up to
1.8 meV for temperatures between T =1.8 K and 12.7 K, and over
a range of applied hydrostatic pressures. Our measurements were
performed primarily at p = 1.05 kbar (' pc at the lowest
temperatures), 1.75 kbar and 3.6 kbar, and also for all pressures at
T = 5.8 K. Most measurements were made at the ordering
wavevector, Q0 = (0 4 0) reciprocal lattice units (r.l.u.), and so
concern triplet mode gaps. From the INS selection rules, only one
transverse mode of the ordered phase is observable at Q = Q0,
and it is gapped (�T2 = 0.38 meV) owing to a 1% exchange
anisotropy19. These features allow an unambiguous separation of
the intensity contributions from modes of each transverse or
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares 〈m2

z〉 and
〈m2

sz〉 of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
〈m2

z〉/(NT ). We also study the Binder ratio R2 = 〈m4
sz〉/〈m2

sz〉2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated 〈m2

sz〉 (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3〈m2

sz〉.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares 〈m2

z〉 and
〈m2

sz〉 of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
〈m2

z〉/(NT ). We also study the Binder ratio R2 = 〈m4
sz〉/〈m2

sz〉2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated 〈m2

sz〉 (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3〈m2

sz〉.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 5. (Color online) (a) Susceptibility vs temperature of the
staggered dimer model at different coupling ratios. The system size is
L = 12, for which the peak height and location are already L → ∞
converged. (b) The peak temperature vs the coupling ratio for the
three different models.

average coupling. In Fig. 5(a) we show examples of the
susceptibility close to its peak, and in Fig. 5(b) we show the
dependence of T ∗ on g for all three models. Normalizing TN

with T ∗ leads to remarkably good data collapse, as shown
in Fig. 4(c). Deviations from a common curve are barely
detectable. Although we cannot prove that this function is
really universal for all 3D networks of dimers, the results are
very suggestive of this.

Discussion. The universal behavior implies that the T > 0
disordering mechanism in the 3D Néel state is completely
governed by a single lattice-scale energy (which, as we have
shown here, can be taken as the peak temperature T ∗ of the
susceptibility) and the T = 0 sublattice magnetization ms . The
extended linear behavior seen in Figs. 4(b) and 4(c) shows
that the quantum and classical fluctuations at T < TN are
completely decoupled all the way from g = gc (excluding gc

itself, where TN = 0) to quite far away from the quantum-
critical point. Depending on a lattice-scale energy instead of
the quantum-critical spin stiffness, the linear behavior is not
fundamentally a quantum-critical effect. We have discussed
the linearity and decoupling of the fluctuations in terms of a
semiclassical mean-field theory, the validity of which implies
that the quantum-critical regime2 commences only above TN .
Deviations from linearity at larger ms show that the quantum
fluctuations are affected (become T dependent) here, due to
the high density of excited spin waves as T → TN because
TN is high. It is remarkable that this coupling of quantum
and classical fluctuations also takes place in an, apparently,
universal fashion for different systems. It would be interesting
to explain this more quantitatively, by deriving the full function
TN versus ms analytically. Progress in the linear regime has
been made recently in work parallel to ours.20

From a practical point of view, the data collapse of
TN/T ∗ versus ms is very useful, because all the quantities
involved can be measured experimentally and do not rely on
microscopic details. The universal curve can be used to test
the 3D Heisenberg scenario without adjustable parameters.
The universality likely applies not only to dimer networks, but
also to systems where the quantum fluctuations are regulated
in other ways.
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Couplings vs pressure not known experimentally
- plot TN vs ms to avoid  this issue and study universality
- but how to normalize TN? Three normalizations

- weaker copling J1
- sum Js of couplings per spin
- peak T* of magnetic susceptibility
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T* normalization is in principle accessible experimentally
- some experimental susc. results available
- neutron data analyzed with this normalization

Same features observed in models and experiment
- experimental slope about 25% lower of g-factor 2 assumed
   (what exactly is the g-factor?)

Universality is not a feature of quantum-criticality
- extends far from the quantum critical point
- linear behavior is expected from semiclassical theory
   (decoupling of quantum and thermal fluctuations)
- deviations show coupling of quantum and thermal fluctuations
  (high TN, high density of excited spin waves)
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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Jin and Sandvik (2012)
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• non-trivial non-magnetic ground states are possible, e.g.,
➡ resonating valence-bond (RVB) spin liquid
➡ valence-bond solid (VBS)

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·
More complex non-magnetic states; systems with 1 spin per unit cell

Non-magnetic states often have natural descriptions with valence bonds

= (⇥i⇤j � ⇤i⇥j)/
⌅

2
i j

• non-magnetic states dominated by short bonds

�

�

The basis including bonds of all lengths 
is overcomplete in the singlet sector
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Frustrated spin interactions
Quantum phase transitions as some coupling (ratio) is varied
• J1-J2 Heisenberg model is the prototypical example

H =
�

�i,j⇥

Jij
⌅Si · ⌅Sj

= J1

= J2

g = J2/J1

• Ground states for small and large g are well understood
‣ Standard Néel order up to g≈0.45; collinear magnetic order for g>0.6 

0 � g < 0.45 0.45 � g < 0.6 g > 0.6

• A non-magnetic state exists between the magnetic phases
‣ May be a VBS (what kind? Columnar or “plaquette?)
‣ Some calculations (interpretations) suggest spin liquid

• 2D frustrated models are challenging 
‣ QMC sign problems (non-positive-definite weights in path integral)
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Here, v is a spin-wave velocity, and s,u are parameters whose values
are adjusted to obtain Néel order in the ground state. In mean-field
theory, this happens for s < 0, where we have |h8i| = (�s)/(2u)
by minimization of the action S8. A standard computation of
the fluctuations about this saddle point shows that the low-energy
excitations are spin waves with two possible polarizations and an
energy ✏ that vanishes at small wavevectors k, ✏ = vk. These spin
waves correspond to local oscillations of 8 about an orientation
chosen by spontaneous breaking of the spin-rotation symmetry
in the Néel state, but which maintain low energy by fixing the
magnitude |8|. The spin waves also interact weakly with each other,
and the form of these interactions can also be described by S8.
All eVects of these interactions are completely captured by a single
energy scale, ⇢s, which is the ‘spin stiVness’, measuring the energy
required to slowly twist the orientation of the Néel order across a
large spatial region. At finite temperatures, the thermal fluctuations
of the interacting spin waves can have strong consequences. We
will not describe these here (because they are purely consequences
of classical thermal fluctuations), apart from noting4 that all these
thermal eVects can be expressed universally as functions of the
dimensionless ratio kBT/⇢s.

