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Recently, significant progress has been made in (2þ 1)-dimensional conformal field theories without
supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities;
i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the
proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter
systems: the one relating the easy-plane noncompact CP1 model (NCCP1) and noncompact quantum
electrodynamics (QED) with two flavors (N ¼ 2) of massless two-component Dirac fermions. The easy-
plane NCCP1 model is the field theory of the putative deconfined quantum-critical point separating a planar
(XY) antiferromagnet and a dimerized (valence-bond solid) ground state, while N ¼ 2 noncompact QED is
the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott
insulator. In this work, we present strong numerical support for the proposed duality. We realize the N ¼ 2

noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and
study it using determinant quantum Monte Carlo (QMC) simulations. Using stochastic series expansion
QMC simulations, we study a planar version of the S ¼ 1=2 J-Q spin Hamiltonian (a quantum XY model
with additional multispin couplings) and show that it hosts a continuous transition between the XY magnet
and the valence-bond solid. The duality between the two systems, following from a mapping of their phase
diagrams extending from their respective critical points, is supported by the good agreement between the
critical exponents according to the proposed duality relationships. In the J-Q model, we find both
continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined
quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims
of no deconfined quantum criticality in planar two-component spin models, which were in the strong-
anisotropy regime, and opens doors to further investigations of the global phase diagram of systems hosting
deconfined quantum-critical points.
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I. INTRODUCTION

A duality in physics is an equivalence of different
mathematical descriptions of a system or a state of matter,
established through a mapping by change of variables. In
classical statistical mechanics, the most famous duality is
the Kramers-Wannier duality of the two-dimensional Ising

model [1]. Here, the low- and high-temperature expansions
of the partition function can be related to each other by
identifying a one-to-one correspondence between the terms
in the two different series, thus establishing an exact
mapping between the ordered and disordered phases and
the corresponding collective variables. In this case, the
critical point is also a self-duality point. In the 3D Ising
model, one can instead find a different model whose high-
temperature expansion stands in a direct one-to-one
correspondence with the low-temperature expansion of
the Ising gauge model [2,3]. Many other examples of
dualities have been established, e.g., the well-known
equivalence between the 3D O(2) Wilson-Fisher fixed
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point and the 3D Higgs transition with a noncompact Uð1Þ
gauge field [4–7].
In analogy with the Ising examples mentioned above, it

is sometimes possible to transform a quantum field theory
at strong coupling into an equivalent dual theory at weak
coupling. The untractable original problem can then be
solved by means of perturbative methods applied to the
dual theory. Such strong-weak duality (and the more
general “S duality” form) was established in certain super-
symmetric Yang-Mills theories [8–11] and Abelian gauge
theory without supersymmetry [12–14]. In 1D quantum
systems (i.e., in 1þ 1 space-time dimensions) a well-
known fermion-boson duality is achieved by bosonization
of an interacting fermion system through a nonlocal
transformation [15–19]. Usually, in the bosonized formal-
ism interactions can be more easily treated than in the
original fermion model.
In cases where no formal mapping is known, two

Lagrangians that look different in the ultraviolet may still
flow (under the renormalization group) to the same theory
in the infrared; i.e., these seemingly different field theories
actually represent exactly the same low-energy physics.
Such a duality goes a step beyond the more familiar
concept of universality, by which systems (models or real
materials) with the same dimensionality and global sym-
metries exhibit identical scaling properties at their classical
or quantum-critical points. Such systems share the same
effective critical low-energy field-theory description. For
example, the critical points of the Bose-Hubbard model and
the quantum rotor model are in the same universality class.
A duality transformation usually changes the description of
the system into a form based on nonlocal objects or defects
of the original description. On a practical level, the
existence of a dual field theory means that there is a
nontrivial choice of which description to use, and one of
them (and not necessarily the originally most obvious one)
may pose a more tractable setup for calculations.
Even if no strong-weak transformation exists (or is

known), a difficult or nontractable strong-coupling problem
can sometimes be shown to be dual to a different strong-
coupling problem that is tractable with some specific
computational technique. In particular, the dual problem
may be more easily solvable using powerful numerical
(lattice) methods. This numerical amenability aspect of
dualities has so far not been emphasized in the literature,
but it is apparent in the work we present here. We explore a
recently proposed duality between two different strongly
coupled ð2þ 1ÞD Lagrangians that respectively involve
fermionic and bosonic matter fields coupled with a gauge
field [20–22]. Both theories are of great current interest in
the context of strongly correlated electrons in two dimen-
sions. Our aim here is to identify a duality between the
systems by establishing corresponding lattice models
realizing the two low-energy theories, and one of them,
the bosonic one, has substantially superior scaling

properties of the computational effort (as a function of the
system size) in quantum Monte Carlo (QMC) simulations.
We follow the recent proposal that ð2þ 1ÞD quantum

electrodynamics (QED) with noncompact gauge field and
two flavors of Dirac fermions is dual to the critical point of
the easy-plane NCCP1 model (the bosonic QED with two
flavors of complex bosons) [20–22]. On the lattice, we
realize the former with an interacting fermion model with
spin-orbit coupling on the bilayer honeycomb (BH) lattice,
which hosts a quantum phase transition between a
(bosonic) symmetry-protected topological state and a trivial
Mott insulator [23–25]. It was proposed that this transition
is described byN ¼ 2 noncompact QED [26,27]. To realize
the low-energy physics of the NCCP1 theory, in this paper
we introduce a planar variant of the spin S ¼ 1=2 J-Q
Hamiltonian (a Heisenberg model with additional multispin
couplings [28]), dubbed the easy-plane J-Q (EPJQ) model,
and show that it hosts a deconfined quantum-critical point
[29–31] separating antiferromagnetic (AFM) and dimer-
ized [valence-bond-solid (VBS)] ground states (similar to
the case of the J-Q model with full spin SU(2) symmetry
[32], but with different universality due to the lowered
symmetry). Our QMC results establish the critical-point
universality and duality between the phase diagrams of the
two models. With the EPJQ model being much easier to
study on large scales with QMC simulations than the
fermionic model, the duality that we establish here allows
for detailed studies of the topological transition of the latter,
through the analogue of the deconfined quantum-critical
point. The phase diagrams and dualities we study are
illustrated in Fig. 1.
We summarize our main results and insights as follows.
(1) The EPJQ spinmodel hosts both deconfined quantum

criticality and a first-order transition between the
easy-plane AFM and VBS states, depending on a
single anisotropy parameter. The existence of decon-
fined quantum criticality in planar two-component
spin models had been seriously questioned in several
works over the years [35–38]. Most recently it was
argued [38], within a 4 − ϵ expansion of the CPN−1

field theory, that a tricritical point separating continu-
ous (for weak anisotropy) and first-order (for strong
anisotropy) phase transitions between the AFM and
VBS phases in Fig. 1 may exist, but only for large N
(and the transitions for smaller N are always first
order). In our model, we find that continuous tran-
sitions are obtained only up to moderate values of the
anisotropy, thus showing that the tricritical point
extends all the way down to the physically most
interesting case of N ¼ 2. The previous works were
all carried out with strongly anisotropic models and
were in the first-order regime.

(2) Within small statistical error bars, our simulations of
the EPJQ and BH models verify the key quantitative
predictions based on the dualities proposed in
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Ref. [22]. These dualities had been analyzed from
many perspectives [22] but were discussed at a
purely theoretical level and demand either numerical
or experimental confirmation. Our work provides a
quantitative verification, strongly supporting the
dualities by confirming some of their most
remarkable nontrivial consequences, and thus also
implicitly supporting the more elementary dualities
[39,40] upon which the derivations in Ref. [20–22]
were based.

(3) Building on the tricritical point we identify here
within the EPJQ spin model, our work suggests
other directions in which to expand the web of
dualities, by looking for the analogous point
within extensions of the fermionic field theory
and the BH model.

