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Density functional theory for atomic Fermi gases
Ping Nang Ma1, Sebastiano Pilati1,2, Matthias Troyer1* and Xi Dai3

The interplay between interaction and inhomogeneity for
electrons in solids generates many interesting phenomena,
including insulating and metallic behaviour, magnetism,
superconductivity, quantum criticality and more exotic
phases1. Many of the same phenomena appear in ultracold
fermionic atoms in optical lattices2, which provide clean,
controlled and tunable ‘quantum simulators’ to explore the
intriguing physics of fermionic systems. Although density
functional theory3–5 (DFT) is widely used to calculate material
properties6, it has not yet been applied to cold atomic gases in
optical lattices. Here we present a new density functional for
short-range interactions (as opposed to Coulomb interactions
of electrons), which renders DFT suitable for atomic Fermi
gases. This grants us access to an extensive toolset, previously
developed for materials simulations, to calculate the static and
dynamic properties of atomic Fermi gases in optical lattices and
external potentials. Ultracold atom quantum simulators can
in turn be used to explore limitations of DFT functionals, and
to further improve hybrid functionals, thus forming a bridge
betweenmaterials simulations and atomic physics.

Ultracold atomic gases have several advantages overmaterials for
systematically exploring fermionic quantum systems. In materials,
strong interactions go hand in hand with increasing localization
of electrons as one moves from weakly correlated materials with
s and p electrons to transition metal compounds with d electrons,
and lanthanides and actinides with even more localized f orbitals.
In contrast, all relevant parameters can be almost arbitrarily
changed for fermionic gases in optical lattices: increasing the
intensity of the optical lattice tunes continuously from shallow
lattices with extended wave functions to deep lattices with almost
localized Wannier functions, and the band structure can be
further modified by changing the laser wave form. The strength
of the inter-atomic interactions can independently be varied by
tuning an external magnetic field across Feshbach resonances7.
This facilitates a controlled realization of intriguing quantum
phenomena in fermionic systems, and the systematic exploration of
interaction and localization effects. The simplicity of atomic gases,
the absence of core electrons and the ability to realize strongly
interacting systems already in the lowest band makes optical lattice
systems also much easier to treat from a theoretical point of view,
avoiding the need for expensive all-electron calculations including
the core electrons or the use of less reliable pseudopotentials
incorporating their effects.

So far, the experimental and theoretical focus has been on
deep optical lattices, which are described well by single-band
Hubbard models and where exciting progress has been achieved.
In experiments, a Mott insulating phase has been realized8,9, and
the detection of a Néel state seems feasible in the not too distant
future. Progress in simulation methods10,11 now allows one to
accurately simulate the Hubbard model in the same temperature
regime12, thus enabling direct comparison between experiments
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and simulation for the fermionic Hubbard model similar to what
has previously been done for bosons13.

Even more intriguing physics than in the Hubbard model
is expected in shallow optical lattices, where—in analogy to
materials—a rich variety of phases is expected as the bandgap closes
and multi-band and orbital effects become important. Although
shallow lattices are easy to achieve experimentally by reducing the
laser amplitude, they pose a challenge to theoretical treatments.
As the bandgap is reduced a single-band description fails and
there are fundamental problems for deriving reliable multi-band
Hubbard type models14. We thus propose to investigate this largely
unexplored regime using DFT with a new exchange correlation
functional for atomic quantum gases. As a first application we will
focus on the competition between paramagnetic, ferromagnetic and
antiferromagnetic (AF) phases. Specifically, we will show that the
ferromagnetic phase of repulsively interacting fermions, which was
investigated in experiment15 and in simulations16, is substantially
enlarged in an optical lattice and a non-trivial phase diagram is
obtained owing to band structure effects.

DFT is the workhorse for electronic structure simulations
and has been widely and highly successfully used for many
decades6. Although there are open challenges in calculating spectral
properties of strongly correlated systems, DFTworks extremely well
in the weakly correlated regime and gives accurate ground state
energies and densities also in the presence of strong correlations.
Following Hohenberg and Kohn3 (HK), the exact ground-state
energy E and ground state density ρ can be determined by
minimizing an energy functional of the density:

E [ρ]=
∫

drV (r)ρ(r)+F [ρ]

where the first term is the potential energy due to the external
potential V (r) at location r. In the context of materials V (r) is
the electrostatic potential (pseudopotential) of nuclei (and core
electrons), whereas in ultracold atomic gases V (r) is the optical
lattice potential (seeMethods). The second term is an unknown but
universal functional F which includes the interaction and kinetic
energies, but does not explicitly depend on V (r). Generalizing to
potentially spin-polarized systems one introduces separate densities
of the two spin components ρ↑ and ρ↓:

E
[
ρ↑,ρ↓

]
=

∫
drV (r)

[
ρ↑(r)+ρ↓(r)

]
+F

[
ρ↑,ρ↓

]
(1)

An explicit (but rather inaccurate) expression for F [ρ↑,ρ↓] is given
by theHK-local spin density approximation3 (LSDA)

F
[
ρ↑,ρ↓

]
=

∫
dr ε(ρ↑(r),ρ↓(r))

where ε(ρ↑,ρ↓) is the ground-state energy density of a homo-
geneous Fermi gas with the given spin densities. The Thomas–
Fermi approximation is recovered as a mean-field approximation
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Figure 1 | Comparison of DFT results to QMC. Energy per particle E/N
versus optical lattice intensity V0, at quarter-filling n= ρd3

=0.5, with
scattering length a=0.04d. The green curve plots the results of KS DFT
within the LSDA, the red points show fixed-node diffusion Monte Carlo
simulations. Inset: cross-sectional density profile on one lattice site, at a
particular lattice intensity of V0= 2.0ER.

for ε(ρ↑,ρ↓). A better approximation is to use the results of a
quantum Monte Carlo (QMC) simulation with the given density
(see Methods ). Although in the quantum gases community this
is referred to as the ‘local density approximation’ (LDA), we will
explicitly call it theHK-LSDA, to avoid confusionwith the common
use of ‘LDA’ in electronic structure calculations.

The kinetic part is usually highly non-local and cannot be treated
well under the local approximation. Therefore, Kohn and Sham4

(KS) proposed a more accurate functional by explicitly including
the exact kinetic energy T0 of non-interacting fermions. What is
left is the interaction energy EHXC, combining the usual Hartree
(mean-field term)EH and the exchange–correlation correctionEXC:

F
[
ρ↑,ρ↓

]
=T0

[
ρ↑,ρ↓

]
+EHXC

[
ρ↑,ρ↓

]
A simple yet often reliable treatment of EHXC is the LSDA

EHXC
[
ρ↑,ρ↓

]
=

∫
dr εHXC

(
ρ↑(r),ρ↓(r)

)
where the functional is replaced by an integral over the interaction
energy of a uniform system with the same local density. For
contact interactions, and unlike the Coulomb case, theHartree term
depends only on the local densities, and we can thus combine it
with the exchange–correlation terms into one interaction energy
term εHXC. We will refer to this functional explicitly as the
KS-LSDA functional.

The LSDA functionals have been obtained using fixed-node
diffusion Monte Carlo simulations, similar to previous calculations
for the 3D electron gas17. In the Supplementary Information
we report an explicit parametrization of this functional which
accurately fits the QMC results for the energy density and
reproduces the known behaviour in the limiting cases of small
coupling, and small and large polarization. By imposing stationarity
of the functional equation (1) with respect to variations of the
densities ρ↑ and ρ↓ one obtains a set of coupled Schrödinger-type
equations—the KS equations (see Supplementary Information)—
of an effective noninteracting system. From the eigenstates and
eigenvalues of the KS equations one can compute the density
profiles, the ground-state energy and the band structure.

As a first applicationwe consider a repulsive Fermi gas in shallow
and moderately deep optical lattices. Repulsive interactions are
realized in experiments when the gas is prepared in the excited
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Figure 2 | Density of states. Results of KS DFT calculations at half-filling
n= ρd3

= 1 with optical lattice intensity V0= 3ER and scattering length
a=0.12d are shown indicated by the blue (red) symbols for the majority
(minority) spin component. The density of states of the interacting gas is
compared against that of non-interacting species (black crosses) and that
obtained in the HK-LSDA method (green line), which shows no bandgap.
The Fermi level is at E=0.

branch of the Feshbach resonance. We parametrize the interactions
by the ratio a/d of the scattering length a and the lattice spacing d ,
and the density ρ in units of the band filling n= ρd3. In Fig. 1 we
compare KS-LSDA results to direct QMC simulations in an optical
lattice. The excellent agreement demonstrates that DFT calculations
with a LSDA functional are reliable in weak and moderate optical
lattices. To compare HK-LSDA and KS-LSDA, we first show, in
Fig. 2, the density of states at half-filling (n= 1) in a moderately
deep optical lattice with intensity V0= 3ER. Here, interactions lead
to a partial polarization of the system, seen as a shift between the
density of states of the two components: there are more spin-up
than spin-down atoms if we fill the system to the Fermi level. The
cruder HK-LSDA approximation (green line), on the other hand,
predicts zero polarization, and misses the existence of a bandgap
that is clearly visible in both the free fermion andKS-LSDA results.