For future analysis, it is useful to have an alternative description
of the low-energy states above the Néel ordered state. For the
Néel state, this alternative description is, in a sense, a purely
mathematical exercise: it does not alter any of the low-energy
physical properties, and yields an identical low-temperature theory
for all observables when expressed in terms of kBT/⇢s. The key step
is to express the vector field 8 in terms of an S = 1/2 complex
spinor field z↵, where ↵ ="# by

8 = z⇤
↵� ↵�z� (3)

where � are the 2⇥2 Pauli matrices. Note that this mapping from
8 to z↵ is redundant. We can make a space-time-dependent change
in the phase of z↵ by the field ✓(x,⌧)

z↵ ! ei✓z↵ (4)

and leave 8 unchanged. All physical properties must therefore
also be invariant under equation (4), and so the quantum field
theory for z↵ has a U(1) gauge invariance, much like that found
in quantum electrodynamics. The eVective action for z↵ therefore
requires the introduction of an ‘emergent’ U(1) gauge field Aµ

(where µ = x,⌧ is a three-component space-time index). The field
Aµ is unrelated to the electromagnetic field, but is an internal
field that conveniently describes the couplings between the spin
excitations of the antiferromagnet. As we have noted above, in the
Néel state, expressing the spin-wave fluctuations in terms of z↵

and Aµ is a matter of choice, and the above theory for the vector
field 8 can serve us equally well. The distinction between the two
approaches appears when we move out of the Néel state across
quantum critical points into other phases (as we will see later):
in some of these phases, the emergent Aµ gauge field is no longer
optional, but an essential characterization of the ‘quantum order’ of
the phase. As we did for S8, we can write the quantum field theory
for z↵ and Aµ by the constraints of symmetry and gauge invariance,
which now yields

Sz =
Z

d2rd⌧


|(@µ � iAµ)z↵|2 + s|z↵|2 +u(|z↵|2)2

+ 1

2e2
0

(✏µ⌫l@⌫Al)
2

�
. (5)

For brevity, we have now used a ‘relativistically’ invariant notation,
and scaled away the spin-wave velocity v; the values of the couplings

s,u are diVerent from, but related to, those in S8. The Maxwell
action for Aµ is generated from short-distance z↵ fluctuations,
and it makes Aµ a dynamical field; its coupling e0 is unrelated
to the electron charge. The action Sz is a valid description of
the Néel state for s < 0 (the critical upper value of s will have
fluctuation corrections away from 0), where the gauge theory enters
a Higgs phase with hz↵i 6= 0. This description of the Néel state
as a Higgs phase has an analogy with the Weinberg–Salam theory
of weak interactions—in the latter case, it is hypothesized that
the condensation of a Higgs boson gives a mass to the W and Z
gauge bosons, whereas here the condensation of z↵ quenches the
Aµ gauge boson.
1. Triangular lattice. There have been numerous recent studies5 of
the spin excitations of the insulator Cs2CuCl4. Just as in La2CuO4,
the dominant spin excitations are S = 1/2 spins on the Cu ions,
but now they reside on the vertices of a triangular lattice, as
shown in Fig. 1b. Such an antiferromagnet is well described by
the hamiltonian H0, with a nearest-neighbour exchange J and i
on the sites of the triangular lattice. From numerical studies of
such spin systems6, and also from observations5 in Cs2CuCl4, the
ground state of H0 also has broken spin-rotation symmetry, but the
pattern of spin polarization is now quite diVerent. We now replace
equation (1) by

hSji = N1 cos(K · rj)+N2 sin(K · rj), (6)

where ri is the position of site i, and K = (4⇡/3a)(1,
p

3) for the
ordering pattern in Fig. 1b on a triangular lattice of spacing a. The
most important diVerence from equation (1) is that we now require
two orthogonal vectors N1,2 (N1 ·N2 = 0) to specify the degenerate
manifold of ground states. As for the square lattice, we can write
an eVective action for N1,2 constrained only by the symmetries of
the hamiltonian. Minimization of such an action shows that the
ordered state has N2

1 =N2
2 fixed to a value determined by parameters

in the hamiltonian, but are otherwise arbitrary. Moving on to
the analogue of the spinor representation in equation (3), we now
introduce another spinor w↵, which parameterizes N1,2 by7

N1 + iN2 = "↵� w�� ↵�w�, (7)

where "↵� is the antisymmetric tensor. It can be checked that w↵

transforms as an S = 1/2 spinor under spin rotations, and that
under translations by a lattice vector y w↵ ! e�iK ·y/2w↵. Apart
from these global symmetries, we also have the analogue of the
gauge invariance in equation (4). From the relationship of w↵ to
the physical observables in equation (7), we now find a Z2 gauge
transformation

w↵ ! ⌘w↵, (8)

where ⌘(r, ⌧) = ±1. This Z2 gauge invariance will play an
important role in the discussion in Section IID. The low-energy
theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2

or w↵. We will not write it out explicitly here, deferring it also to
Section IID.

B. COUPLED-DIMER ANTIFERROMAGNET

This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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A is a U(1) symmetric gauge field • CP1 action (non-compact)

- proposed as critical theory separating Neel and VBS states
- describes VBS state when additional terms are added

= 〈!Si · !Sj〉

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·

VBS states and “deconfined” quantum criticality
Read, Sachdev (1989),....,Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

Neel-VBS transition in 2D
• generically continuous
• violating the “Landau rule”

stating 1st-order transition

Competing scenario: first-order transition (Prokof’ev et al.)
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large spatial region. At finite temperatures, the thermal fluctuations
of the interacting spin waves can have strong consequences. We
will not describe these here (because they are purely consequences
of classical thermal fluctuations), apart from noting4 that all these
thermal eVects can be expressed universally as functions of the
dimensionless ratio kBT/⇢s.