The paper is organized as follows. In Sec. II, we present
the details of the two field theories and their putative
duality, and in Sec. III, we define the lattice models and the
proposed mappings relating their phase diagrams to each
other. In Secs. IV and V, we present the numerical results
for the EPJQ and BH models, respectively. We conclude
with a brief summary and discussion of the results in
Sec. VI. In Appendix A, we present further technical details
on the analysis of the critical exponents, and in
Appendix B, we compare results for different variants of
the EPJQ model (with different degrees of spin anisotropy).

II. CONTINUUM FIELD THEORIES

The bosonic particle-vortex duality we mention in the
Introduction was recently generalized to a model with
fermionic matter [40–48], in the form of a ð2þ 1ÞD QED
Lagrangian with a single flavor of a two-component Dirac
fermion and noncompact gauge field, i.e., N ¼ 1 QED.

This theory is dual to that of a noninteracting Dirac fermion
in the infrared limit [49]. Based on this N ¼ 1 duality,
Ref. [50] showed that ð2þ 1ÞD QED with noncompact
gauge field and N ¼ 2 flavors of Dirac fermions is self-
dual. This is also a fermionic version of the self-duality of
the easy-plane NCCP1 model (which can be regarded as
N ¼ 2 bosonic QED) [29,30,51]. The self-duality of the
N ¼ 2 QED Lagrangian was also verified with different
derivations [20,48,52]. Unlike the case of N ¼ 1, there is
no equivalent noninteracting description of ð2þ 1ÞD QED
with N ¼ 2, however. Because of its self-duality, N ¼ 2
QED hosts an (emergent) Oð4Þ symmetry in the infrared,
which factorizes into the two independent SU(2) flavor
symmetries on the two sides of the self-dual point.
More recently, based on the previous fermion-boson

duality [39,40], it was argued that N ¼ 2 QED is also
dual to the easy-plane NCCP1 model at the critical point
[20–22]. These two field theories can be written as

LQED ¼ ψ̄γð∂ − iaÞψ þmψ̄ψ þMψ̄σ3ψ ; ð1aÞ

L1
CP ¼ jð∂ − ibÞzj2 þ gjzj4 þ rz†zþ hz†σ3z; ð1bÞ

where ψ and z are two-component Dirac fermion and
complex boson fields coupled to noncompact Uð1Þ gauge
fields, a and b, respectively. The duality maps the variables
ðm;MÞ to ðh; rÞ. Moreover, both theories in Eq. (1) are
individually self-dual. The putative duality between the two
theories implies that the easy-plane NCCP1 model should
also have an emergent Oð4Þ symmetry at its critical point,
which is not immediately obvious in Eq. (1b). The
corresponding Oð4Þ order parameter is

N ¼ ðz†σxz; z†σyz;Re½Mb�; Im½Mb�Þ; ð2Þ

FIG. 1. Schematic phase diagrams of (a) the bilayer honeycomb (BH) model, (b) the easy-plane J −Q3 (EPJQ) model, and (c) the
N ¼ 2 QED theory. In (a), the BH model contains two symmetry-breaking phases, the spin-density wave (SDW) and superconducting
(SC) phases, and two symmetric phases, the bosonic symmetry-protected topological (BSPT) and the trivial Mott-insulating phases. In
(b), the EPJQ model also contains two symmetry-breaking phases, the Néel antiferromagnetic (AFM) phase and the valence-bond solid
(VBS) phase, and two spin-polarized phases induced by an external staggered field. In (c), as was shown in Refs. [22,27,33], when
tuning the two masses m andM, the N ¼ 2 QED theory also has two symmetry-breaking (SB) phases and two symmetric (SY) phases,
one of which is the BSPT state. In all models, the four phases merge at the deconfined quantum-critical point. Phases of the same color
can be mapped to each other among the models, following the duality relations proposed in the table on the right-hand side. The double
arrows in (a) and (b) indicate the quantum phase transitions investigated numerically in this paper, with the paths chosen to cross the
respective critical points in the physically most interesting and computationally most tractable way. In (c), recent lattice QED
calculations have focused exclusively on the critical point separating all the phases [34].
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where Mb is the monopole operator (gauge flux annihi-
lation operator) of the gauge field b.
The proposed duality between the two theories in Eq. (1)

leads to very strong predictions for relationships between
their properties. For example, the scaling dimension ofm in
N ¼ 2 QED should be precisely the same as the scaling
dimension of h in the easy-plane NCCP1 at its critical point
r ¼ 0, while the scaling dimension of M should be the
same as that of r. Also, as a consequence of these dualities,
i.e., the emergent Oð4Þ symmetry of the two theories, the
four components of N should all have the same scaling
dimension at the critical point.
Although the duality between Eqs. (1a) and (1b) can be

checked and derived based on various arguments [20–22],
the predictions still need quantitative proofs, either exper-
imentally or numerically. The numerical “simulation” route
is the most direct way to address the mathematical validity
aspects of the dualities, and with this issue settled the
experiments can better focus on the possibility to realize the
low-energy physics described by the theories within spe-
cific materials and external conditions.
Both Eqs. (1a) and (1b) are strongly interacting con-

formal field theories, and there is no obvious analytical
method that can provide rigorous results for either case.
However, both theories can presumably be realized using
lattice models, which can be simulated using numerical
methods. The goal of this work is to compare the
quantitative properties of such lattice models and look
for evidence of the proposed duality. As we show in later
sections, within small error bars of the critical exponents
obtained using QMC simulations, our results confirm the
key predictions of the duality.
Because the duality of the two theories in Eq. (1) was

derived based on the assumption of the basic fermion-
boson duality [39,40], a proof of the former duality
indirectly also proves the latter. In principle, this result
can lead to a number of further dualities between different
fermionic and bosonic Lagrangians. Thus, the impact of
our work is not limited to the proof of the duality between
Eqs. (1a) and (1b), but also provides justification for many
other cases.

III. LATTICE MODELS

The easy-plane NCCP1 model is the field theory that
presumably describes the deconfined quantum-critical
point between an in-plane (XY) antiferromagnet and a
valence-bond solid [29,30,51]. This transition in the case of
full SU(2) symmetry of the Hamiltonian has been realized
by the J-Q and related models, and these have been
extensively simulated numerically using unbiased QMC
techniques [28,32,53–62]. Although there are studies that
indicate that some version of the J-Q model with an in-
plane spin symmetry and other Uð1Þ symmetric models
should lead to a first-order transition [35–38], in this work
we demonstrate that a different model, the EPJQ model,

instead leads to a continuous transition in some regions of
its parameter space (we also note there is a recent QMC
work on the extended Hubbard model of hard-core bosons
on the kagome lattice, suggesting a similar continuous
easy-plane phase transition [63], consistent with our find-
ing here). The r and h terms in Eq. (1) correspond to the
distance from the critical point, Q −Qc, and the staggered
magnetic field hzð−ÞiSzi , respectively, in the lattice model.
The components of the O(4) vector in Eq. (2) correspond to
the two-component easy-plane Néel and two-component
VBS (dimer) order parameters of the EPJQ model.
The N ¼ 2 QED action has been simulated directly

