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Interplay of localized and itinerant behavior in the one-dimensional Kondo-Heisenberg model

Neng Xie1 and Yi-feng Yang1,2,*

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100190, China

(Received 22 August 2014; revised manuscript received 29 April 2015; published 11 May 2015)

We use the density matrix renormalization group method to study the interplay of the localized and itinerant
behaviors in the one-dimensional Kondo-Heisenberg model. We find signatures of simultaneously localized and
itinerant behaviors of the local spins and attribute this duality to their simultaneous entanglement within the spin
chain and with conduction electrons due to incomplete hybridization. We propose a microscopic definition of the
hybridization parameter that measures this “partial” itinerancy. Our results provide a microscopic support for the
dual nature of f electrons and the resulting two-fluid behavior widely observed in heavy electron materials.
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I. INTRODUCTION

Coexistence of superconductivity with competing mag-
netic orders has been observed in many heavy electron
superconductors [1]. This exotic phenomenon supports the
dual (simultaneously itinerant and localized) nature of f

electrons. A phenomenological formulation of this idea in
a two-fluid model has provided a unified explanation for a
variety of anomalous properties of heavy electron materials
and yielded a number of surprising predictions including
the universal logarithmic temperature scaling of the heavy
electron density of states [2–7]. The two-fluid model provides
a possible solution to the Kondo lattice problem and a simple
framework for understanding the heavy electron physics [6].
It proposes two coexisting and competing quantum fluids in
the normal state of heavy electron materials: a spin liquid
of partially hybridized f moments and a heavy electron
liquid that emerges as a composite state of conduction
electrons and magnetic fluctuations of the local moments
due to collective hybridization. Similar two-fluid behavior
has also been observed in the cuprate [8] and pnictide [9]
superconductors. However, despite much effort [10–13], a
satisfactory microscopic theory of the two-fluid behavior has
not been achieved. In particular, it is not clear what the
duality exactly means microscopically, how the f electrons
can be simultaneously itinerant and localized, and how one
can measure this “partial” itinerancy.

In this work, we study the interplay of the localized
and itinerant behaviors in the one-dimensional (1D) Kondo-
Heisenberg model using the density matrix renormalization
group (DMRG) method [14–16]. The Kondo-Heisenberg
model contains by definition two distinct components: the
conduction electrons and the local spins. The DMRG method
allows us to numerically calculate the momentum distribution
of the conduction electrons and the correlation spectrum of the
local spins and use these to track the detailed evolution of both
components with varying Kondo coupling. A joint analysis of
these quantities suggests that each local spin entangles simul-
taneously with other local spins and conduction electrons in
the intermediate coupling regime, giving rise to signatures
of emergent heavy electrons in a background of partially
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hybridized spins. This provides a natural basis for the dual
behavior of f electrons and the two-fluid physics observed in
heavy electron materials.

II. MODEL

The Hamiltonian of the 1D Kondo-Heisenberg model may
be written as

H = − t

N−1∑
n=1

∑
σ=±

(c†n,σ cn+1,σ + H.c.)

+ JK

N∑
n=1

�sn · �Sn + JH

N−1∑
n=1

�Sn · �Sn+1, (1)

where t is the hopping parameter of the conduction electrons,
JK > 0 is the on-site antiferromagnetic Kondo coupling
between the conduction electrons and the local spins, and
JH > 0 is the nearest-neighbor Heisenberg exchange coupling
within the spin chain. �Sn is the spin operators of the local spins,
c
†
n,σ (cn,σ ) creates (annihilates) a conduction electron of spin σ

at the nth site, and �sn = ∑
α,β c

†
n,α(�σ/2)α,βcn,β , where �σ is the

Pauli matrices, is its spin operator. Away from half-filling, the
local spins could be ferromagnetically correlated for JH = 0
[17,18]. A finite JH /t = 0.5 is introduced to suppress the
ferromagnetic correlations [19]. For DMRG calculations, we
use the DMRG++ code [20] with open boundary conditions and
keep 500 block states for calculations on a lattice of N = 50
sites. The results are verified with different lattice sites and
block states and found to be converged. The good quantum
numbers are the average occupation number of the conduction
electrons, nc = N−1 ∑

nσ c
†
nσ cnσ , and the z component of the

total spin, Sz
tot = ∑

n(sz
n + Sz

n), which is zero in the ground
state for JH /t = 0.5.