For future analysis, it is useful to have an alternative description
of the low-energy states above the Néel ordered state. For the
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8 to z↵ is redundant. We can make a space-time-dependent change
in the phase of z↵ by the field ✓(x,⌧)

z↵ ! ei✓z↵ (4)

and leave 8 unchanged. All physical properties must therefore
also be invariant under equation (4), and so the quantum field
theory for z↵ has a U(1) gauge invariance, much like that found
in quantum electrodynamics. The eVective action for z↵ therefore
requires the introduction of an ‘emergent’ U(1) gauge field Aµ

(where µ = x,⌧ is a three-component space-time index). The field
Aµ is unrelated to the electromagnetic field, but is an internal
field that conveniently describes the couplings between the spin
excitations of the antiferromagnet. As we have noted above, in the
Néel state, expressing the spin-wave fluctuations in terms of z↵

and Aµ is a matter of choice, and the above theory for the vector
field 8 can serve us equally well. The distinction between the two
approaches appears when we move out of the Néel state across
quantum critical points into other phases (as we will see later):
in some of these phases, the emergent Aµ gauge field is no longer
optional, but an essential characterization of the ‘quantum order’ of
the phase. As we did for S8, we can write the quantum field theory
for z↵ and Aµ by the constraints of symmetry and gauge invariance,
which now yields

Sz =
Z

d2rd⌧


|(@µ � iAµ)z↵|2 + s|z↵|2 +u(|z↵|2)2

+ 1

2e2
0

(✏µ⌫l@⌫Al)
2

�
. (5)

For brevity, we have now used a ‘relativistically’ invariant notation,
and scaled away the spin-wave velocity v; the values of the couplings

s,u are diVerent from, but related to, those in S8. The Maxwell
action for Aµ is generated from short-distance z↵ fluctuations,
and it makes Aµ a dynamical field; its coupling e0 is unrelated
to the electron charge. The action Sz is a valid description of
the Néel state for s < 0 (the critical upper value of s will have
fluctuation corrections away from 0), where the gauge theory enters
a Higgs phase with hz↵i 6= 0. This description of the Néel state
as a Higgs phase has an analogy with the Weinberg–Salam theory
of weak interactions—in the latter case, it is hypothesized that
the condensation of a Higgs boson gives a mass to the W and Z
gauge bosons, whereas here the condensation of z↵ quenches the
Aµ gauge boson.
1. Triangular lattice. There have been numerous recent studies5 of
the spin excitations of the insulator Cs2CuCl4. Just as in La2CuO4,
the dominant spin excitations are S = 1/2 spins on the Cu ions,
but now they reside on the vertices of a triangular lattice, as
shown in Fig. 1b. Such an antiferromagnet is well described by
the hamiltonian H0, with a nearest-neighbour exchange J and i
on the sites of the triangular lattice. From numerical studies of
such spin systems6, and also from observations5 in Cs2CuCl4, the
ground state of H0 also has broken spin-rotation symmetry, but the
pattern of spin polarization is now quite diVerent. We now replace
equation (1) by

hSji = N1 cos(K · rj)+N2 sin(K · rj), (6)

where ri is the position of site i, and K = (4⇡/3a)(1,
p

3) for the
ordering pattern in Fig. 1b on a triangular lattice of spacing a. The
most important diVerence from equation (1) is that we now require
two orthogonal vectors N1,2 (N1 ·N2 = 0) to specify the degenerate
manifold of ground states. As for the square lattice, we can write
an eVective action for N1,2 constrained only by the symmetries of
the hamiltonian. Minimization of such an action shows that the
ordered state has N2

1 =N2
2 fixed to a value determined by parameters

in the hamiltonian, but are otherwise arbitrary. Moving on to
the analogue of the spinor representation in equation (3), we now
introduce another spinor w↵, which parameterizes N1,2 by7

N1 + iN2 = "↵� w�� ↵�w�, (7)

where "↵� is the antisymmetric tensor. It can be checked that w↵

transforms as an S = 1/2 spinor under spin rotations, and that
under translations by a lattice vector y w↵ ! e�iK ·y/2w↵. Apart
from these global symmetries, we also have the analogue of the
gauge invariance in equation (4). From the relationship of w↵ to
the physical observables in equation (7), we now find a Z2 gauge
transformation

w↵ ! ⌘w↵, (8)

where ⌘(r, ⌧) = ±1. This Z2 gauge invariance will play an
important role in the discussion in Section IID. The low-energy
theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2

or w↵. We will not write it out explicitly here, deferring it also to
Section IID.

B. COUPLED-DIMER ANTIFERROMAGNET

This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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Description with spinor field 
(2-component complex vector) 

S!r · S!r+x̂ ! Re"!VBS#$− 1%x,

S!r · S!r+ŷ ! Im"!VBS#$− 1%y , $1.4%

and r= $x ,y% (here columnar states have !VBS
4 real and posi-

tive, while plaquette states have !VBS
4 real and negative). In

these states there is an energy gap for spin-carrying S=1
quasiparticle excitations; these “triplons”14 are quite distinct
from spin waves, and are instead adiabatically connected to
spin excitons in band insulators. A second class of more ex-
otic paramagnetic states is also possible15–19 in principle: in
these states the valence bond configurations resonate
amongst each other and form a “liquid.” The resulting state
has been argued to possess excitations with fractional spin
1/2 and interesting topological structure.
Our focus will be on the nature of the evolution of the

ground state between these various phases. Our primary ex-
ample is that between the ordered magnet and a valence
bond solid. We also discuss the phase transitions between
valence bond solid and “spin” liquid phases (see Sec. VIII).
Qualitatively similar phenomena will be shown to be ob-
tained at both these transitions.
Both the magnetic Néel state and the valence bond solid

are states of broken symmetry. The former breaks spin rota-
tion symmetry, and the latter the symmetry of lattice transla-
tions. The order parameters N! and !VBS associated with these
two different broken symmetries are very different. A LGW
picture of the evolution between these two distinct ground
states would be formulated in terms of an effective action
that is a functional of N! and !VBS. Such a construction would
suggest either a first-order transition, or passage through an
intermediate phase which breaks both kinds of symmetry or
an intermediate “disordered” state with neither order. A di-
rect second-order transition would be expected only by fur-
ther fine tuning to special multicritical points. Our central
thesis is that this expectation is wrong. A generic second-
order transition is possible between these two phases with
different broken symmetries. The resulting critical theory is,
however, unusual and not naturally described in terms of the
order-parameter fields of either phase. Instead, the natural
description is in terms of spin-1 /2 “spinon” or CP1 fields z"
("=1,2 is a spinor index). The Néel order parameter is bi-
linear in the spinons:

N! ! z†#! z . $1.5%

Here #! is the usual vector of Pauli matrices and multiplica-
tion of the spinor index is implied. The fields z" create single
spin-1 /2 quanta, “half” that of the spin-1 quanta created by
the Néel field N! .
Although we have proposed above that the critical theory

is naturally described in terms of the spinon fields and not
the order parameters of either phase, the reader may wonder
whether this is a unique theory, and that perhaps we have
overlooked some complicated formulation in terms of vari-
ables related to the two order parameters. It will become
clear from our analysis below that such a possibility is highly
unlikely, and we anticipate the main reasons here. As we

discuss below, a key point is that the topological defects
(namely the hedgehogs in space-time) of the Néel order pa-
rameter have the same quantum numbers of the order param-
eter of the VBS paramagnet. If we insisted on describing the
direct second-order transition between these phases in terms
of these order parameters, it would be necessary to associate
the VBS order parameter with the hedgehogs of the Néel
order parameter. This means that the two order-parameter
fields will have long-ranged “statistical” interactions with
each other. Consequently there will be no local theory which
includes only the two order-parameter fields (but no other
fields). It is these difficulties that force the necessity for an
alternate description which is conveniently provided by the
spinon degrees of freedom.
The spinon fields z" defined in Eq. (1.5) have a U$1%

