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≈1015 in the human brain. The intercon-
nected neurons can store and process 
information simultaneously, and their 
operation is collective and adaptive.[3] The 
special architecture is completely different 
from the well-established von Neumann 
one, and can perform massive parallel 
computing.[2] To reproduce similar prop-
erties by electronic circuits, many studies 
have been conducted to develop neuro-
morphic computing systems, including 
those based on software programming 
and/or based on complementary metal 
oxide semiconductor devices.[4–7] However,  
some serious challenges exist, such as the 
energy consumption, complexity of the 
electric circuit, and the physical size of 
the computational systems, because com-
plicated algorithms and/or circuits are 
required just for the functions performed 
by single neuron or synapse. Therefore, 

to mimic effectively the brain operation mode, some nontradi-
tional electronic elements will be required to realize the brain-
like information storage and computing.

Memristive devices, i.e., devices that can keep track of the past 
resistance state through which the element has experienced,[8,9]  
have been widely studied to implement artificial synaptic devices  
in recent years, because the gradual resistance change of mem-
ristive devices driven by external electric signals could be used 
to reproduce the plasticity of synapses, which is defined as 
synaptic weight, to represent the strength of the correlation 
between two neighboring neurons.[10–25] Practical implementa-
tions of synaptic functions have been realized in various mem-
ristive devices with different physical mechanisms, such as 
phase change,[10–12] ferroelectric domains,[13,14] magnetoresist-
ance,[15–17] and redox-based resistive switching.[18–26] In addition 
to the memristive devices, other candidates and new principles 
toward artificial synaptic devices are worthy of study.

Recently, we have introduced a fundamental circuit meme-
lement based on the magnetoelectric (ME) coupling effects, 
i.e., magnetic field control of electric polarization and electric 
field modulation of magnetization,[27] named memtranstor.[28] 
As shown in Figure 1a, the fundamental circuit elements are 
defined by the relationships among four basic circuit variables, 
i.e., voltage (v), current (i), charge (q), and magnetic flux (ϕ). 
The fourth element defined by the relationship between q and ϕ  
was assigned to the memristor by Chua,[29] but remained con-
troversial for many years because of the absence of ϕ in the 
memristors.[30] It has been realized recently that the true fourth 

Artificial synaptic devices that mimic the functions of biological synapses 
have drawn enormous interest because of their potential in developing brain-
inspired computing. Current studies are focusing on memristive devices 
in which the change of the conductance state is used to emulate synaptic 
behaviors. Here, a new type of artificial synaptic devices based on the 
memtranstor is demonstrated, which is a fundamental circuit memelement 
in addition to the memristor, memcapacitor, and meminductor. The state 
of transtance (presented by the magnetoelectric voltage) in memtranstors 
acting as the synaptic weight can be tuned continuously with a large number 
of nonvolatile levels by engineering the applied voltage pulses. Synaptic 
behaviors including the long-term potentiation, long-term depression, and 
spiking-time-dependent plasticity are implemented in memtranstors made of 
Ni/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3/Ni multiferroic heterostructures. Simula-
tions reveal the capability of pattern learning in a memtranstor network. The 
work elucidates the promise of memtranstors as artificial synaptic devices 
with low energy consumption.

Synaptic Electronics

The progress in information and communication technology 
requires computers with both time- and energy-efficient data 
processing. In conventional computers, the rate at which data 
can be transferred between the central processing unit and 
the memory units is becoming inefficient because of their tra-
ditional von Neumann architecture, that is, the so-called von 
Neumann bottleneck, caused by physical separation of the com-
puting units and memories.[1,2] The human brain appears to 
provide a natural solution for addressing this bottleneck. As is 
known, human brain contains ≈1010 neurons, each connecting 
to ≈104 other ones on average through synapses, which number 