We first study the momentum distribution function of the
conduction electrons,

nk = 1

N

∑
n,m,σ

eik(n−m)〈c†n,σ cm,σ 〉. (2)

Figure 1(a) shows the variation of nk with increasing JK for
nc = 0.72 and JH/t = 0.5. For small JK , nk changes rapidly
from unity (fully occupied) at the center of the Brillouin
zone to zero (unoccupied) at the zone edge. We calculate the
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FIG. 1. (Color online) (a) The momentum distribution, nk , of the
conduction electrons and (b) the derivative, dnk/dk, for nc = 0.72
and JH /t = 0.5. The dashed lines mark the small and large Fermi
wave vectors at kS

F = 0.36π and kL
F = 0.86π , respectively.

derivative, dnk/dk, and, as may be seen in Fig. 1(b), for small
JK the most rapid change occurs at kS

F = π
2 nc = 0.36π , which

corresponds to the small Fermi surface of free conduction
electrons. At JK/t = 2.3 and 2.6, the distribution is strongly
modified due to the coupling to the local spins; the maximal
slope in nk is suppressed but always occurs at kS

F until it
suddenly shifts to a different wave vector, kL

F = 0.86π , for
JK/t > 2.6, as plotted in Fig. 1(b). A simple calculation
shows that kL

F = (1 + nc)π/2, corresponding to the so-called
large Fermi surface that has incorporated in it the local spins.
Further increasing JK has little effect on the overall structure
of nk , indicating that the whole system has reached a strong
coupling limit with a well-defined large Fermi surface. This
limit may be easily understood: each local spin needs one
conduction electron to form a local Kondo singlet so that
effectively there are 1 − nc holes per site moving in the sea of
the singlet background; the Fermi wave vector of these mobile
holes is kh

F = π − π (1 − nc)/2 = kL
F , exactly at the large

Fermi surface of the heavy electrons. The situation is more
complicated in the intermediate regime around JK/t = 2.6,
where nk changes smoothly and the conduction electrons
spread all over the Brillouin zone so that there is no well-
defined Fermi surface. In this regime, the conduction electrons
and the local spins are strongly hybridized but not yet bound
together to form local spin singlets. Their hybridization is
collective and highly nonlocal.

Accompanying the gradual redistribution of the conduction
electrons in the Brillouin zone with increasing JK is the change

FIG. 2. (Color online) (a) The spin-correlation spectra of the
local spins and (b) the hybridization spectra for varying JK . The
parameters are nc = 0.72 and JH /t = 0.5 and the inset illustrates
the difference of Sff at JK = 0 and a finite JK , A(JK ), used in the
calculation of fA(JK ).

of the spin-correlation spectrum in the spin chain,

Sff (k) = 1

N

∑
n,m

eik(n−m)〈�Sn · �Sm〉. (3)

The calculated spin-correlation spectra are plotted in Fig. 2(a).
At JK = 0, the local spins are decoupled from conduction
electrons and form themselves a global spin singlet; we
find a sharp peak at k0 = π from their antiferromagnetic
nearest-neighbor coupling, as predicted for the 1D Heisenberg
model in the continuous limit [21]. Increasing JK gradually
suppresses the peak at k0, indicating that the local spins
are getting hybridized. At JK/t = 2.3, two additional peaks
emerge at k1 = 0.28π and k2 = 0.72π , but further increasing
JK suppresses the peak at k2. Only the peak at k1 keeps
increasing and eventually develops into a well-defined cusp.
For JK/t > 4, the spin-correlation spectrum remains essen-
tially unchanged and resembles that of a free electron system.
Similar structures are also seen in the hybridization spectrum,

Scf (k) = 1

N

∑
n,m

eik(n−m)〈�sn · �Sm〉, (4)

as plotted in Fig. 2(b). We find k2 = 2kS
F = 0.72π , which

might originate from the induced effective exchange coupling
by the conduction electrons around the small Fermi surface,
while the peak at k1 = 2π − 2kL

F = 0.28π is associated with
the formation of the large Fermi surface at kL

F .
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FIG. 3. (Color online) An illustration of the two-fluid scenario.
The local spins are only partially entangled with conduction electrons
for the hybridization parameter, fh < 1, in the weak and intermediate
coupling regimes.

Combining these observations from nk and Sff (k) suggests
that heavy electrons are a composition of conduction electrons
and the local spins. The gradual change in the shape of
Sff (k) and Scf (k) with increasing JK reflects the suppression
of antiferromagnetic correlations within the spin chain and
the corresponding emergence of composite heavy electrons
around the large Fermi surface. In addition, the fact that all
three peaks show up in the spectrum at around JK/t = 2.3
suggests the emergence of heavy electrons in the background
of partially hybridized local spins, which are entangled at the
same time with conduction electrons and other spins in the
chain in order to fully dissipate their magnetic entropy in
this intermediate regime. Macroscopically, these may be seen
in thermodynamic or magnetic measurements as coexisting
itinerant heavy electrons and residual localized spins in the
chain, as illustrated in Fig. 3, leading to the observed dual
behavior of f electrons in heavy electron materials.