using a lattice QED model [34], and the scaling dimension
of M is computed in this way. Also, N ¼ 2 QED with a
noncompact U(1) gauge field is the effective theory that
describes the transition between the bosonic symmetry-
protected topological (BSPT) state and a trivial Mott state
in 2D [26,27]. This transition was also realized in an
interacting fermion model on a bilayer honeycomb lattice
introduced in Refs. [23,24] and simulated [23–25,64] with
a determinantal QMCmethod (DQMC) [65,66]. Them and
M terms in Eq. (1) correspond to two different interactions
in the lattice model, namely, the interlayer pair hopping
V − Vc, measured with respect to its critical value, and the
Hubbard-like on-site interaction U; the Hamiltonian is
specified in detail below. The lattice model of Ref. [24]
has an exact SO(4) symmetry that precisely corresponds to
the proposed emergent symmetry of the N ¼ 2 QED. It
should further be noted that the fermions in the BH model
do not directly correspond to the Dirac fermions of the
N ¼ 2 QED action, because the former are not coupled to
any dynamical gauge field. The relation between the two
systems instead arises from the correspondence of the
gauge-invariant fields of N ¼ 2 QED to the low-energy
bosonic excitations of the BH model.
Using the BH model and the EPJQ model, the duality

between the N ¼ 2 QED and the NCCP1 field theories can
be realized on the lattice. The Oð4Þ vector N can also be
conveniently defined in both lattice models, with explicit
forms that we explain below. Thus, the two systems can be
investigated and compared via unbiased large-scale QMC
simulations—the pursuit and achievement of this work.
In the following, we first define the microscopic lattice

models in detail. In the subsequent sections, Secs. IVand V,
we present comparative numerical studies of the models
and demonstrate strong support for the duality relations
listed in the table in Fig. 1.

A. Bilayer honeycomb model

The BH model is a fermionic model defined on a
honeycomb lattice [23–25,64]. On each site, we define
four flavors of fermions (two layers × two spins);

ci ¼ ðci1↑; ci1↓; ci2↑; ci2↓Þ⊺: ð3Þ
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The Hamiltonian is

HBH ¼ Hband þHint; ð4Þ

where the band and interaction terms are given by

Hband ¼ −t
X
hiji

c†i cj þ λ
X
⟪ij⟫

iνijðc†i σ3cj þ H:c:Þ; ð5aÞ

Hint ¼ V
X
i

ðc†i1↑ci2↑c†i1↓ci2↓ þ H:c:Þ; ð5bÞ

where hiji and ⟪ij⟫ denote nearest-neighbor intralayer site
pairs, respectively. The band Hamiltonian Hband is just two
copies of the Kane-Mele model [67], which drives the
fermion into a quantum spin Hall state with spin Hall
conductance σsH ¼ �2 (depending on the sign of the spin-
orbit coupling λ). Including a weak interaction V, the
bilayer quantum spin Hall state automatically becomes a
BSPT state [24,25,68], where only the bosonicOð4Þ vector
N remains gapless (and protected) at the edge, while the
fermionic excitations are gapped out (as we discuss in more
detail below). However, a strong interlayer pair-hopping
interaction V eventually favors a direct product state of
antibonding Cooper pairs. In the strong interaction limit
(V → ∞), the ground state of the BH model reads

jGSi ¼
Y
i

ðc†i1↑c†i1↓ − c†i2↑c
†
i2↓Þj0ci; ð6Þ

with j0ci being the fermion vacuum state. This state has no
quantum spin Hall conductance, i.e., σsH ¼ 0, and, more
importantly, it is a direct product of local wave functions,
hence dubbed the trivial Mott insulator state. It was found
numerically that there is a direct continuous transi-
tion between the BSPT and the trivial Mott phases at
Vc=t ¼ 2.82ð1Þ [24,64], where the single-particle excita-
tion gap does not close but the excitation gap associated
with the bosonic Oð4Þ vector closes and the quantized spin
Hall conductance changes from �2 to 0.
The low-energy bosonic fluctuations around the

critical point form an Oð4Þ vector, with N ¼
ðReΣ; ImΣ;ReΔ; ImΔÞ, and the components are

Σi ¼ ð−1Þiðc†i1↑ci2↓ þ c†i2↑ci1↓Þ; ð7aÞ

Δi ¼ ðci1↓ci1↑ − ci2↓ci2↑Þ; ð7bÞ

where Σ carries spin and Δ carries charge. The BH model
Eq. (4) respects the global SO(4) symmetry of the vector N.
If the symmetry is lowered to Uð1Þspin ×Uð1Þcharge, then,
based on the analysis of N ¼ 2 QED, in principle the mass
termMψ̄σ3ψ is allowed; hence, the BSPT-Mott transition is
unstable towards spontaneous symmetry breaking of the

remaining symmetries. The symmetry of the mass term
Mψ̄σ3ψ is identical to the following Hubbard-like inter-
action [both forming a (1,1) representation of the SO(4)]:

U
2

X
i

ðΔ†
iΔi þ ΔiΔ

†
i − Σ†

iΣi − ΣiΣ
†
i Þ ¼ U

X
i

ρi↑ρi↓: ð8Þ

Here, ρiσ is the density operator (for σ ¼ ↑, ↓ spins),

ρiσ ¼ ðc†i1σci1σ þ c†i2σci2σ − 1Þ; ð9Þ

which counts the number of σ-spin fermions in both layers
on site i with respect to half filling. The repulsive U > 0
(or attractive U < 0) interaction drives spin hΣi ≠ 0
(or charge hΔi ≠ 0) condensation, leading to a spin-density
wave (SDW) [25] (or superconducting) phase that breaks
the Uð1Þspin [or Uð1Þcharge] symmetry spontaneously. This
process is illustrated in the schematic phase diagram
Fig. 1(a).

B. Easy-plane J-Q model

Our EPJQ model is a spin-1=2 system with anisotropic
antiferromagnetic couplings, which we here define on the
simple square lattice of L2 sites and periodic boundary
conditions. It is a “cousin” model of the previously studied
SUð2Þspin J −Q3 model [54–56], which in turn is an
extension of the original J-Q, or J −Q2, model [28].
Starting from the spin-1=2 operator Si on each site i, we
define the singlet-projection operator on lattice link ij;

Pij ¼
1

4
− Si · Sj; ð10Þ

then the model Hamiltonian reads

HJ-Q ¼ −J
X
hiji

ðPij þ ΔSziS
z
jÞ −Q

X
hijklmni

PijPklPmn; ð11Þ

where the ΔSziS
z
j term for Δ ∈ ð0; 1� introduces the easy-

plane anisotropy that breaks the SUð2Þspin symmetry down
to Uð1Þspin explicitly. In the Q term, the index pairs ij, kl,
and mn correspond to links forming columns on 2 × 3 or
3 × 2 plaquettes, as illustrated in Fig. 1 of Ref. [54].
We study two cases of the anisotropy parameter Δ: the

maximally planar case Δ ¼ 1 and the less extreme case
Δ ¼ 1=2. In the latter case, we observe very good scaling
behaviors indicating a continuous transition, with rapidly
decaying (with the system size L) scaling corrections, while
for Δ ¼ 1 the behavior suggests a first-order transition.
Thus, the model may harbor a tricritical point separating
first-order and continuous transitions somewhere between
Δ ¼ 1=2 and Δ ¼ 1. However, we leave the possible
tricritical point to future investigation. As far as the duality
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is concerned, in this section we discuss our results for
Δ ¼ 1=2, and in Appendix B we present results for Δ ¼ 1.
We set J þQ ¼ 1 in the simulations and define the

control parameter as the ratio

q ¼ Q
J þQ

: ð12Þ

For small q, the model essentially reduces to an XXZ
model, which has an XY AFM ground state that breaks the
Uð1Þspin symmetry spontaneously. When q is large, the
dimer interaction favors a VBS (columnar-dimerized)
ground state, which breaks the lattice C4 rotation symmetry
as in the SUð2Þspin J −Q2 and J −Q3 models [28,32,53–
56], where previous QMC studies found a direct continuous
AFM-VBS transition. Here, we demonstrate that the
continuous transition persists in the EPJQ model,
Eq. (11), with Δ ¼ 1=2. The reason for choosing the Q3

term (three-dimer interaction) instead of the simpler Q2

interaction (two-dimer coupling) is that it produces a more
robust VBS order when the ratio q is large, thus leading to a
smaller critical-point value [as in the SU(2) case [54,55] ]
with more clearly observable flows to the VBS state on that
side of the transition.
The XY AFM order in the EPJQ model can be directly

probed by the local spin components Sx and Sy, and we also
study the critical fluctuations in the Sz component. We
often do not write out the staggered phase factor ð−1Þxiþyi

corresponding to AFM order explicitly (here, xi and yi refer
to the integer-valued lattice coordinates of site i); in fact, in
the case of the XY anisotropy in a model with bipartite
interactions, the phase can also simply be transformed
away with a sublattice rotation (and then the XY AFM
phase maps directly onto hard-core bosons in the superfluid
state). In our simulations the staggered phase is absent for
the Sx and Sy components but present for the Sz component.
The AFM-VBS transition is unstable towards an axial
Zeeman field, when HJ-Q → HJ-Q þHZ, with