Adv. Mater. 2018, 1706717



© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1706717 (2 of 8)

www.advmat.dewww.advancedsciencenews.com

element defined directly from the q–ϕ relationship can be real-
ized based on the ME coupling effects, termed the transtor.[28] 
Corresponding to the four fundamental elements (resistor, 
capacitor, inductor, and transtor), there are four memelements 
(memristor, memcapacitor, meminductor, and memtranstor). 
The memtranstor is characterized by a butterfly-shaped hys-
teresis of the q–ϕ relationship, as shown in Figure 1b. There-
fore, the quantity called transtance, T = dq/dϕ, can be switched 
between positive and negative or high and low states in a non-
volatile mode, similar to the switching behavior of resistance, 
R = dv/di, in a memristor. The value of transtance is practi-
cally proportional to the ME voltage coefficient, which can be 
measured by inputting a low magnetic field H to generate an 
ME voltage (VME) via the ME coupling effect,[29] as schemati-
cally shown in Figure 1c. Consequently, the states of transtance 
can be simply represented by the ME voltage VME in practical 
devices.

The memtranstor has a great potential as memory and logic 
devices because of its nonvolatile switching behaviors and 
parallel reading mode, as demonstrated recently in a series of 
experiments.[31–34] In particular, the characteristic of nonvolatile 
multilevel switching, similar to that of memristors, imply a pos-
sibility to realize synaptic functions using the memtranstors. 

Compared with the memristor, the highly insulating memtran-
stor has a lower energy consumption because the Joule heating 
can be effectively reduced.

To explore the potential of memtranstors as artificial syn-
aptic devices for construction of hardware neural networks, 
in this work we have systemically investigated the multilevel 
switching behaviors of VME in the memtranstors made of 
Ni/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT)/Ni multiferroic 
heterostructures that exhibit large ME effects at room tempera-
ture. The results clearly demonstrate the emulation of synaptic 
plasticity using memtranstors. Moreover, the simulations based 
on experimental data reveal the capability of pattern learning of 
a neural network made of memtranstors.

The memtranstor used in this work is a typical multiferroic 
heterostructure consisting of a ferroelectric layer (PMN-PT) and 
two magnetic layers (Ni). The ME coupling is mainly caused by 
the interfacial strain between magnetic and ferroelectric layers.[27]  
The top and bottom Ni layers act as not only the magnetic com-
ponents of the memtranstor but also the electrodes. Figure 1d 
shows the VME of the Ni/PMN-PT/Ni memtranstor as a func-
tion of in-plane DC magnetic field (HDC) with positive polari-
zation (+P) and negative polarization (−P). Before measuring 
VME, the device is prepoled by applying a positive or a negative  
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Figure 1. a) The complete relational diagram of fundamental circuit elements, each defined by a direct relationship between two of four basic variables, 
voltage (v), current (i), charge (q), and magnetic flux (ϕ). The diagram consists of four linear elements, namely, resistor (R), capacitor (C), inductor 
(L), and transtor (T), and four nonlinear memelements, namely, memristor (MR), memcapacitor (MC), meminductor (ML), and memtranstor (MT). 
b) Characteristic behavior of the memtranstor showing a pinched hysteresis loop. The different states of transtance (T = dq/dϕ), or equivalently the 
ME voltage VME, are used to store information. c) The structure of the Ni/PMN-PT/Ni memtranstor with in-plane magnetization in the Ni layers and 
out-of-plane polarization in the PMN-PT layer. An array of memtranstors is placed into a read solenoid that generates a small magnetic field (HAC), and 
the stored information is read out by detecting the induced VME. d) VME as a function of in-plane DC magnetic field (HDC). The polarization is prepoled 
either upward (blue curve) or downward (red curve). The maximum of VME is located around zero field, which is beneficial for practical applications 
because no bias magnetic field is required.
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electric field of 4 kV cm−1 to set the direction of saturation 
polarization (Ps). VME is nearly zero in the high HDC region 
(>2 kOe) because the magnetization saturation of the Ni layers 
under which the magnetostriction coefficient is almost zero, 
resulting in the ME effect of the multiferroic heterostructure 
being null. When P is set upward (the red curve), VME increases 
gradually with HAC scanning from 4 kOe to zero and reaches 
a maximum (20 µV) near zero field. With HDC scanning  
from positive to negative, VME decreases quickly and the sign 
changes from positive to negative. After passing a negative 
peak value (−12 µV) at −0.4 kOe, VME is reduced gradually to 
zero again with increasing HDC to 2 kOe. In contrast, when P 
is set downward (the black curve), the HDC dependence of VME 
is totally opposite, being negative for positive HDC and positive 
for negative HDC. The sign of VME is found to depend on the 
relative orientation between magnetization and ferroelectric 
polarization. The ferroelectric polarization of the Ni/PMN-PT/
Ni heterostructures can be gradually tuned by fully or partially  
reversing ferroelectric domains with electric field (see Figure S2,  
Supporting Information). Thus, when the direction of magneti-
zation remains unchanged, the sign as well as the magnitude of 
VME can be gradually modulated with pulsed electric fields. The 
broad hysteresis loop with the maximum value of VME around 
zero HDC promotes practical applications because no DC-bias 
magnetic field is required for optimizing the performance of 
the device.