“gauge” redundancy. Specifically the local phase rotation

z→ ei$$r,%%z $1.6%

leaves the Néel vector invariant and hence is a gauge degree
of freedom. Here % is the imaginary time coordinate. Thus
the spinons are coupled to a U$1% gauge field a&$r ,%% (we
will use the Greek indices & ,' , . . . to represent the three
space-time indices x ,y ,%). Our central thesis—substantiated
by a variety of arguments to follow—is that the critical field
theory for the Néel-VBS transition is just the simple con-
tinuum action Sz=&d2 rd% Lz, and

Lz ='
a=1

N

($!& − ia&%za(2 + s(z(2 + u$(z(2%2 + ($)&'(!'a(%2,

$1.7%

where N=2 is the number of z components (later we will
consider the case of general N), (z(2)'a=1

N (za(2, and the value
of s is to be tuned to a critical value s=sc so that Lz is at its
scale-invariant critical point. The same action with a simple
modification also describes the critical field theory for sys-
tems with easy-plane anisotropy, with the addition of the
simple term

Lep = w(z1(2(z2(2, $1.8%

with w*0. We will discuss in more detail later why these
would describe stable critical points—perhaps the most di-
rect evidence comes from the numerical simulations reported
in Ref. 23 of a lattice model of a CP1 field coupled to a
noncompact gauge field [a lattice version of Eq. (1.7)],
where a continuous transition was found in both the isotropic
and easy-plane cases.
How can this action describe the onset of VBS order

when it does not contain !VBS, and the z" are closely related
to the Néel order parameter? In writing Eq. (1.7), we have
tacitly assumed a& to be a single-valued continuous field. In
a more careful lattice implementation of Eq. (1.5), however,
the resulting gauge field that appears is compact, i.e., defined
only modulo 2+. This allows for the presence of topological
defects occurring at a single instant of space-time (“instan-
tons”) called monopoles, at which magnetic flux !xay−!yax is
created or destroyed in integer multiples of 2+. In general,
Eq. (1.7) should thus be supplemented by terms which create
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gauge redundancy:

• large-N calculations for CPN-1 theory
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The Heisenberg interaction is equivalent to a singlet-projector

Cij |�s
ij⇥ = |�s

ij⇥, Cij |�tm
ij ⇥ = 0 (m = �1, 0, 1)

Cij = 1
4 � ⇤Si · ⇤Sj

VBS states from multi-spin interactions (Sandvik, 2007)

• we can construct models with products of singlet projectors
• no frustration in the conventional sense (QMC can be used)
• correlated singlet projection reduces the antiferromagnetic order

+ all translations
   and rotations

The “J-Q” model with two projectors is
H = �J

�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Has Néel-VBS transition, appears to be continuous
• Not a realistic microscopic model for materials
• Intended to study VBS and Néel-VBS transition (universal physics)
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T=0 Néel-VBS transition in the J-Q model
Ground-stae projector QMC calculations
(Sandvik, 2007; Lou, Sandvik, Kawashima, 2009)

VBS vector order parameter (Dx,Dy) (x and y lattice orientations)

Dx =
1
N

N�

i=1

(�1)xiSi · Si+x̂, Dy =
1
N

N�

i=1

(�1)yiSi · Si+ŷ

M2 = ⇥ ⌅M · ⌅M⇤, D2 = ⇥D2
x + D2

y⇤
No symmetry-breaking in simulations; study the squares

Data “collapse” for different system 
sizes L of AL1+η graphed vs (q-qc)L1/ν

⌅M =
1
N

�

i

(�1)xi+yi ⌅Si

Néel order parameter (staggered magnetization)

Finite-size scaling: a critical squared order parameter (A) scales as

coupling ratioA(L, q) = L�(1+�)f [(q � qc)L1/⇥ ]

q =
Q

J +Q
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J-Q2 model; qc=0.961(1)

�s = 0.35(2)
�d = 0.20(2)
⇥ = 0.67(1)

J-Q3 model; qc=0.600(3)

�s = 0.33(2)
�d = 0.20(2)
⇥ = 0.69(2)

Exponents universal 
(within error bars)

J �Q2

J �Q3

Comparable results for
honeycomb J-Q model 
Alet & Damle, PRB 2013
Dimer expansion calculations;
strong fluctuations, hard to 
reproduce QMC results
D. Yao et al., PRB 2009
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expected phases and cross-overs
T>0 Paramagnet - VBS transition

What is the nature of 
the T>0 critical(?) curve 
(universality class)?
S. Jin, A. Sandvik, PRB 2013

Scenarios for 2D Z4 symmetry-breaking (conformal field theory, CFT):

Ising4-state Potts
⌫ ! 1⌫ ! 2/3 ⌘ = 1/4

IsingXY (KT trans.)
⌫ ! 1⌫ ! 1 ⌘ = 1/4

But a previous study found ν≈0.5 for J-Q2 model at J=0:
- Tsukamoto, Harada, Kawashima, J. Phys. Conf. Ser. 150, 042218 (2009) 

Ashkin-Teller and J1-J2 Ising models

XY-model with cos(4θ) term

The VBS pattern can be
arranged in 4 different ways
(translate, rotate)
• Z4 symmetric order param
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QMC calculations of the VBS correlation length
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FIG. 1. (Color online) Extraction of T
c

for system at q = 5.
Shown in (a) are, in order of higher to lower curves on the left
side, results for ⇠1/L versus T for system sizes L = 96, 48, 24,
and 12. Crossing points giving T

c

(L) estimates are shown
in (b), using both ⇠1 and ⇠2 with sizee pairs (L, 2L). The
data were fit to the form T

c

(L) = T
c

(1)+ a/Lw in the range
1/L 2 [0, 0.08] (⇠1) and [0, 0.06] (⇠2), yelding T

c

= 0.249(3) in
the case of �1. For the ⇠2 fit, T

c

(1) = 0.249 was fixed.

sions. The J-Q3 Hamiltonian is defined as

H = �J
X

hi,ji

C
ij

�Q3

X

hijklmni

C
ij

C
kl

C
mn

, (1)

where C
ij

is a nearest-neighbor bond-singlet projector;