Calculating the ground-state polarization for a range of lattice
depths V0, band fillings n, and interaction strengths a/d we
obtain the phase diagrams of Fig. 3. In a shallow lattice with
V0 = 0.5ER (Fig. 3a) we see three phases: a paramagnetic phase
at weak interactions (white), partially polarized (shown as pink
gradations), and fully polarized (ferromagnetic, shown in solid red).
The phase boundaries in this shallow lattice are similar to those of
the homogeneous system V0 = 0 (ref. 16), indicated by the green
and blue lines. In deeper optical lattices (V0 = 2ER in Fig. 3b and
V0=4ER in Fig. 3c) polarization sets in atmuchweaker interactions,
indicating that the optical lattice strongly favours ferromagnetism.

We can see two prominent features due to the presence of an
optical lattice. The first is the much bigger extent of the polarized
phases, which is due to the higher local density at the potential
minima in the optical lattice and increases the local density beyond
the critical value for polarization. Comparing Fig. 3c and d we see
that including the accurate kinetic energy in the KS-LSDA this effect
is even stronger than in the simpler HK-LSDA approximation.
A second striking effect is the non-monotonic behaviour of the
phase boundary: there is a large fully polarized region at densities
up to half-filling (n ≤ 1), which rapidly shrinks at higher filling.
This phenomenon is due to band structure effects and a gap
between up-spin and down-spin subbands. It is thus completely
absent in the HK-LSDA approximation (Fig. 3d), which ignores
band structure effects.
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Figure 3 | Phase diagrams at fixed optical lattice intensity V0. a–c, The red-colour intensity indicates the polarization P= (ρ↑−ρ↓)/(ρ↑+ρ↓) for optical
lattice depths (a) V0=0.5ER, (b) V0= 2ER, (c) V0=4ER. d, Results for V0=4ER using HK-LSDA instead of KS-LSDA. The green and blue curves indicate,
respectively, the transitions to partially and fully polarized phases in homogeneous systems (V0=0). The grey and yellow curves indicate the
corresponding transitions in the optical lattice. Ferromagnetism dominates in the region of large optical-lattice intensity V0 and scattering length a, where
a non-trivial phase boundary arises owing to the KS band theory, which cannot be captured using HK-LSDA.

Thus we next calculate the detailed band structure of the
interacting system, shown in the left panels of Fig. 4 for a weak
optical lattice (V0 = 2ER) without a bandgap and on the right
for a moderate optical lattice with a bandgap (V0 = 4ER). Weak
interactions (a= 0.04d) change the band structure only slightly.
Increasing the interaction to a = 0.08d (second row) we find
a partially polarized state in the deeper lattice: the two spin
subbands split and the band structure is substantially changed.
At even stronger interaction a = 0.16d (third row) the gas is
partially polarized also in the shallower lattice, and becomes
fully polarized in the deeper lattice. Note that here the fermions
are fully polarized up to half band filling n = 1, as only the
up-spin subband gets occupied. Notice also that in the fully
polarized state the first band is fully occupied and the system
is insulating owing to the gap between the first and second
subbands. Filling the bands further puts fermions in the next band
with opposite spin, resulting in a partially polarized state. This
explains the sharp feature around n = 1 in the phase diagram
in Fig. 3c. To recover full polarization for n > 1 one needs to
increase either the interaction strength or lattice depth to push
the energy of the lowest down-spin subband above the second
up-spin subband.

To see antiferromagnetism competing with ferromagnetism at
half band filling n= 1 we need to consider a unit cell consisting
of two lattice sites, and compare the energies of antiferromagnetic
and uniform configurations. We find, as shown in Fig. 5, that
antiferromagnetic ordering is preferred at intermediate interaction
strengths and half band filling, matching with the single band
Hubbard model physics, which becomes valid in the upper left-
hand corner of the phase diagram shown.

There are many further applications of DFT for atomic gases.
Already in this simple system we have seen striking effects, such
as substantially enhanced ferromagnetism and strikingly non-
monotonic behaviour of the phase boundaries, which is not present
in a simple HK-LSDA approximation.

Hybrid functionals, which are successfully used in electronic
structure calculations, can be adapted to atomic gases based on
our LSDA functional. Examples are Hedin’s GW method18, the
LDA+U method19, which combines LSDA with a Hartree–Fock
approximation, and the LDA+DMFT (ref. 20), which combines
an LSDA functional with a dynamical mean field theory21 (DMFT)
treatment of the correlated orbitals.