Figure 2b shows the evolution of VME by applying trains of 
voltage pulses (lower panel) with a fixed time width of 10 ms  
spaced 100 s apart and increasing amplitude. The VME values  
are detected at the pulse spacing. VME remains almost unchanged  
until the amplitude of the applied voltage pulse exceeds a 
threshold value (E = 1.5 kV cm−1). Subsequently, VME increases 
rapidly and then reaches a saturation value (13 µV), where VME 
changes little as higher voltage pulses are applied. Reversing 
the direction of the pulse voltage, VME begins to decrease as 
the pulse amplitude exceeds a negative threshold value (E = 
− 1.5 kV cm−1) and then saturates at a low VME state. We also 
examined the effect of pulse numbers on the VME switching 
with a constant amplitude. As shown in Figure 2c, a set of 
50 voltage pulses with E = +/−2.5 kV cm−1 amplitude, 10 ms 
width, and 1 s between pulses were applied to the device alter-
natively. The state of VME is read in the space region. With  
increasing pulse number, VME increases gradually from −8 to 
8 µV under the positive pulse stimuli and then decreases to  
−8 µV under negative pulse stimuli. By both types of voltage 
pulse stressing, multilevel ME states with different VME values 
can be obtained. Each ME state shows good stability and can 
last for a certain period of time (see the insets in Figure 2b and 
Figure S3 in the Supporting Information). Note that the pulse 
trains with identical amplitude and the continual switching of 
VME by varying only pulse numbers, similar to the one used 
in Figure 2c, are more practical to implement neural network 
systems in real hardware than the pulse trains with varying 
amplitudes, like the one used in Figure 2b, because the latter 
requires the neurons to keep track on the previous activity, 
which will complicate the design of the peripheral circuits.

The VME switching behavior under electric pulses is analogous 
to the information transmission characteristics of biological 
synapses. Figure 2a shows a typical schematic illustration  

of a biological synapse. A synapse is a conjunction of two 
neuron cells, named preneuron and postneuron. Under an 
external stimulus, spikes or action potentials from the pre-
neuron are transmitted through synapse to the postneuron and 
generate excitatory postsynaptic potentials (EPSP) or inhibi-
tory postsynaptic potentials (IPSP), together with the synaptic 
weight updates.[33] The information storage and learning of 
human brains are exactly a consequence of changes in the syn-
aptic weight. Here, the artificial synapse based on memtran-
stors is achieved by regarding the transtance value as the 
synaptic weight and the generated increasing/decreasing VME  
as the EPSP/IPSP. The applied voltage pulses play the roles of 
the pre and postspikes that act on a memtranstor to modulate the 
transtance (i.e., synaptic weight), which is assessed by the detec-
tion of VME (i.e., EPSP/IPSP). Therefore, the increasing VME 
(EPSP) and decreasing VME (IPSP), as shown in Figures 2b,c,  
indicates the potentiation and depression of the synaptic 
weight, respectively, that is, synaptic plasticity. In biological 
systems, the synaptic plasticity can be divided into short-term 
plasticity and long-term plasticity according to the retention 
time of the synaptic weight, corresponding to the short-term 
memory and long-term memory of brain, respectively.[35–37] For 
the Ni/PMN-PT/Ni memtranstor, the obtained transtance states 
are quite stable with time. Therefore, the EPSP and IPSP, as 
shown in Figures 2b,c, can be classed as long-term plasticity, 
corresponding to the long-term potentiation (LTP) and long-
term depression (LTD), respectively.