C
ij

= 1
4 � S

i

· S
j

, (2)

here on the square lattice with L2 sites. We define the
coupling ratio q = Q3/J . The point separating the AFM
and VBS ground states is q

c

= 1.500(2) [12]. We here
use the stochastic series expansion (SSE) QMC method
with loop updates [35–37] to compute quantities useful
for extracting the critical temperature and exponents of
the T > 0 VBS transition for q > q

c

.
We define the VBS correlation length using the J-term

(bond) susceptibility,

�
b1,b2 =

Z
�

0
d⌧hC

b2(⌧)Cb1(0)i, (3)

where P
b

is a singlet projector (2), with b a bond con-
necting sites i

b

, j
b

. The susceptibilities can be computed
easily with the SSE method, because the projectors are
terms of the Hamiltonian and, thus, appear in the sam-
pled operator sequences. With n(b) denoting the number
of J-operators on bond b, the susceptibility is [38]

�
b1,b2 = hn(b1)n(b2)� �

b1,b2n(b1)i/�. (4)

This estimator works well when q is not too large. When
q > 10 the measurements become noisy due to the low
density of J-operators.

To detect columnar VBS order, we consider the bonds
b1 and b2 oriented in the same (x or y) lattice direction
and denote by �↵(r), ↵ = x, y, the spatially averaged
distance-dependent susceptibility. The VBS susceptibil-
ity �x

VBS is the q = (⇡, 0) Fourier transform of �x(r)
(and analogously for y). The columnar VBS breaks the
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FIG. 2. (Color online) (a) The critical temperature extracted
from ⇠1/T (open circles). Also shown are results (solid circles)
where the VBS susceptibility exhibits the best scaling behav-
ior when � = 7/4 is fixed. (b) The exponent ⌫ versus q. The
vertical dashed lines in both panels mark the quantum-critical
ratio q

c

[12]. The curves are guides to the eye.

lattice rotational symmetry, and we can define two cor-
relation lengths. Using the x susceptibility and defining
q0 = (⇡, 0), q1 = (⇡ + 2⇡/L, 0) and q2 = (⇡, 2⇡/L) we
have the correlation lengths parallel and perpendicular
to the x bonds for an L⇥ L lattice;

⇠x1 =
L

2⇡

s
�x

VBS(q0)

�x

VBS(q1)
� 1, ⇠x2 =

L

2⇡

s
�x

VBS(q0)

�x

VBS(q2)
� 1,

(5)
and analogously for y. Average valuess of x, y quantities
are denoted in the following without superscript.
Critical temperature—To illustrate how T

c

is deter-
mined, Fig. 1(a) shows ⇠1/L versus T at q = 5 for several
system sizes. According to finite-size scaling theory [39],
⇠1/L for di↵erent L should cross at T

c

when L ! 1.
Due to scaling corrections, the crossing point T

c

(L1, L2)
between two system sizes, which we here take as L and
2L, drifts slowly with L and converges as the system size
increases. We use the crossing point for both ⇠1 and ⇠2 to
extract T

c

and check the consistency of the two results.
Fig. 1(b) shows two sets of T

c

(L) point obtaied from
⇠1 and ⇠2. Both curves can be fitted with the form
T
c

(L) = T
c

(1) + a/Lw but the parameters are di↵er-
ent. The two curves appoach T

c

from di↵erent directions.
The ⇠1 data have large deviations from the fitted function
only for small systems (L . 12), while ⇠2 shows correc-
tions extending up to larger L and the size dependence is
non-monotonic. The data nevertheless extrapolate con-
sistently to a common T

c

in the thermodynamic limit.
To demonstrate this, we show in Fig. 1(b) a fit to the ⇠1
data, giving T

c

= 0.249(3). (which has a smaller statis-
tical error than the value from ⇠2). We also show a fit to
the ⇠2 data, where T

c

(1) is fixed at the result from ⇠1.
Results for other q points were extracted in the same

way, making sure that ⇠1 and ⇠2 data extrapolate con-
sistently and using the ⇠1 results (which always have
smaller errors) for further analysis. This procedure be-
comes increasingly challenging as the quantum-critical
point q

c

is approached and T
c

! 0. The corrections to
the asymptotic form became more profound and larger
systems have to be used. In addition, the SSE calcula-

Using VBS real-space susceptibilities

Néel VBS
(Q/J)c Q/J

b1

b2

QMC study of J-Q3 model at T>0
- Tc higher; further away from T=0 quantum-criticality

qx

qy

0
0

π

π

Fourier transform to �VBS(qx, qy)

Two correlation lengths of the order parameter
- parallel and perpendicular to ordered bonds
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to calculate finite temperature quantum systems. Various quantities characterizing thermal

phase transition of quantum system can be calculated in SSE, thus critical tempature and

exponents based on these quantities can be extracted. In this chapter, it is focused on

the finite-temperature phase transition of the VBS state. Several important quantities are

defined and analyzed in the following context.

3.3.1 Extraction of Tc

There are various ways to define the VBS correlation length. The definition used here is

based on the J-term (bond) susceptibility,

�b1,b2 =

Z �

0

d⌧h bHb2(⌧) bHb1(0)i, (3.2)

where b
1

, b
2

are bond indices, bHbi = JSa · Sb, with Sa and Sb being nearest-neighbor spin

operators. These susceptibilities can be computed very easily with the SSE method since

the bond operators are part of the Hamiltonian and, thus, appear in the sampled operator

sequences. With n(b) denoting the number of J-operators on bond b, the susceptibility is

computed as

�b1,b2 = hn(b
1

)n(b
2

) � �b1,b2n(b
1

)i/�. (3.3)

This estimator works well as long as Q
3

/J is not too large, in which case the measurements

become noisy due to the low density of bond operators. To measure columnar VBS order,

The bonds b
1

and b
2

oriented in the same (x or y) lattice direction and denote by �↵(r),

↵ = x, y, are considered the susceptibility. The VBS susceptibility �x
VBS

is the q = (⇡, 0)

Fourier transform of �x(r) and analogously for y. Because the columnar VBS breaks the

lattice rotational symmetry, two correlation lengths are defined. Using the x susceptibility

and defining q
0

= (⇡, 0), q
1

= (⇡ + 2⇡
L , 0) and q

2

= (⇡, 2⇡
L ), the correlation lengths parallel

and perpendicular to the x-oriented bonds for an L ⇥ L lattice are shown as following:

⇠x
1

=
L

2⇡

s
�x

VBS

(q
0

)