HZ ¼ −hz
X
i

ð−1ÞxiþyiSzi ; ð13Þ

which drives the system to the spin-polarized phase with
hSzi ≠ 0, as illustrated in the schematic phase diagram in
Fig. 1(b). Here we consider only h ¼ 0.
To study the columnar VBS (dimer) order realized in the

EPJQ model, we define

Dx
i ¼ ð−1ÞxiSi · Siþx̂; ð14aÞ

Dy
i ¼ ð−1ÞyiSi · Siþŷ; ð14bÞ

where iþ x̂ and iþ ŷ denote neighbors of site i in the
positive x and y direction, respectively. At the critical point,
the proposed self-duality (through the putative duality with

N ¼ 2 QED) implies that the C4 rotation symmetry and the
Uð1Þspin symmetry are enlarged into an emergent Oð4Þ
symmetry, such that the components of the Oð4Þ vector
(after some proper normalization),

N ¼ ðDx;Dy; Sx; SyÞ; ð15Þ

should all have the same scaling dimension [22].

C. Duality relations

Figure 1 summarizes the intuitive duality relations
among the BH, EPJQ, and QED models; this can also
be observed from the similarity of their four-quadrant phase
diagrams [69]. To numerically prove the validity of these
duality relations, in this work we investigate the following
critical behaviors at the BSPT-Mott transition in the BH
model:

ξ ∼ jV − Vcj−νBH ; ð16aÞ

hρi↑ρi↓ρj↑ρj↓i ∼ jrijj−1−η
ρ
BH ; ð16bÞ

hΔ†
iΔji ∼ jrijj−1−ηΔBH ; ð16cÞ

where rij is the lattice vector separating the sites i, j; ξ is the
correlation length of the critical Oð4Þ bosonic modes of the
system; and the density ρiσ and pairing Δi operators are
defined in Sec. III A. We also study the following expected
critical scaling behavior at the AFM-VBS transition in the
EPJQ model:

ξ ∼ jQ −Qcj−ν
xy
J-Q; ð17aÞ

hSziSzji ∼ jrijj−1−η
z
J-Q; ð17bÞ

hSþi S−j i ∼ jrijj−1−η
xy
J-Q; ð17cÞ

where ξ is the correlation length of the easy-plane spins.
If the duality in Eq. (1) is correct, and provided that

N ¼ 2 QED is indeed the theory for the BSPT-Mott
transition, then the exponents defined above must satisfy
the following relationships [22]:

3 −
1

νBH
¼ 1þ ηzJ-Q

2
; ð18aÞ

3 −
1

νxyJ-Q
¼ 1þ ηQED

2
¼ 1þ ηρBH

2
; ð18bÞ

ηΔBH ¼ ηxyJ-Q: ð18cÞ

Here, ηQED is the anomalous dimension of the fermion mass
ψ̄σ3ψ , i.e., the M mass term in our notation in Eq. (1a),
which was numerically estimated in the recent lattice QED
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calculations in Ref. [34]. Equation (18) essentially means
that the gauge-invariant operators that map to each other
under the duality transformation must have the same
scaling dimension at the critical point.

IV. RESULTS FOR THE EPJQ MODEL

In this section, we present our numerical results at the
continuous AFM-VBS phase transition of the EPJQ model,
obtained using large-scale SSE-QMC [70,71] simulations.
Here, we discuss only the case Δ ¼ 1=2 in the Hamiltonian
Eq. (11); some results for Δ ¼ 1 are presented in
Appendix B. In the SSE simulations we scale the inverse
temperature as β ¼ 2L, corresponding to the dynamic
exponent z ¼ 1 (β ∼ Lz) and staying in the regime where
the system is close to its ground state for each L. We
consider L up to 44.

A. Crossing-point analysis

The first step is to determine the order of the transition
and the position of the critical point (if the transition is
continuous). To this end, following the recent example in
Ref. [32] for the SU(2) J-Q model, we first analyze
crossing points of finite-size Binder cumulants, defined
for the AFM order parameter as

Uðq; LÞ ¼ 2 −
hM4

xyi
hM2

xyi2
; ð19Þ

where M2
xy is the square of the easy-plane magnetization

operator,

M2
xy ¼

1

L4

X
i;j

ð−1ÞiþjSþi S
−
j ; ð20Þ

and M4
xy is its square. The “phenomenological renormal-

ization” underlying the crossing-point analysis and our
technical implementations of it are discussed in
Appendix A. Here, we show our numerical results and
analyze them within the scaling relationships presented in
Appendix A.
As shown in Fig. 2(a), curves of Uðq; LÞ graphed for

different L cross each other at points tending to a value qc.
In a finite-size system the deviation of Uðq; LÞ from the
asymptotic crossing point depends on L in a way that
involves a scaling-correction exponent. For a finite-size
pair ðL; 2LÞ, the crossing is at ½q�cðLÞ; U�

cðLÞ�, and at a
continuous transition one expects

q�cðLÞ ¼ qc þ aL−ð1=νxyJ-QþωÞ; ð21Þ

where νxyJ-Q is the correlation-length exponent and ω is the
smallest subleading exponent (which normally arises from
the leading irrelevant field). As shown in Fig. 2(b), an

extrapolation with the above form to infinite size gives
qc ¼ 0.6197ð2Þ (where the number in parentheses indicates
the one-standard-deviation error in the preceding digits,
as obtained using numerical error propagation with
normal-distributed noise added to the data points) and
1=νxyJ-Q þ ω ¼ 4.0ð2Þ. The finite-size crossing value of the
cumulant itself,U�

cðLÞ, should approach its thermodynamic
limit Uc as

U�
cðLÞ ¼ Uc þ aL−ω: ð22Þ

(a)

(b)

(c)

(d)

FIG. 2. Crossing-point analysis of the EPJQ model atΔ ¼ 1=2.
(a) Uðq; LÞ versus q in the neighborhood of qc for several system
sizes L. (b) The crossing points seen in (a) for system-size pairs
ðL; 2LÞ, analyzed according to the expected finite-size scaling
form, Eq. (21). The procedure including error analysis gives qc ¼
0.6197ð2Þ and 1=νxyJ-Q þ ω ¼ 4.0ð2Þ. (c) A similar analysis of
U�

cðLÞ based on Eq. (22), giving ω ¼ 2.3ð1Þ. (d) Finite-size
estimates νxy;�J-Q of the correlation-length exponent defined in
Eq. (23), using the slopes of the cumulants at the ðL; 2LÞ crossing
points. Analysis according to Eq. (24) gives νxyJ-Q ¼ 0.48ð2Þ for the
exponent in the thermodynamic limit. In all fits, we exclude small
system sizes until statistically sound fits are produced.
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This form is used in Fig. 2(b) and delivers ω ¼ 2.3ð1Þ. In
principle, we can now extract νxyJ-Q, though the so-obtained
value and the independently determined value of ω in
general should be viewed with some skepticism. The
leading correction exponents, ω and 1=νxyJ-Q þ ω above,
are often affected by neglected higher-order scaling cor-
rections and should be regarded as “effective” exponents
that flow to their correct values upon increasing the system
sizes included (and excluding smaller sizes as needed to
obtain statistically good fits). The quantities extrapolated to
infinite size using the fits, which are what we are mainly
interested in here, should not be seriously affected by
potentially nonasymptotic correction forms, as discussed,
e.g., in Ref. [32].
The correlation length exponent νxyJ-Q can be independ-

ently and more reliably obtained from the slope of the
Binder cumulant as

1

νxy;�J-Q ðLÞ
¼ ln

�
U0

2ð2LÞ
U0

2ðLÞ
�

1

lnð2Þ ; ð23Þ

where U0
2ðLÞ is the derivative of Uðq; LÞ over q evaluated

at the crossing point between the L and 2L curves (which
we extract by interpolating data close to the crossing point
by cubic polynomials). The correlation-length exponent in
the thermodynamic limit can be extracted from the
expected leading finite-size form:

1

νxy;�J-Q ðLÞ
¼ 1

νxyJ-Q
þ L−ω: ð24Þ

As shown in Fig. 2(d), the fit to this form is statistically
good if the smallest system sizes are excluded, and an
extrapolation then gives νxyJ-Q ¼ 0.48ð2Þ. Thus, the combi-
nation νxyJ-Q þ ω based on the independently evaluated two
exponents is in remarkably good agreement with the value
of the sum extracted directly using Eq. (21) with the data in
Fig. 2(b). This serves as a good consistency check and
indicates that the higher-order finite-size scaling correc-
tions should be small (i.e., the following correction
exponents beyond ω must either have much larger values
or the prefactors must be small, or both). Further support
for this scenario can be observed in Fig. 2(d), where the
data point for the smallest system size shown has a very
large deviation from the good fit to the other points,
suggesting a very rapidly decaying correction.
In Fig. 2(a), one may worry about the fact that the Binder

cumulant forms a minimum extending to negative values as
the system size increases. A negative Binder cumulant
often is taken as a sign of a first-order transition. However,
it is now understood that also some continuous transitions
are associated with a negative Binder cumulant in the
neighborhood of the critical point, reflecting nonuniversal
anomalies in the order-parameter distribution. Often the

negative peak value grows slowly, e.g., logarithmically,
with the system size, instead of the much faster volume
proportionality expected at a first-order phase transition.
This issue is discussed with examples from classical
systems in Ref. [72]. Here, we do not see any evidence
of a fast divergence of the peak value; thus, the transition
should still be continuous.

B. Anomalous dimensions

To determine the anomlous dimensions, i.e., the critical
correlation-function exponents ηxyJ-Q and ηzJ-Q in Eq. (17),
we analyze the system-size dependence of the squares of
the easy-plane off-diagonal spin order parameterM2

xyðLÞ in
Eq. (20) and dimer order parameter

D2ðLÞ ¼ 1

2
½ðDxðLÞÞ2 þ ðDyðLÞÞ2�; ð25Þ

where the x and y dimer operators are the appropriate
Fourier transforms of Eq.

Dx ¼ 1

L2

X
i

ð−1ÞxiDx
i ; ð26aÞ

Dy ¼ 1

L2

X
i

ð−1ÞyiDy
i : ð26bÞ

In the diagonal Sz channel, we study the system-size
dependence of the staggered magnetization:

M2
z ¼

1

L4

X
i;j

ð−1ÞiþjSzi S
z
j: ð27Þ

All these integrated correlation functions should scale as
the correlation functions in Eq. (17) with the distance jrijj
replaced by the system length L.
The dimer order parameter should be governed by the

same exponent ηxyJ-Q as the off-diagonal spin order parameter
if the predictedOð4Þ symmetry ismanifested. In contrast, the
diagonal magnetic order parameter is associated with a
different (larger) anomalous dimension ηzJ-Q, according to
the table in Fig. 1. We evaluate the order parameters at
q ¼ 0.620, consistent with the value of qc determined in the
previous section. Results are shown in Fig. 3 for system sizes
up to L ¼ 32 and L ¼ 40 for the dimer and spin order
parameters, respectively. In Figs. 3(a) and 3(b), we show that
M2

xy and D2 can be fitted with the same exponent,
ηxyJ-Q ¼ 0.13ð3Þ, while the fit to M2

z in Fig. 3(c) delivers a
distinctively different exponent: ηzJ-Q ¼ 0.91ð3Þ.
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V. RESULTS FOR THE BILAYER
HONEYCOMB MODEL

In this section, we present our numerical results on the
continuous phase transition in the BH model, where an
interaction-driven phase transition between a BSPT phase
and a trivial Mott insulator is investigated via large-scale
DQMC simulations [24,64,73] in the ground-state projector
version [74]. Acting with the operator e−ΘH on a trial state
(a Slater determinant) with the projection “time” Θ large
enough for converging the finite system to its ground state,
we simulate linear system sizes L ¼ 12, 15, 18, 21, and 24,
with Θ ¼ 50 for L ≤ 18, Θ ¼ 55 for L ¼ 21, and Θ ¼ 60
for L ¼ 24. The imaginary-time discretization step is
Δτ ¼ 0.05, which is sufficiently small to not lead to
any significant deviations of scaling behaviors from the
Δτ ¼ 0 limit.

A. Continuous topological phase transition

We first present simulation results supporting a continu-
ous BSPT-Mott transition (as was also previously discussed

in Refs. [24,64]). Figure 4(a) shows the derivative of the
kinetic energy density of the BH Hamiltonian Eq. (4) with
respect to the control parameter V of the phase transition,

∂hHki
∂V ¼ −

t
N

∂
∂V

X
hiji

hc†i cj þ H:c:i: ð28Þ

Here, a broad peak develops close to Vc, but there is no sign
of a divergence, as would be expected at a first-order
transition. Figure 4(b) shows the derivative of the ground-
state energy density, which can be conveniently evaluated
by invoking the Hellmann-Feynman theorem;

∂hHi
∂V ¼

�∂H
∂V

�
¼ 1

N

X
i

hc†i1↑ci2↑c†i1↓ci2↓ þ H:c:i: ð29Þ

(a)

(b)

(c)

FIG. 3. Extraction of the anomalous dimensions ηxyJ-Q and ηzJ-Q
of the EPJQ model at the estimated critical point qc for Δ ¼ 1=2.
The squares of order parameters are graphed versus L and
analyzed with power-law fits (lines on the log-log plots). The
off-diagonal spin order parameter square M2

xyðLÞ in (a) and the
dimer order parameter square D2ðLÞ in (b) give ηxyJ−Q ¼ 0.13ð3Þ.
The diagonal spin order parameter square M2

zðLÞ in (c) gives
ηzJ-Q ¼ 0.91ð3Þ.