A well-known theory based on synaptic plasticity is Hebbian 
learning, which suggests that the synaptic weight is modulated 
in accordance to neural activities in preneuron and postneuron 
cells.[38] In this form, one of the most important learning rule is 
spiking-time-dependent plasticity (STDP).[39] STDP establishes 
the synaptic weight adjustment according to the timing of the 
fired spikes by connected neurons. According to this rule, the 
synapse potentiates (EPSP or increase of VME) if presynaptic 
spikes precede postsynaptic spikes repeatedly, and the synapse 
depresses (IPSP or decrease of VME) if postsynaptic spike pre-
cedes presynaptic spike repeatedly. The precise pre and post-
spike timing window controls the sign and magnitude of syn-
aptic weight modulation.

Based on the plasticity behaviors of the Ni/PMN-PT/Ni 
memtranstors as a function of pulse amplitude and repeti-
tion, STDP is emulated by engineering the pre and postspike 
superimpositions. As shown in the lower panel of Figure 3a, 
the prespike is shaped as a pulse train, consisting of the depres-
sion (negative voltage) pulses (width = 10 ms) with amplitude 
increasing from Vpre = −1 to −25 V and potentiation (positive 
voltage) pulses with amplitude decreasing from 25 to 1 V.  
The time spacing between two pulses is kept constant (10 ms). 
The postspike consists of two rectangular pulses (width = 10 ms) 
with amplitude of Vpost = 25 and −25 V. The superimposition 
between the prespike and the postspike (Vpre −Vpost) defines the 
net programming voltage applied on the synapse at each point 
of time. For example, if a prespike is 20 ms before the postspike 
(Δt = 20 ms), then the positive part of the postspike will overlap 
with the second potentiation pulse. The overall potential on 
the synapse will be above the potentiation threshold (Vth1), 
resulting in an increase in synaptic weight. However, if the post-
spike is 20 ms before the prespike (Δt = −20 ms), the negative 
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part of the postspike will overlap with the second depression 
pulse. The overall potential on the synapse will be above the 
depression threshold (Vth2), resulting in a decrease in synaptic 
weight. The change ratio of the synaptic weight can be tuned 
by changing the action numbers of the identical pre/postspike 
pairs for each Δt. By repeating the pulse scheme with different 
Δt in the range from −90 to 90 ms, the overall STDP curves are 
obtained, as shown in the top panel of Figure 3a. The obtained 
STDP characteristics can be well fitted with exponential  

decay functions and conform to the well-known biological syn-
aptic system.[40]