We note that the spins in the Kondo-Heisenberg model are
by definition always local even though they may appear to
be itinerant through collective hybridization with conduction
electrons. Their spin-correlation spectra obey the following
sum rule [21]:∫ π

0

dk

π
Sff (k) = 1

N

∑
n

〈�S2
n

〉 = 3

4
. (5)

The total spectral weight is conserved independent of the
Kondo coupling. We can therefore use the spectral weight
of the emergent structures as a measure of their localized
or itinerant fraction. However, as seen in Fig. 2(a), the two
components at k0 and k1 are strongly mixed and hard to
separate in the momentum space.

To proceed, we note that the local spins form a spin liquid
at JK = 0, whereas they behave totally as itinerant heavy
electrons at large JK . Because of the sum rule, the conversion
from the spin liquid state to the emergent heavy electrons with
increasing JK may be seen as a gradual deformation of the
spectrum that continuously connects these two limits. We may
propose

fA(JK ) = A(JK )

A(JK/t = 6)
, (6)

where A(JK ) denotes the spectral weight transfer from
k0 = π to the emergent structure around k1 = 0.28π and is
approximately given by the area enclosed by the two curves of
Sff (k) at the chosen JK and JK = 0, asillustrated in the inset
of Fig. 2(a). Although fA calculated in this way may not be
the exact spectral weight of the emergent heavy electrons,
we believe it is a good approximation to start with. For
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FIG. 4. (Color online) (a) Comparison of the proposed hybridiza-
tion parameter, fA, the average local hybridization, fS , and the
maximal |dnk/dk| shown in Fig. 1(b) as a function of JK .
(b) Comparison of fA with the normalized antiferromagnetic cor-
relation energy, fE , as a function of JK .

comparison, we also calculate the local hybridization, 〈�sn · �Sn〉,
and define

fS(JK ) = N−1 ∑
n〈�sn · �Sn〉JK

−3nc/4
, (7)

where −3nc/4 is the average local hybridization in the strong
coupling limit. The results for fA and fS are plotted in Fig. 4(a)
for nc = 0.72 and JH /t = 0.5. Both quantities increase
with increasing JK and show qualitative agreement. Their
difference may be understood from the strong k dependence
of Scf (k). As plotted in Fig. 2(b), with increasing JK , the
strongest hybridization changes from k0 = π to k1 = 0.28π ,
supporting its nonlocal and collective nature. Because of this,
fS may not be a good measure of the overall itinerancy of the
spins. As may be seen in Fig. 4(a), as Sff becomes saturated
at JK/t > 2.6, fA approaches unity accordingly, whereas the
average local hybridization, fS , continues to increase at much
larger JK . The collective nature of the hybridization is best
seen at small nc, where one always finds a large Fermi surface
at finite JK despite the huge deficiency of conduction electrons
for screening the local moments.

We now focus on the behavior of fA and ask if it is a good
account of the collective hybridization and what information
it may provide us about the evolution of the hybridized
system. In the two-fluid model, the hybridization parameter,
fh, measures the fraction of the itinerant heavy component
of the f electrons and plays a central role in determining the
properties of the ground state and the temperature evolution
of all thermodynamic and magnetic quantities [6]. For fh < 1,
a fraction of the f electrons could stay localized all the way
down to zero temperature and form long-range magnetic order;
while for fh = 1, all f electrons become itinerant and the
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ground state could be a Fermi liquid. At the delocalization/
magnetic quantum critical point, the Fermi surfaces of the
conduction electrons may change abruptly to incorporate the
f electrons and superconductivity may emerge. If fA is a
good approximation of the hybridization parameter, fh, it
should also be correlated with antiferromagnetism and the
Fermi surface change [6].

Since antiferromagnetic long-range order is suppressed
in the 1D Kondo-Heisenberg model due to strong quantum
fluctuations, we study here the antiferromagnetic correlation
energy,

EH (JK ) = JH

∑
n

〈�Sn · �Sn+1〉. (8)

We find EH (JK ) also saturates for JK/t � 4. For comparison,
we take JK/t = 6 as a reference for the nonmagnetic ground
state and define

fE(JK ) = EH (JK ) − EH (0)

EH (JK/t = 6) − EH (0)
. (9)

FIG. 5. (Color online) (a) The momentum distribution, nk; (b) the
correlation spectrum of the local spins, Sff (k); (c) the hybridization
parameters fA and fE and the maximal |dnk/dk| as a function of
JK/t , for JH /t = 0.5, N = 50, and nc = 0.2 and 0.4.