(a)

(b)

(c)

pa
ir

FIG. 4. DQMC results for the BH model close to its phase
transition. The derivative with respect to the coupling V of (a) the
kinetic energy density and (b) the total ground-state energy
density for linear system sizes L ¼ 6, 9, and 12. Panel (c) shows
the zero-frequency susceptibility of theOð4Þ vector in the pairing
channel for L ¼ 6, 9, 12, 15, 18. The dashed line indicates our
estimated critical point Vc ¼ 2.82ð1Þ. In all cases the error bars
are smaller than symbol size.
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For this derivative a first-order transition would lead to a
sharp kink developing with increasing L (corresponding to
an avoided level crossing). The smooth behavior supports a
continuous phase transition, though of course a very weak
first-order transition would produce a visible singular
behavior only for larger system sizes than we consider here.
To determine the phase-transition point Vc, we further

calculate the zero-frequency susceptibility of the Oð4Þ
vector (where we here take the on-site spin-singlet pairing
operator), defined as

χpairðiω ¼ 0; k ¼ 0Þ ¼
Z þ∞

0

Sðτ; k ¼ 0Þdτ; ð30Þ

where the dynamic pair-pair correlation function is
defined as

Sðτ; k ¼ 0Þ ¼ 1

L2

X
ij

hΔ†
i ðτÞΔj þ Δ†

jðτÞΔii
2

; ð31Þ

whereΔi is defined in Eq. (7). As demonstrated in Fig. 4(c),
this quantity exhibits a sharp peak, as expected at a gapless
critical point with power-law correlations in both space and
time. The divergence is considerably slower than the
proportional to space-time-volume behavior expected at
a first-order transition. Because of the large computational
effort needed for these DQMC simulations, we do not have
a sufficient density of points close to Vc to carry out a
systematic analysis of the drift of the peak position, but the
data nevertheless allow us to roughly estimate the con-
vergence to the critical point Vc=t ¼ 2.82ð1Þ.

B. Oð4Þ gap and BH correlation-length exponent

We also extract the excitation gaps ΔOð4Þ corresponding
to the Oð4Þ vectors defined in Eq. (7). According to
Refs. [24,64] and Eq. (31), the Oð4Þ gap is obtained from
the imaginary-time decay of the dynamical Oð4Þ vector
correlation function, and, as we discuss in Secs. II
and III A, Oð4Þ bosonic modes are expected to become
gapless (with power-law correlation) at the BSPT-Mott
critical point. Results for ΔOð4Þ as a function of V=t for
system sizes L ¼ 6, 9, 12, 15, 18 close to Vc are presented
in Fig. 5(a). As expected, ΔOð4Þ from every system size L
exhibits a dip close to Vc, with the gap minimum
decreasing with L, as expected with an emergent gapless
point at Vc. In Fig. 5(b), we analyze the size dependence of
the gap at three different coupling values: V=t ¼ 2.80,
2.82, 2.85. At V=t ¼ 2.82, LΔOð4Þ extrapolates linearly in
1=L to a nonzero value, showing that the leading behavior
of ΔOð4Þ at Vc is 1=L. This is in line with the expectation
that the dynamic exponent z ¼ 1 at the BSPT-Mott tran-
sition (and is required also for the proposed duality). The
behaviors of ΔOð4ÞL at V=t ¼ 2.80, 2.85 indicate eventual
divergencies when L → ∞, as expected on either side of

the quantum-critical point. This constitutes strong evidence
of a continuous transition, instead of a first-order transition
at which one instead expects the avoided level-crossing gap
to close exponentially fast with system size (instead of
closing as 1=Lz at a continuous transition).
To extract the correlation-length exponent νBH, we

perform data collapse with the Oð4Þ gap away from the
critical point, as shown in Fig. 5(c). Here, we focus on the
regime V > Vc, where we find less scaling corrections than
for V < Vc and an almost perfect data collapse according to
the expected quantum-critical form,

ΔOð4ÞL ¼ f½ðV=Vc − 1ÞL1=νBH �: ð32Þ

(a)

(b)

(c)

FIG. 5. (a) Excitation gaps computed from the imaginary-time
decay of the Oð4Þ vector across the BSPT-Mott transition for the
BH model with L ¼ 6, 9, 12, 15, 18. A gap closing at Vc ¼ 2.82t
(vertical dashed line) is expected. (b) Finite-size scaling of
LΔOð4Þ for V=t ¼ 2.80, 2.82, 2.85 versus the inverse system
size. The behavior at V=t ¼ 2.82 indicates z ¼ 1. (c) Data
collapse of the data in (a) according to the expected scaling
form Eq. (32), yielding νBH ¼ 0.53ð5Þ and Vc=t ¼ 2.80ð1Þ.
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Treating both νBH and Vc as free parameters, the best data
collapse delivers νBH ¼ 0.53ð5Þ and Vc=t ¼ 2.80ð1Þ. This
value of Vc agrees quite well with the result Vc ¼ 2.82ð1Þ
estimated roughly from the susceptibility peak in Fig. 4,
adding further credence to the analysis of the critical point
even with the rather limited range of system sizes acces-
sible (as compared with the EPJQ model). Moreover, since
we already determined ηzJ-Q ¼ 0.91ð3Þ in the EPJQ model,
we can use the duality relationship in Eq. (18a) to predict
that the correlation-length exponent of the BH model
should be νBH ∼ 0.49ð2Þ, which is fully consistent with
the number determined from the Oð4Þ gap.

C. Anomalous dimensions

Finally, we study the critical equal-time correlations in
the BH model. Here, we use V ¼ 2.817 for the longest
simulations. This value is within the error bars of the
critical value Vc ¼ 2.82ð1Þ and, as we also show, there are
no statistically detectable differences between data at V ¼
2.820 and 2.817 for the quantities we study in this section.
Using one of the components of the Oð4Þ order param-

eter, hΔ†
iΔji with Δi defined in Eq. (7), we again construct

a squared order parameter. We can use the susceptibility
Eq. (31) to define a corresponding equal-time spatially
integrated correlation function,

SΔ
L2

¼ Sðτ ¼ 0; k ¼ 0Þ
L2

; ð33Þ

where the normalization gives the same scaling behaviors
as in Eq. (16) with the distance jrijj replaced by L. The
analysis illustrated in Fig. 6(a) indicates a very good power-
law scaling, with deviations seen only for the smallest
system size (which we exclude from the fit). The fit delivers
the exponent ηΔBH ¼ 0.10ð1Þ, which is fully consistent with
the EPJQ exponent ηXYJ−Q ¼ 0.13ð3Þ obtained in Sec. IV B.
Hence, the duality relation Eq. (18c) is satisfied to within
the statistical errors.
In principle, the anomalous dimension can also be

obtained from the susceptibility in Fig. 5(c). Standard
scaling arguments give that the peak height of a generic
susceptibility χ should scale as χpeak ∝ L2−η (when the
dynamic exponent z ¼ 1). We find that the peak in χpair

scales approximately as L2, i.e., ηΔ is very small, but here
there appears to be significant scaling corrections.
Moreover, there is large variation of the values for the
largest size, L ¼ 18, close to the critical point, and we
would need additional points to reliably estimate the peak
value. We therefore cannot obtain an independent mean-
ingful estimate for ηΔBH from these data.
We next test the duality relation Eq. (18b). With νxyJ-Q ¼

0.48ð3Þ obtained in Sec. IVA, we expect ηρBH ≈ 1. Further,
according to Ref. [34], the exponent ηρBH should be equal to
the anomalous mass dimension ηQED of N ¼ 2 QED, for

which the value ηQED ¼ 1.0ð2Þ has been obtained from
Monte Carlo simulations [34]. Thus, we already have good
consistency following from the predicted duality between
ηQED and νxyJ-Q. Turning to the more direct test with the BH
model, in Fig. 6(b) we plot the squared order parameter
corresponding to the pair density,

Sρ
L2

¼ 1

L4

X
i;j

hρi↑ρi↓ρj↑ρj↓i: ð34Þ

For this quantity, as shown in Fig. 6(b), all five system sizes
available give results fully consistent with a power-law
decay, with no statistically visible scaling corrections. The
fit to the five data points gives the anomalous dimension
ηρBH ¼ 1.00ð1Þ, which is consistent with both ηQED and
νxyJ-Q, but with a significantly smaller statistical error. Thus,
the duality relation in Eq. (18b) is also confirmed to within
error bars.
It is remarkable that the BHmodel actually seems to give

better results (smaller error bars) for the anomalous
dimensions than the EPJQ model, even though system
lengths roughly twice as large are used for the latter. The

(a)

(b)

FIG. 6. Analysis of the anomalous dimensions ηΔBH and ηρBH of
the BH model from squared order parameters close to the critical
point. Only the V ¼ 2.817 data points for each quantity are used
in the fits, and the three points for V ¼ 2.82 do not exhibit any
deviations from the V ¼ 2.817 values within the error bars. Panel
(a) shows theOð4Þ order parameter defined in Eq. (33). A power-
law fit (straight line on the log-log scale) to the L ≥ 15 data
delivers the exponent ηΔBH ¼ 0.10ð1Þ. (b) The pair-density order
parameter Eq. (34). Here the power-law fit works well for all
system sizes and we obtain ηρBH ¼ 1.00ð1Þ.
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reason is that the statistical errors on the raw data are
smaller in the DQMC simulations. It is still possible that
there are scaling corrections present that are not clearly
visible with such a small range of system sizes, and there
may then be some corrections to the exponents beyond the
purely statistical error bars (1 standard deviation) reported
above. The EPJQ results are important in this regard as they
seem to show no significant corrections even with the
considerably larger range of system sizes. The lack of
significant corrections is also supported by the good
agreement between the nontrivial BH and EPJQ exponents,
as predicted by the duality conjecture.