In a real biological system, the STDP model should con-
sider the exact value of Δt because an enhanced change in the 
synaptic weight occurs as Δt is decreased. In the memtranstor-
based synapses, the VME change can be only dependent on the 
present VME value and the applied pulse numbers according 
to the experimental data in Figure 2c. Thus, the pulse train 
with increasing (or decreasing) amplitude is unnecessary for 
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Figure 2. a) Schematic illustration of biological neurons and synapses. Right inset: the information transmission between neurons occurs via propa-
gation of action potentials through the axon and release of neurotransmitters, which causes excitatory postsynaptic potentials (EPSP) and inhibitory 
postsynaptic potentials (IPSP) that would in turn propagate in the postsynaptic axon. Left inset: The memtranstor-based synapse transmits information 
by applying voltage pulses to change the polarization and subsequently change the ME coupling to produce the VME variation. The VME plays a role 
of either EPSP (increase of VME) or IPSP (decrease of VME) in the postsynaptic axon. b) The evolution of the EPSP/IPSP (i.e., VME) by applying trains 
of voltage pulses (bottom part) with a fixed time width of 10 ms spaced 100 s apart and increasing amplitude. The VME was measured at the pulse 
spacing. The insets in (b) present enlarged views of each obtained EPSP/IPSP that shows good stability and can last for a certain period of time (100 s 
for each step). c) The evolution of the EPSP/IPSP (i.e., VME) by applying voltage pulses with 10 ms width and a constant amplitude of E = 2.5 kV cm−1.
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the prespike. By using two simplified pulse trains consisting 
of two rectangular pulses with different width (60 and 10 ms, 
respectively) and opposite direction, we create a simplified 
STDP scheme, as shown in Figure 3b. Due to the constant 
pulse amplitudes of the pre and postspikes, the simplified 
STDP showed constant potentiation and depression values, 
that are only determined by the spike numbers, in the region 
of 0 < |Δt| < 50 ms for Δt > 0 and Δt < 0, respectively. In this 
case, the timing correlation between the pre and postspikes 
is converted into the spike numbers applied to the synapses. 
Compared with the complex pulse trains shown in Figure 3a 
that generate the biological STDP effect, this simplified STDP 
learning, which is easily implemented with memtranstors, 
should be more convenient for design of peripheral driving 
circuitry.

The simplified STDP scheme is employed to simulate the 
learning ability of an array of memtranstors for a predefined 
pattern with 4 × 4 pixels. The spiking neuron network is mod-
eled by connecting 16 preneurons with one postneuron in 
parallel through synapses and each preneuron corresponds to 
one pixel in the pattern, as shown in Figure 4a. The 4 × 4 pre-
neuron layer acts as a retina, emitting spikes in correspondence 
of a visual pattern. In practice, sensors will sense the pattern 
and then convert the sensed information into the presynaptic 
spikes with timings.

A stochastic learning approach is adopted,[41] where pre-
neurons are activated alternatively by the predefined pattern 
and noise at each epoch. Pattern and noise are presented with 
probability 50% each. The noise consists of two pixels that are 
randomly distributed. As shown in Figure 4b, we assume that 
the preneurons corresponding to the pattern pixels will be 
activated to fire a prespike, labeled as pattern prespike. After a 
specific delay Δt (<50 ms), the postneuron fires a postspike to 
all the preneurons. Because of Δt < 50 ms, the postspike will 
superimpose with the first-part of the prespike to form LTP, 
which will potentiate the weight of synapses corresponding to 
the pattern pixels but have no effect on the others. The ending 
of the pattern prespike will immediately activate the pre-
neurons corresponding to the noise pixels to fire a prespike, 
labeled as noise prespike. The noise-spike will superimpose 
the second part of the last postspike to form LTD, which will 
depress the weight of synapses corresponding to the noise 
pixels. The above two prespike procedures and one postspike 
procedure are called one epoch. The synaptic weights are set 
randomly at the beginning. The neural network is first learned 
with pattern 1 in Figure 4a to test the learning of a static 
image, and then patterns 2 and 3 are submitted to demonstrate 
dynamic learning. The detailed processes of the simulation are 
described in Figures S1 and S2 and the Supplementary Note in 
the Supporting Information.

Adv. Mater. 2018, 1706717

Figure 3. a) The experimental data showing the conventional STDP characteristic and b) the corresponding voltage pulse scheme. c) The experimental 
data following a simplified STDP characteristic and d) the corresponding voltage pulse scheme. The black, red, and blue symbols in (a) and (c) rep-
resent the relative change of the EPSP/IPSP versus the relative spiking time (Δt) obtained by applying 1, 10, and 100 identical pre/postspike pairs for 
each Δt. In (b) and (d), Vth1 and Vth2 are the threshold voltage that can induce potentiation and depression of synapses, respectively. By superimposing 
pre and postspike potentials, the overall potential on the synapse will be above the Vth1/Vth2, resulting in the change of the synaptic weight.



© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1706717 (6 of 8)

www.advmat.dewww.advancedsciencenews.com

Figure 4c shows the simulation results. During the first  
300 epochs of learning with pattern 1, the mapping of the syn-
aptic weight shows clearly the same configuration as that of 
pattern 1, indicating that all the pattern synapses show high 
VME, whereas the background synapses show low VME. As the 
submitted pattern is changed from pattern 1 to pattern 2, the 
learning of pattern 2 is successful after the second 300 epochs. 
These findings demonstrate dynamic learning of synaptic 
weights to the presented pattern in real time by the memtran-
stor network. Similarly, pattern 3 is learnt during the third 
phase of 300 epochs. The learning performance can be quanti-
tatively evaluated from the accuracy, which is defined as

Accuracy 1 100%
t i

2

1

V i V i

ni

n∑ ( )( ) ( )
= −

−











×
=

 

(1)

where Vt(i) and Vi(i) are the target and learned VME, respec-
tively, at the ith synapse in a system with a total of n syn-
apses, and VME is normalized to the total plasticity from 0 to 1.  

As shown in Figure 4d, the saturation value of the accuracy 
achieved reaches 91.3% on average (see Figure S3, Supporting 
Information). In addition, with increasing the pixel numbers 
to 6 in the noise pattern, the learning accuracy just decreases 
to 86.9%, indicating a robustness of the memtranstor network 
against uncontrolled input variability. Note that the noises play 
a role of background depression in the learning process. Thus, 
if no noise input, the learning function cannot be realized (see 
Figure S6, Supporting Information).

The physical process underlying the multilevel transtance 
(i.e., VME) switching in the memtranstors can be ascribed to 
the evolution of the ferroelectric domain configuration in the 
PMN-PT single crystal. Boyn et al. have systematically studied 
the ferroelectric domain dynamics and provided a well-estab-
lished nucleation-limited model to describe the gradual polari-
zation switching in ferroelectric tunnel junctions.[14] In essence, 
this model can also be used to understand the synaptic behaviors  
in the memtranstors. Distinct from the ferroelectric tunnel junc-
tions, in which the resistance value is regarded as the synaptic 
weight that is evaluated by monitoring the excitatory postsynaptic  
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Figure 4. a) Schematic illustration of the simulated neuromorphic network. The preneuron layer with 16 neurons is fully connected to one postneuron 
through 16 memtranstor synapses with synaptic weight wi. Three patterns and one random noise image are used for learning. The preneuron layer 
derives prespikes in response to the presentation of pattern or noise. b) Schematic illustration of the pulse scheme in one epoch where one pattern 
and then one noise are presented. Long-term potentiation (LTP) and long-term depression (LTD) that occur in the case of pattern and noise presenta-
tion, through the simplified STDP learning. c) Evolution of the synaptic weight map during learning. Initial synaptic weights are set randomly. Patterns 
1, 2, and 3 with noise are presented in turn for 300 epochs. The weight maps after 300, 600, and 900 epochs show a good adherence to patterns 1, 
2, and 3, respectively, thus demonstrating dynamic pattern learning ability. d) The saturation value of the learning accuracy, defined by Equation (1), 
as a function of the pixel number in noise. The red circles represent the average value from 1000 to 2000 epochs where the accuracy values reach the 
saturation level. The blue and the green dashed lines indicate the maximum and minimum values obtained in the simulations, respectively, and the 
other results lie within the shaded cyan area.
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current (EPSC), the synaptic weight of memtranstor-based syn-
apses is represented by the EPSP because voltage signals are 
directly generated during the reading process. In biology, the 
EPSP is closer to the real characteristics of nerve cells, such as 
the membrane potential of the soma than the EPSC.[42]