�x
VBS

(q
1

)
� 1, ⇠x

2

=
L

2⇡

s
�x

VBS

(q
0

)

�x
VBS

(q
2

)
� 1, (3.4)

and analogously for y. Because of the Z
4

symmetry of VBS state, average values of x, y

quantities are present in the following context without superscript ↵.
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Second moment (q-space) definitions:

�x

VBS = �x

VBS(q0).
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2

the critical correlation-function exponent η = 1/4 is con-
stant (while other exponents depend on system details).
Instead, η ≈ 0.5 was obtained [34]. Here we consider
the J-Q3 model [12], where the Q3 term consists of three
bond-singlet projectors (forming columns on three adja-
cent lattuce links). This model has a much more robust
T = 0 VBS for large Q3, while the VBS state of the
J-Q2 model is near-critical even for Q2/J → ∞. With
the J-Q3 model we can systematically study the T > 0
transition both far away from the DQC point and close
to it. We find consistency with η = 1/4 to high precision,
and also point out that cross-over behavior related to the
DQC criticality exactly at T = 0 makes it difficult to re-
liably extract the exponents when Tc is low. We believe
that this behavior affected the previous study of η.
Model and methods—We next discuss the QMC calcu-

lations and data analysis on which we base our conclu-
sions. The J-Q3 Hamiltonian is defined as

H = −J
∑

〈i,j〉

Pij −Q3

∑

〈ijklmn〉

PijPklPmn, (1)

where Pij is a nearest-neighbor bond-singlet projector;

Pij =
1
4
− Si · Sj , (2)

here on the square lattice with L2 sites. We define the
coupling ratio q = Q3/J . The quantum-critical point
separating the AFM and VBS states is qc = 1.500(2) [12].
We here use the stochastic series expansion (SSE) QMC
method with loop updates [35–37] to compute several
quantities useful for extracting the critical temperature
and exponents of the VBS transition for q > qc.
There are various ways to define the VBS correlation

length. For computational convenience we here use a
definition based on the J-term (bond) susceptibility,

χb1,b2 =

∫ β

0

dτ〈Pb2 (τ)Pb1 (0)〉, (3)

where Pb is a singlet projector as in (2), with b denoting a
bond connecting sites ib, jb. These susceptibilities can be
computed easily with the SSE method, because the bond
operators are terms of the Hamiltonian and, thus, appear
in the sampled operator sequences. With n(b) denoting
the number of J-operators on bond b in the sequence, the
susceptibility is given by [38]

χb1,b2 = 〈n(b1)n(b2)− δb1,b2n(b1)〉/β. (4)

This estimator works well as long as q is not too large.
When q > 10 the measurements become noisy due to the
low density of bond operators, but for our purposes here
this is not a problem.
To detect columnar VBS order, we consider the bonds

b1 and b2 oriented in the same (x or y) lattice direction
and denote by χα(r), α = x, y, the spatially averaged
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FIG. 1. (Color online) Extraction of Tc for system at q = 5.
Shown in (a) are, in order of higher to lower curves on the left
side, results for ξ1/L versus T for system sizes L = 96, 48, 24,
and 12. Crossing points giving Tc(L) estimates are shown
in (b), using both ξ1 and ξ2 with sizee pairs (L, 2L). The
data were fit to the form Tc(L) = Tc(∞)+ a/Lw in the range
1/L ∈ [0, 0.08] (ξ1) and [0, 0.06] (ξ2), yelding Tc = 0.249(3) in
the case of χ1. For the ξ2 fit, Tc(∞) = 0.249 was fixed.

distance-dependent susceptibility. The VBS susceptibil-
ity χx

VBS is the q = (π, 0) Fourier transform of χx(r) (and
analogously for y). Because the columnar VBS breaks
the lattice rotational symmetry, we can define two cor-
relation lengths. Using the x susceptibility and defining
q0 = (π, 0), q1 = (π + 2π/L, 0) and q2 = (π, 2π/L) we
have the correlation lengths parallel and perpendicular
to the x-oriented bonds for an L× L lattice;

ξx1 =
L

2π

√

χx
VBS(q0)

χx
VBS(q1)

− 1, ξx2 =
L

2π

√

χx
VBS(q0)

χx
VBS(q2)

− 1,

(5)
and analogously for y. Average valuess of x, y quantities
are denoted in the following without superscript.
Critical temperature—To illustrate how the critical

VBS temperature Tc is determined, Fig. 1(a) shows ξ1/L
versus T at q = 5 for several system sizes. According
to standard finite-size scaling theory [39], ξ1/L for differ-
ent L should cross at Tc when L → ∞. Due to expected
scaling corrections, the crossing point Tc(L1, L2) between
two system sizes, which we here take as L and 2L, drifts
slowly with L and converges as the system size increases.
We use the crossing point for both ξ1 and ξ2 to extract
Tc and check the consistency of the two results.
Fig. 1(b) shows two sets of Tc(L) point obtaied from ξ1

and ξ2. Both curves can be fitted with the form Tc(L) =
Tc(∞) + a/Lw but the parameters are different. The
two curves appoach Tc from different directions. The ξ1
data have large deviations from the fitted function only
for small systems (L ! 12), while ξ2 shows corrections
extending up to larger systems and the size dependence
is non-monotonic. In spite of the different behaviors,
the data extrapolate consistently to a common Tc in the
thermodynamic limit. To demonstrate this, we show in
Fig. 1(b) a fit to the ξ1 data, which gives Tc = 0.249(3).
(which has a smaller statistical error than the value from
ξ2). We also show a fit to the ξ2 data, where the Tc(∞)
value is fixed at the result based on ξ1.
Tc values for several other q points were extracted in

Q3/J = 5

Finite-size scaling: ξ/L size independent at Tc

Alternative way: find T=Tc where ΧVBS ∾ La, a=2-η

Gives same Tc
and η=0.250(1)

3

0 2 4 6 8 10
Q3/J

0.00

0.10

0.20

0.30 T/Q3

Tc (1)
Tc (2)

0 2 4 6 8 10
Q3/J

1.0

1.5

2.0

2.5

3.0 ν

(a) (b)

FIG. 2. (Color online) (a) The critical temperature extracted
from ξ1/T (open circles). Also shown are results (solid circles)
where the VBS susceptibility exhibits the best scaling behav-
ior when γ = 7/4 is fixed. (b) The exponent ν versus q. The
vertical dashed lines in both panels mark the quantum-critical
ratio qc [12]. The curves are guides to the eye.