Another extension is functionals for attractive interactions using
the local pair density approximation22, which has been developed
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Figure 4 | Band structure. Shown are band structures for two lattice depths, V0= 2ER in the left column and V0=4ER in the right column, and three values
of scattering length (a=0.04,0.08,0.16 d from top to bottom) at half-filling n= 1. The blue and red curves correspond to the majority and minority
spin-component respectively. The black curves are the result for an unpolarized noninteracting gas. Energies are given relative to the chemical potential,
shown as the dashed green line at 0. The wavevector values given on the x axis scan a curve which goes through the high-symmetry points 0= (0,0,0),
X= (0,π/d,0), R= (π/d,π/d,π/d) and M= (π/d,π/d,0) of the first Brillouin zone.
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Figure 5 | Phase diagram and antiferromagnetic band structure at half-filling n= ρd3 = 1. Left: ferromagnetic (antiferromagnetic) phases are indicated by
the red-coloured polarization (blue-coloured staggered polarization). As the scattering length a increases, the fermionic optical lattice undergoes phase
transitions from an unpolarized to an antiferromagnetic and finally to a ferromagnetic phase. Right: to observe antiferromagnetism, the unit cell has to be
doubled, resulting in a face-centred cubic lattice. A spin-density-wave gap1SDW shows up in the antiferromagnetic state of an optical lattice with laser
intensity V0=4ER and scattering length a=0.08d. Here, the high symmetry points are 0= (0,0,0), X= (0,π/d,0), L= (π/2d,π/2d,π/2d) and
W= (π/2d,π/d,0).
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to describe superconducting electronic systems, including not
only the fermionic densities ρ↑ and ρ↓ but also a density for
paired fermions ρp, or the superfluid LDA method of Bulgac23.
Potentially most useful are generalizations of DFT to finite
temperatures24 (see also refs 25,26 for a recent review) and
using time-dependent DFT (ref. 27) to study thermal and non-
equilibrium properties of quantum gases.

DFT can thus form an important bridge between atomic physics
and materials simulation, much stronger than the Hubbard model,
which is at the centre of attention now but relevant only to a
small class of materials. Innovations in DFT for materials science
provide valuable tools for the investigation of the intriguing
physics of quantum gases. In return, atomic gases provide an
ideal test bed to address the challenges faced in the simulation
of correlated fermionic systems and will help to further improve
functionals for strongly correlated systems—thus realizing the
promise of optical lattice quantum simulators to be a useful tool
for materials science.

Methods
Fermions in an optical lattice. In the presence of an optical field created by
three pairs of counter-propagating laser beams, the neutral fermions experience a
potential due to dipole-field interaction, that is V (r)=

∑
α=x,y,zV0 sin2(2πrα/λ),

where λ is the laser wavelength and V0 the laser intensity, conveniently expressed in
units of the recoil energy ER = (h̄2/2m)(2π/λ)2 (h̄ is the reduced Planck constant
andm is the atomic mass). Here, fermions with like spins follow the Pauli exclusion
principle and those with unlike spins scatter with the scattering length a, in units of
the lattice spacing d = λ/2.

Solving the KS equations. Owing to cubic translational symmetry, the coupled
spin-up and spin-down KS Hamiltonians are diagonalized self-consistently via the
Bloch ansatz in a 113 plane wave basis, with 203 k-points in the first Brillouin zone
of the simple cubic lattice. To observe antiferromagnetism, the unit cell has to be
doubled, and the doubled unit cells form a face-centred cubic lattice. Details of the
KS equations in this basis are presented in the Supplementary Information.

Calculation of the LSDA functional. To determine the LSDA functional we
have used the the fixed-node diffusion Monte Carlo method28 to calculate the
ground-state energy of a homogeneous Fermi gas. We simulate a two-component
gas with repulsive inter-species interactions (the s-wave scattering between identical
particles is inhibited by the Pauli exclusion principle), modelling the interaction
by the hard-sphere potential u(r)=∞, if r < a, and 0 otherwise. The diameter of
the sphere a is equal to the s-wave scattering length. Although this model neglects
the effect of the low-energy bound states of the true inter-atomic potential, it
represents an improvement with respect to the conventional description of atomic
gases in optical lattices, which is based on the Born approximation14. The role
of non-universal corrections, which depend on details of the potential beyond
a, have been analysed in ref. 16 by employing different models with the same
scattering length. In the physically relevant regime (kFa ∼< 1, with a Fermi wave
vector kF = (3π2ρ)1/3) these non-universal corrections are very small (<3%).
As in previous work16,29, we fix the nodal surface of the ground-state using a
Jastrow–Slater trial wave function, using the Jastrow factor of the exact solution of
the two-body problem. The two Slater determinants (one for the spin-up and one
for the spin-down particles) are filled with the single-particle eigenstates, namely
the plane waves or the Bloch functions (up to the Fermi energy) for simulations in
free space or in the optical lattice, respectively. We use up to 81 particles per spin
species and up to 63 lattice sites, and we find that the finite-size effects are negligible
if one follows Fermi liquid theory30 and includes the finite-size correction terms of
a non-interacting Fermi gas.
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