To assess the energy consumption of the memtranstor net-
work, we have calculated the energy for both weight reading and 
weight change per synapse during the memtranstor working 
cycle. Because PMN-PT is a good insulator and the leakage cur-
rent is negligible, the most significant contribution to energy 
consumption of weight change is the ferroelectric polarization 
inversion by electric field. The energy density Jp for ferroelectric 
polarization inversion can be roughly estimated from Jp = 2PsEa, 
where Ps is the maximum intensity of polarization, and Ea is 
the applied electric field. According to the saturated polarization 
(≈40 µC cm−2) of PMN-PT and the electric field (2.75 kV cm−1)  
we used in this study, the energy density for weight change per 
synapse is calculated to be 0.22 J cm−3. Thus, we project an energy 
cost of 0.22 pJ for the weight change of a 1 µm × 1 µm × 1 µm  
memtranstor, which is several orders of magnitude lower 
than that of the synapses based on conventional CMOS circuit  
(≈900 pJ per stimulation).[7] Regarding the weight reading, 
although the operation mode of the memtranstor is similar to 
traditional ferroelectric random access memory, the polarization 
change and rewriting process are not required during the VME 
reading, that is, the readout is nondestructive. Therefore, the 
main energy consumption is contributed by the read solenoid, 
which generates Hac for the VME detection. The energy density Jm 
of the read solenoid can be estimated by Jm =B2/2 µ, where B is 
the required magnetic field and µ is vacuum permeability. Thus, 
the magnetic field (2 Oe) we used for VME reading in this study 
amounts to 2 J cm−3. Note that, for the memtranstor devices with 
high density arrays, it will be difficult to apply a magnetic field to 
each memtranstor unit. A feasible approach is to share one mag-
netic field. Although this approach will enlarge the volume of 
the magnetic field, that is, the energy consumption, the average 
energy consumption per memtranstor unit, depending on the 
storage density of the devices, could be reduced.

In conclusion, we implemented synaptic plasticity in the 
memtranstors made of Ni/PMN-PT/Ni multiferroic hetero-
structures that enable the nonvolatile continuous change of the 
ME coupling voltage. As a proof-of-concept, we demonstrated 
that by engineering the applied electric pulse which serves as 
the action potentials, the memtranstance, which is presented by 
ME coupling voltage and serves as synaptic weight, can perform 
the LTP, LTD, and STDP of biological synapses. The learning 
ability of the memtranstor network was demonstrated through 
a stochastic pattern learning. Combining the advantages of 
low-power consumption of weight change and nondestructive 
weight readout, such memtranstor devices have the potential to 
realize energy-efficient neural networks for building neuromor-
phic computing systems.

Experimental Section
Fabrication of the Devices: The memtranstors were prepared by 

depositing Ni on both sides of PMN-PT (110) single crystals by magnetic 
sputtering to form Ni/PMN-PT/Ni heterostructures, as illustrated 
in Figure 1b. The size of PMN-PT single crystal is 5 × 2 mm. The 

thicknesses of PMN-PT (110) single crystal and the Ni films are 0.2 mm  
and 1 µm, respectively. The ME coupling is mainly caused by the 
interfacial strain between the magnetic and ferroelectric layers. The top 
and bottom Ni layers act as not only the magnetic components of the 
memtranstor but also the electrodes for the output of VME.

Measurements of the ME Voltage: A conventional dynamic technique 
was employed to measure the VME (see Figure S1, Supporting 
Information). A small AC magnetic field HAC at a frequency of 10 kHz, 
generated by an AC source (Keithley 6221) to a solenoid, in the presence 
of a simultaneous DC bias magnetic field, was applied in plane to the 
devices. In response, the change in the electric signal (VAC =Vx + iVy)  
across the sample resulting from the applied HAC was recorded using 
a lock-in amplifier (Stanford Research SR830) synchronized with the 
AC current source. To switch or prepole the electric polarization of 
PMN-PT (110), a sourcemeter(Keithley 6517B) was used to apply 
voltage pulse across the electrodes. The sample was plugged into an 
Oxford TeslatronPT superconducting magnet system, which supplies 
the DC magnetic field. All the measurements were performed at 
room temperature. To realize automatic measurements, a switcher  
(Keithley 7001) is used to control the pulse application and the VME 
reading operations in a program sequence.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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