VI. DISCUSSION

We perform detailed numerical tests on the recently
proposed duality summarized by the predicted exponent
relationships between the BH and EPJQmodels in Eq. (18).
The relationships are confirmed within statistical precision
at the level of a few percent in the values of the critical
exponents. The thus confirmed duality of the underlying
low-energy quantum field theories, Eq. (1), is of great
importance and interest in condensed-matter physics,
because it relates two seemingly different quantum phase
transitions that have been individually under intense studies
during the past several years: the bosonic topological phase
transition and the easy-plane deconfined quantum phase
transition. The duality is derived using the more basic
dualities between field theories that involve only one flavor
of matter field, and sometimes also a Chern-Simons term of
the dynamical gauge field.
As a consequence of confirming the particular relation-

ship between critical exponents, our study also provides
quantitative evidence for the underlying basic dualities for
theories with one flavor of matter field [40–45]. These
basic dualities supported by our work represent a signifi-
cant step in our understanding of ð2þ 1ÞD conformal field
theories. They also form the foundation of a large number
of other recently proposed dualities [20,48,50,52,75–79].
Moreover, they lend support to many other dualities that
follow from the same logic and reasoning, such as the
duality of Majorana fermions discussed in Refs. [80,81].
To follow up on our results and insights presented here,

additional numerical investigations are called for to check
other predictions made within these proposed dualities. For
example, in Ref. [22] it was proposed that the Gross-Neveu
fixed point of the N ¼ 2 QED is dual to the SU(2) version
of the NCCP1 model, and also has an emergent SO(5)
symmetry. This symmetry has recently been discussed
within SU(2) deconfined quantum criticality as well, and
quite convincing results pointing in this direction were seen
in a three-dimensional loop model [62]. Scaling with the
same anomalous dimension for both spin and dimer
correlators had also been observed already some time
ago in the SU(2) J-Q model [82]. Although we identify
the N ¼ 2 QED as the bosonic topological phase transition

in our bilayer honeycomb lattice model, we are thus far
unable to find the corresponding Gross-Neveu fixed point.
Identifying the additional interactions that will be required
to drive this transition in the BH model is an important
topic for further research.
Following previous computational studies of deconfined

quantum phase transitions with SU(2) spin-rotation sym-
metry in J-Q models [28,32,54], we here identify a lattice
model—the EPJQ model—hosting a continuous phase
transition between the U(1) (planar) Néel and VBS states.
The fact that this phase transition is continuous is in itself
an important discovery, given that Uð1Þ deconfined quan-
tum criticality had essentially been declared nonexistent,
due to unexplained hints of first-order transitions in some
other planar models and what seems like definite proofs in
other cases [35,37,38,83]. Here (as further discussed
in Appendix B), we show that the EPJQ model defined
in Eq. (11) can host first-order or continuous transitions,
depending on the degree of spin anisotropy parametrized
by the Ising coupling Δ in Eq. (11). Thus, there should be a
tricritical point separating first-order and continuous tran-
sitions at some value of Δ. In the recent Ref. [38], it was
argued that a tricritical point only exists above a large
threshold value of the number of spin components N, and
numerical results were interpreted as showing that N as
large as ≈20was required before any continuous transitions
appear. Our results obtained here explain this apparent
disagreement by the degree of anisotropy. The spin model
considered in Ref. [38] is always strongly anisotropic (as is
the case also for other planar models considered previ-
ously), while the EPJQ model has tunable anisotropy and
we demonstrate that continuous transitions obtain only up
to moderate values of the anisotropy. Thus, the critical
value of N at which a tricritical point appears extends down
to N ¼ 2, and the boson-fermion duality holds for the
continuous transitions.
At Δ ¼ 1=2, we find scaling behaviors with apparently

much less influence of scaling corrections than in the SU(2)
J-Q model at its deconfined critical point [32]; i.e., the
leading correction exponent ω is much larger in the EPJQ
model. Interestingly, in both cases the correlation-length
exponent is unusually small, close to 1=2, while well-
studied transitions such as the OðNÞ transitions in three
dimensions have exponents close to 2=3. Given its small
scaling corrections and likely tricritical point between Δ ¼
1=2 and Δ ¼ 1, the EPJQ model opens doors for future
detailed studies on exotic phase transitions beyond the
Landau paradigm.
An interesting question following from our work is

whether the duality of the theories in Eq. (1) could also
be extended to the tricritical point that we argue for within
the EPJQ model. The corresponding tricritical point had
been previously identified field theoretically within the
CPN−1 model, but only for a very large number N of spin
components [38]. Our work implies that it should exist also
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in the CP1 model for weak planar anisotropy, and one may
then ask whether a corresponding tricritical point should
exist in the fermionic theory, and whether it will be dual to
the one in the CP1 model. We plan to consider this both
theoretically and numerically in future work.
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APPENDIX A: CROSSING-POINT ANALYSIS

To determine the critical point and the critical exponents
in an unbiased manner, we adopt the crossing-point
analysis applied and tested for 2D Ising and SU(2) J-Q
models in Ref. [32]. Such analysis can be further traced
back to Fisher’s “phenomenological renormalization,”
which was first numerically tested with transfer-matrix
results for the Ising model in Ref. [84]. Reference [32]
presented systematic procedures for a statistically sound
application of these techniques with Monte Carlo data. For
easy reference we here summarize how we adapt the
method to the EPJQ model we study in this paper. For
the BHmodel, due to the much larger computational cost of
the DQMC simulations, we do not have data for enough
system sizes to carry out the analysis in this way, and we
instead apply other scaling methods in Sec. V.
Considering a generic critical point, with δ ¼ q − qc

defined as the distance to the critical point. For example,

q can be the control parameter q ¼ Q=ðJ þQÞ that
we use for the EPJQ model or it could be T − Tc for
a finite-temperature transition. For any observable O, the
standard finite-size scaling form is

Oðδ; LÞ ¼ L−κ=νfðδL1=ν; λL−ωÞ; ðA1Þ

where we, for the sake of simplicity, consider only one
irrelevant field λ and the corresponding subleading exponent
ω. At the critical point, one can Taylor expand the scaling
function:

Oðδ; LÞ ¼ L−κ=νða0 þ a1δL1=ν þ b1L−ω þ � � �Þ: ðA2Þ

If one now takes two system sizes, e.g.,L1 ¼ L andL2 ¼ rL
ðr > 1Þ, and traces the crossing points δ�ðLÞ of curves
Oðδ; L1Þ and Oðδ; L2Þ versus δ, one finds