the same way, making sure that ξ1 and ξ2 data extrap-
olate consistently but using only the ξ1 results (which
always have smaller errors) for further analysis. This pro-
cedure becomes increasingly challenging as the quantum-
critical point qc is approached and Tc → 0. The correc-
tions to the asymptotic form became more profound and
larger systems have to be used. In addition, the SSE cal-
culations become more time-consuming, since L " 1/T
is required for the simulated effective classical system to
be firmly in the 2D limit. The largest system simulated
was L = 192 at q = 5/3. Results for Tc are shown versus
the coupling ratio in Fig. 2(a).
Critical exponents—we next present an analysis of the

scaling behavior of the VBS susceptibility, which exactly
at Tc should follow the form

χVBS(Tc) ∼ Lγ/ν , (6)

where γ/ν = 2 − η. Here we can use the value of Tc

extracted above from the correlation length scaling. Al-
ternatively, we can adjust the temperature until the best
power-law scaling is obtained. If sufficiently large sys-
tem sizes are used the two methods should of course de-
liver consistent results. This is indeed the case, as shown
in Fig. 2(a). An example of the best power-law scal-
ing is shown for the system with q = 5 in Fig. 3(a).
Here the corrections to scaling appear to be very small
(i.e., a straight line can be well fitted on the log-log scale
even when systems as small as L = 10 are included) and
the temperature, T = 0.253, is only about one error bar
off the Tc value extracted from ξ1/L. A series of fits
with a bootstrap analysis to estimate the errors yielded
γ/ν = 1.750(1), corresponding η = 0.250(1). Thus, we
find complete consistency, to rather high precision, with
the most natural expectation of η = 1/4. We obtain
similar results for all values of Q3/J studied.
Fig. 3(b) demonstrates a different way to analyze the

susceptibility and test the assumption η = 1/4, by graph-
ing χVBSL−7/4 versus T is for different system sizes. All
curves cross essentially at the same point, which confirms
the scaling power γ/ν = 7/4 in Eq. (6). The remarkable
absence of drift in the crossing points of χVBSL−7/4 (in
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FIG. 3. (Color online) (a) Scaling behavior of the critical
VBS susceptibility for systems at q = 5. Here T was ad-
justed to give the best linear scaling on the log-log plot, giv-
ing γ/ν = 1.750(1). (b) The size-scaled susceptibility under
the assumption η = 1/4 versus T for several system sizes.
The crossing point is consistent with Tc extracted from the
correlation length.
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FIG. 4. (Color online) Data collapse of the VBS susceptibility
for system s at q = 10/3. The inset shows data for L =
80, 96, 112 in the range tL1/ν

∈ [−0.5, 3] for which the fitting
procedure was carried out. The main part shows data in a
larger window and including also smaller systems. The fit
yelded ν = 1.70(5).

contrast to the significant drift found for the normalized
correlations lengths) makes this quantity a perfect candi-
date for carrying out a finite-size data collapse to extract
correlation length exponent ν, which we consider next.
Shown in Fig. 4 are data sets for system sizes L = 48

to 112 at q = 10/3, graphed versus tL1/ν , where t is the
reduced temperature, t = (T − Tc)/Tc, and the critical
temperature was determined in the manner above to be
Tc = 0.217. The correlation lengt ν was adjusted to
give the best data collapse, as measured with respect
to a polynomial fitted simultaneously to all data points
for L = 80, 96, 112 in the range tL1/ν ∈ [−0.5, 3]. A
zoom-in on this window is shown in the inset. The fit
was restricted to the larger sizes in order to minimize the
effects of neglected scaling corrections, and the window of
tL1/ν values was chosen to obtain a statistically sound fit.
This procedure along with an analysis of the statistical
errors gave ν = 1.70(5). When q is tuned towards qc,
larger system sizes are required to achieve good collapse
due to more pronounced scaling corrections, as already
mentioned above. As an example, at q = 5/3, we used
system sizes L = 112, 128, 160, 192.
All our results for Tc and ν versus q are shown in Fig. 2.
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FIG. 2. (Color online) (a) The critical temperature extracted
from ξ1/T (open circles). Also shown are results (solid circles)
where the VBS susceptibility exhibits the best scaling behav-
ior when γ = 7/4 is fixed. (b) The exponent ν versus q. The
vertical dashed lines in both panels mark the quantum-critical
ratio qc [12]. The curves are guides to the eye.

the same way, making sure that ξ1 and ξ2 data extrap-
olate consistently but using only the ξ1 results (which
always have smaller errors) for further analysis. This pro-
cedure becomes increasingly challenging as the quantum-
critical point qc is approached and Tc → 0. The correc-
tions to the asymptotic form became more profound and
larger systems have to be used. In addition, the SSE cal-
culations become more time-consuming, since L " 1/T
is required for the simulated effective classical system to
be firmly in the 2D limit. The largest system simulated
was L = 192 at q = 5/3. Results for Tc are shown versus
the coupling ratio in Fig. 2(a).
Critical exponents—we next present an analysis of the

scaling behavior of the VBS susceptibility, which exactly
at Tc should follow the form

χVBS(Tc) ∼ Lγ/ν , (6)

where γ/ν = 2 − η. Here we can use the value of Tc

extracted above from the correlation length scaling. Al-
ternatively, we can adjust the temperature until the best
power-law scaling is obtained. If sufficiently large sys-
tem sizes are used the two methods should of course de-
liver consistent results. This is indeed the case, as shown
in Fig. 2(a). An example of the best power-law scal-
ing is shown for the system with q = 5 in Fig. 3(a).
Here the corrections to scaling appear to be very small
(i.e., a straight line can be well fitted on the log-log scale
even when systems as small as L = 10 are included) and
the temperature, T = 0.253, is only about one error bar
off the Tc value extracted from ξ1/L. A series of fits
with a bootstrap analysis to estimate the errors yielded
γ/ν = 1.750(1), corresponding η = 0.250(1). Thus, we
find complete consistency, to rather high precision, with
the most natural expectation of η = 1/4. We obtain
similar results for all values of Q3/J studied.
Fig. 3(b) demonstrates a different way to analyze the

susceptibility and test the assumption η = 1/4, by graph-
ing χVBSL−7/4 versus T is for different system sizes. All
curves cross essentially at the same point, which confirms
the scaling power γ/ν = 7/4 in Eq. (6). The remarkable
absence of drift in the crossing points of χVBSL−7/4 (in
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FIG. 3. (Color online) (a) Scaling behavior of the critical
VBS susceptibility for systems at q = 5. Here T was ad-
justed to give the best linear scaling on the log-log plot, giv-
ing γ/ν = 1.750(1). (b) The size-scaled susceptibility under
the assumption η = 1/4 versus T for several system sizes.
The crossing point is consistent with Tc extracted from the
correlation length.
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FIG. 4. (Color online) Data collapse of the VBS susceptibility
for system s at q = 10/3. The inset shows data for L =
80, 96, 112 in the range tL1/ν