Figure 4(b) compares fE with fA for different values of
nc and JH . We see in all cases, the two quantities are
in good agreement; this proves that fA indeed describes
the suppression of antiferromagnetic correlations in the spin
chain with increasing hybridization. This conclusion has been
further verified in the presence of frustration with next-nearest-
neighbor coupling in the spin chain.

Abrupt Fermi surface change has been observed at the
quantum critical point of local moment antiferromagnetic
order in heavy electron materials [22,23]. But in 1D, the exact
location of the transition is controversial. While some theory
has suggested a Fermi surface change at JK = 0 [24], DMRG
calculations always point to a transition at finite JK [19,25].
We will not try to solve this issue here, but only point out
that our results show strong correlations between fA and the
redistribution of the conduction electrons in the Brillouin zone.
As may be seen in Fig. 4(a), the “critical” coupling JK/t = 2.8
at which fA approaches unity coincides with the coupling at
which the maximal slope in nk is suppressed to nearly zero
and suddenly changes its location from kS

F to kL
F shown in

Fig. 1(b).
The change to a larger volume of the conduction electron

Fermi surface with increasing JK also appears for very small
nc, despite the lack of sufficient conduction electrons to screen
the local spins, as shown in Figs. 5(a) and 5(b) for nc = 0.2
and 0.4 at JK/t = 0,2 and 6. The derived hybridization
parameters, fA/E , are plotted in Fig. 5(c). The two are found in
reasonable agreement and approach unity at the critical JK/t

where the Fermi surface change coincides with the magnetic
critical point. These results suggest that the heavy electrons
emerging with the large Fermi surface must be of composite
nature involving both conduction electrons and magnetic spin
fluctuations. The Kondo lattice physics is indeed governed by
collective hybridization beyond the local Kondo picture.

III. DISCUSSIONS

The above comparisons confirm that fA is a good approx-
imation of the hybridization parameter and has indeed the
desired properties proposed in the two-fluid model. Because
satisfactory theoretical and numerical calculations have not
been generally available for quantitative interpretation of
experiment, the two-fluid model has been quite successful
in providing an intuitive and phenomenological way of
organizing the vast amount of complicated experimental data.
Our work here provides a plausible justification and the first
microscopic explanation for this simple two-fluid procedure
of experimental analysis. The observed enhancement of
collective hybridization by antiferromagnetic spin correlations
at small JK/t is in distinct contrast to the prevailing wisdom
based on their competition and may be the missing piece for
a better microscopic theory. Signatures of this enhancement
include momentum-dependent delocalization/localization that
may be observed using the scanning tunneling or angle-
resolved photoemission spectroscopies [26,27].

We should note that the mixture of the two components
in the spin-correlation spectrum in the momentum space
prevents an exact determination of their spectral weight and
the approximation might get even worse near half-filling [see
Fig. 4(b) for nc = 0.92]. Also, in the diluted case, where most
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local spins are removed, antiferromagnetic spin correlations
are suppressed by doping so the proposed separation scheme
naturally fails. Nevertheless, we believe it is a good starting
point and clarifies the microscopic origin of the partial itiner-
ancy and the dual behavior of the f electrons. Our results show
that this duality originates from the dynamic hybridization and
partial entanglements of the local moments with conduction
electrons and should not be confused with the heavy electron
condensation in the simplest version of large-N mean-field
approximation, although the latter does provide some insights
under certain circumstances. We emphasize that the emergence
of heavy electrons is not a phase transition, consistent with the
Mermin-Wagner theorem [28]. Our proposal may therefore
be extended to more realistic situations at higher dimensions
and finite temperatures, which are not dealt with in this work
due to numerical difficulties. A better separation may even
be possible if the dynamic spin-correlation functions are taken
into consideration. Recent neutron scattering experiments have
observed similar two-fluid behavior in pnictide compounds
and found that the local and itinerant components are well
separated in energy [9]. We propose direct probe of the
two coexisting fluids in heavy electron materials by neutron
scattering measurements. Calculations of the dynamic spin-
correlation function are beyond the scope of this study and
will be investigated in future work.

To summarize, we use DMRG to study the interplay
of the localized and itinerant behaviors in the 1D Kondo-
Heisenberg model and find that the dual behavior of the
local spins originates from their simultaneous entanglement
with other spins in the chain and the conduction electrons
in the intermediate coupling regime, as manifested in the
distinct peak structures in their spin-correlation spectrum. We
propose that the spectral weight of these emergent structures
provides a measure of the hybridization parameter in the
phenomenological two-fluid description and confirm that it
is correlated with the suppression of antiferromagnetism
and the change of the Fermi surface. Our results provide
a microscopic understanding of the dual nature of the f

electrons and may be used as a guide for future experimental
and theoretical explorations of the two-fluid physics in real
materials.
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