δ�ðLÞ ¼ a0
a1

1 − r−κ=ν

rð1−κÞ=ν−1
L−1=ν

þ b1
a1

1 − r−ðκ=νþωÞ
rð1−κÞ=ν−1

L−ð1=νþωÞ: ðA3Þ

Now, if the quantity O is asymptotically size independent
(dimensionless) at the critical point, for example, the Binder
cumulant (which we write here with a constant and factor
corresponding to a planar vector order parameter),

U ¼ 2

�
1 −

hm4
xyi

2hm2
xyi2

�
; ðA4Þ

then the corresponding exponent κ ¼ 0, the first term in
Eq. (A3) withO ¼ U vanishes, and we obtain the following
form for the size-dependent crossing point δ�ðLÞ:

δ�ðLÞ ¼ q�cðLÞ − qc ∝ L−ð1=νþωÞ; ðA5Þ

hence, the shift of the finite-size critical point q�cðLÞ is
approaching the asymptotic value qc as L−ð1=νþωÞ.
In practice, one can interpolate within a set of points for

each system size by a fitted polynomial, e.g., of cubic or
quadratic order, and then use these polynomials to find the
crossing points. This is illustrated in Fig. 7. Error bars can
be obtained by repeating the fits multiple times to data with
Gaussian-distributed noise added. The scaling behavior of
qc predicted by Eq. (A5) can be clearly seen in Fig. 2(b),
from which the result 1=νþ ω ¼ 4.0ð2Þ for the EPJQ
model is obtained.
In addition to obtaining q�c and the exponent combination

1=νþ ω from the crossing points of the cumulant (or, in
principle, some other dimensionless quantity), one can also
use the value U�

c of the quantity at q�c, as well as the
derivatives at q�c, to acquire ν and ω independently. We next
discuss the derivations underlying these forms.
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By inserting δ�ðLÞ into Eq. (A2), one can obtain the
value of the observable at the finite-size critical point (or,
more precisely, the critical point depending on the two
sizes, L and rL) q�cðLÞ. It scales as

O�ðLÞ ¼ L−κ=νðaþ bL−ω þ � � �Þ: ðA6Þ
Again, for a dimensionless quantity (κ ¼ 0) such as U, the
deviation of the value at the crossing point from the value in
the thermodynamic limit vanishes with increasing size
according to U�

cðLÞ −Uc ∝ L−ω, an example of which
can be seen in Fig. 2(c)—in this case, the power-law fit
gives the value ω ¼ 2.3ð1Þ of the subleading exponent.
The last step of the analysis of the single dimensionless

quantity is to determine ν in an independent manner.
To this end, one can expand the quantity U (or any other
dimensionless quantity) close to the critical point,

Uðδ; LÞ ¼ a0 þ a1δL1=ν þ b1L−ω þ c1δL1=ν−ω þ � � � ;
ðA7Þ

and take the derivative U0ðδ; LÞ with respect to δ (in
practice, with respect to q):

U0ðδ; LÞ ¼ a1L1=ν þ c1L1=ν−ω þ � � � : ðA8Þ
Again, we take two system sizes, L1 ¼ L and L2 ¼ rL, and
at the crossing point δ�ðLÞ of the two curves for these
system sizes one has

U0ðδ�; LÞ ¼ a1L1=ν þ c1L1=ν−ω;

U0ðδ�; rLÞ ¼ a1ðrLÞ1=ν þ c1ðrLÞ1=ν−ω: ðA9Þ
Here, we can take the difference of the logarithms of the
two equations and obtain

ln

�
U0ðδ�; rLÞ
U0ðδ�; LÞ

�
¼ 1

ν
lnðrÞ þ dL−ω þ � � � ; ðA10Þ

or, in other words, one can define a finite-size estimate of
the correlation-length exponent ν�ðLÞ from the finite-size
crossing point as

1

ν�ðLÞ ¼
1

lnðrÞ ln
�
U0ðδ�; rLÞ
U0ðδ; LÞ

�
: ðA11Þ

It can be seen that Eq. (A11) approaches the thermody-
namic limit correlation-length exponent ν at the rate
1=ν�ðLÞ − 1=ν ¼ gL−ω þ � � �. This behavior is seen nicely
in Fig. 2(d), where the extrapolation to infinite size
gives νxyJ-Q ¼ 0.48ð2Þ.
In principle, one can also combine the above method for

a dimensionless quantity with some other quantity A, e.g.,
an order parameter or a long-distance correlation function.
Interpolating the data for two system sizes, AðLÞ and AðrLÞ
at the crossing point of the dimensionless quantity, one can
take the logarithm of the ratio and analyze it in a manner
similar to the slope estimate of 1=ν, to yield a series of
finite-size estimates for the power law governing the size
dependence of A. This method circumvents the need to
know the critical-point value exactly. In practice, since qc
converges fast, it is also appropriate to just use this value
and analyze the size dependence of the quantity A at this
fixed coupling value q ¼ qc, as we do in the main text.

APPENDIX B: FULLY PLANAR EPJQ MODEL

In the main text, we discuss the XY AFM-VBS transition
at a fixed anisotropy parameter Δ ¼ 1=2 of the EPJQ
model. We here provide some more information on the
dependence on Δ.
In the extreme planar limit Δ → 1 of Eq. (11), we have

no SzSz J term and the Hamiltonian is

HJ-Q ¼ J
X
hiji

ðSxi Sxj þ Syi S
y
jÞ þQ

X
hijklmni

DijDklDmn: ðB1Þ

We analyze SSE-QMC results for this model in the same
way as we do for Δ ¼ 1=2 in the main text, using a
crossing-point analysis. The results of this analysis show
a distinctively different behavior for Δ ¼ 1, pointing
to a first-order transition in this case. Results for the L-
dependent quantities based on the XY Binder cumulant are
shown in Fig. 8. As an aside, we mention here that the off-
diagonal spin correlations can be measured as diagonal
ones upon performing a basis rotation with the z spin
components transformed into the x components, and vice
versa. Simulating the system with SSE-QMC in this rotated
basis speeds up the simulations, and we did this for Δ ¼ 1.
We therefore have results for larger systems in this case
than for the case Δ ¼ 1=2 reported in the main text.
It is clear from Fig. 8 that we can obtain a good estimate

of the critical point, but the cumulant itself and the
correlation-length exponent do not exhibit the clear-cut
power-law corrections of the type that we see for the

FIG. 7. Example of finite-size crossing points q�cðLÞ,U�
cðLÞ of

the Binder cumulant, here for the EPJQ model with L ¼ 16 and
L ¼ 32. The data are here fitted to third-order polynomials. The
crossing point and derivatives at the crossing point can be
determined from the fitted polynomials.
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Δ ¼ 1=2 model in Sec. IV. The fact that 1=ν� is larger than
3 suggests that the transition may actually be of first order
in this case. If so, we would expect the values to eventually
tend exactly to 3, and the data are consistent with this
behavior.
If the transition indeed is of first order, the order

parameter should be nonzero at the transition point,
reflecting coexistence of the magnetic and nonmagnetic
phases. Indeed, as shown in Fig. 9(a), an extrapolation
using a trivial 1=L correction, as expected asymptotically
for a 2D system breaking a continuous symmetry, indicates

a clearly nonzero value in the thermodynamic limit.
The extrapolated value changes only slightly if a higher-
order (1=L2) correction is added (also expected if the
order parameter is nonvanishing). In contrast, as shown in
Fig. 9(b), the data for the Δ ¼ 1=2 model are fully
consistent with no magnetization in the thermodynamic
limit. Here, the polynomial fit is strictly not correct, since a
nontrivial power is expected at the critical point (which we
confirm in the main text), but the extrapolation nevertheless
indicates consistency with a vanishing order parameter at
the transition in this case.
These results strongly suggest that there is a tricritical

point separating a continuous and first-order transition in
the EPJQ model somewhere between Δ ¼ 1=2 and Δ ¼ 1,
which we plan to investigate further in a future study.
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