∈ [−0.5, 3] for which the fitting
procedure was carried out. The main part shows data in a
larger window and including also smaller systems. The fit
yelded ν = 1.70(5).

contrast to the significant drift found for the normalized
correlations lengths) makes this quantity a perfect candi-
date for carrying out a finite-size data collapse to extract
correlation length exponent ν, which we consider next.
Shown in Fig. 4 are data sets for system sizes L = 48

to 112 at q = 10/3, graphed versus tL1/ν , where t is the
reduced temperature, t = (T − Tc)/Tc, and the critical
temperature was determined in the manner above to be
Tc = 0.217. The correlation lengt ν was adjusted to
give the best data collapse, as measured with respect
to a polynomial fitted simultaneously to all data points
for L = 80, 96, 112 in the range tL1/ν ∈ [−0.5, 3]. A
zoom-in on this window is shown in the inset. The fit
was restricted to the larger sizes in order to minimize the
effects of neglected scaling corrections, and the window of
tL1/ν values was chosen to obtain a statistically sound fit.
This procedure along with an analysis of the statistical
errors gave ν = 1.70(5). When q is tuned towards qc,
larger system sizes are required to achieve good collapse
due to more pronounced scaling corrections, as already
mentioned above. As an example, at q = 5/3, we used
system sizes L = 112, 128, 160, 192.
All our results for Tc and ν versus q are shown in Fig. 2.

Data collapse to extract correlation-length exponent ν
- plot size-normalized ΧVBS vs tL1/ν, t=(T-Tc)/Tc
- exponent ν adjusted for best scaling collapse
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FIG. 2. (Color online) (a) The critical temperature extracted
from ξ1/T (open circles). Also shown are results (solid circles)
where the VBS susceptibility exhibits the best scaling behav-
ior when γ = 7/4 is fixed. (b) The exponent ν versus q. The
vertical dashed lines in both panels mark the quantum-critical
ratio qc [12]. The curves are guides to the eye.

the same way, making sure that ξ1 and ξ2 data extrap-
olate consistently but using only the ξ1 results (which
always have smaller errors) for further analysis. This pro-
cedure becomes increasingly challenging as the quantum-
critical point qc is approached and Tc → 0. The correc-
tions to the asymptotic form became more profound and
larger systems have to be used. In addition, the SSE cal-
culations become more time-consuming, since L " 1/T
is required for the simulated effective classical system to
be firmly in the 2D limit. The largest system simulated
was L = 192 at q = 5/3. Results for Tc are shown versus
the coupling ratio in Fig. 2(a).
Critical exponents—we next present an analysis of the

scaling behavior of the VBS susceptibility, which exactly
at Tc should follow the form

χVBS(Tc) ∼ Lγ/ν , (6)

where γ/ν = 2 − η. Here we can use the value of Tc

extracted above from the correlation length scaling. Al-
ternatively, we can adjust the temperature until the best
power-law scaling is obtained. If sufficiently large sys-
tem sizes are used the two methods should of course de-
liver consistent results. This is indeed the case, as shown
in Fig. 2(a). An example of the best power-law scal-
ing is shown for the system with q = 5 in Fig. 3(a).
Here the corrections to scaling appear to be very small
(i.e., a straight line can be well fitted on the log-log scale
even when systems as small as L = 10 are included) and
the temperature, T = 0.253, is only about one error bar
off the Tc value extracted from ξ1/L. A series of fits
with a bootstrap analysis to estimate the errors yielded
γ/ν = 1.750(1), corresponding η = 0.250(1). Thus, we
find complete consistency, to rather high precision, with
the most natural expectation of η = 1/4. We obtain
similar results for all values of Q3/J studied.
Fig. 3(b) demonstrates a different way to analyze the

susceptibility and test the assumption η = 1/4, by graph-
ing χVBSL−7/4 versus T is for different system sizes. All
curves cross essentially at the same point, which confirms
the scaling power γ/ν = 7/4 in Eq. (6). The remarkable
absence of drift in the crossing points of χVBSL−7/4 (in
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FIG. 3. (Color online) (a) Scaling behavior of the critical
VBS susceptibility for systems at q = 5. Here T was ad-
justed to give the best linear scaling on the log-log plot, giv-
ing γ/ν = 1.750(1). (b) The size-scaled susceptibility under
the assumption η = 1/4 versus T for several system sizes.
The crossing point is consistent with Tc extracted from the
correlation length.
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FIG. 4. (Color online) Data collapse of the VBS susceptibility
for system s at q = 10/3. The inset shows data for L =
80, 96, 112 in the range tL1/ν

∈ [−0.5, 3] for which the fitting
procedure was carried out. The main part shows data in a
larger window and including also smaller systems. The fit
yelded ν = 1.70(5).

contrast to the significant drift found for the normalized
correlations lengths) makes this quantity a perfect candi-
date for carrying out a finite-size data collapse to extract
correlation length exponent ν, which we consider next.
Shown in Fig. 4 are data sets for system sizes L = 48

to 112 at q = 10/3, graphed versus tL1/ν , where t is the
reduced temperature, t = (T − Tc)/Tc, and the critical
temperature was determined in the manner above to be
Tc = 0.217. The correlation lengt ν was adjusted to
give the best data collapse, as measured with respect
to a polynomial fitted simultaneously to all data points
for L = 80, 96, 112 in the range tL1/ν ∈ [−0.5, 3]. A
zoom-in on this window is shown in the inset. The fit
was restricted to the larger sizes in order to minimize the
effects of neglected scaling corrections, and the window of
tL1/ν values was chosen to obtain a statistically sound fit.
This procedure along with an analysis of the statistical
errors gave ν = 1.70(5). When q is tuned towards qc,
larger system sizes are required to achieve good collapse
due to more pronounced scaling corrections, as already
mentioned above. As an example, at q = 5/3, we used
system sizes L = 112, 128, 160, 192.
All our results for Tc and ν versus q are shown in Fig. 2.

Collecting the key results:

η very close to 1/4 (<1% deviation) for all cases studied
Procedures become difficult for low Tc

• larger scaling corrections → larger system sizes
• QMC simulations more time-consuming for low T
Results show Ising - XY (KT) critical curve realized (c=1 CFT)
Note: Limits T→0 and L →∞ do not commute
• L →∞ first gives 2-dim KT transition
• T → 0 first gives (2+1)-dim DQC universality class
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