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Band topology, namely the global wavefunction structure 
that gives rise to the properties observed in the bulk and on 
the surface of crystalline materials, is currently a topic under 
intense investigation for both fundamental interest and its 
technological potential1–4. While topological band crossing in 
three dimensions was first studied for electrons in semimet-
als4–10, the underlying physical idea is not restricted to fermi-
ons11–15 and similar band structures of electromagnetic waves 
have been observed in artificial structures16. Fundamental 
bosonic excitations in real crystals, however, have not been 
observed to exhibit any counterparts. Here we use inelas-
tic neutron scattering to reveal the presence of topological 
spin excitations (magnons) in a three-dimensional antifer-
romagnet, Cu3TeO6, which features a unique lattice of mag-
netic spin-1/2 Cu2+ ions17. Further to previous works on this 
system17,18, we find that the Cu2+ spins interact over a variety 
of distances, with the ninth-nearest-neighbour interaction 
being particularly strong. While the presence of topologi-
cal magnon band crossing is independent of model details15, 
the far-reaching interactions suppress quantum fluctuations 
and make the magnon signals sharp and intense. Using accu-
rate measurement and calculation, we visualize two magnon 
bands that cross at Dirac points protected by (approximate) 
U(1) spin-rotation symmetry. As a limiting case of topologi-
cal nodal lines with Z2-monopole charges15,19, these Dirac 
points are new to the family of experimentally confirmed 
topological band structures. Our results render magnon sys-
tems a fertile ground for exploring novel band topology with 
neutron scattering, along with distinct observables in other 
related experiments.

Magnons are quantized spin-1 excitations from an ordered mag-
netic ground state. Unlike electrons, where the topological band 
crossings must be below the Fermi energy for momentum-resolved 
observation with photoemission, there is not a similar constraint 
on the energy level of magnons. However, many magnetic materi-
als have too few spins in the primitive cell to allow for any magnon 
band crossing at all. It was previously envisioned that topological 
magnon band crossing in the form of Weyl points would be pos-
sible only in the restrictive cases of non-centrosymmetric crystal 
structures13 or certain types of ferromagnet14. Meanwhile, the mag-
netic space groups20 are considerably more complicated than the  

crystallographic space groups21–23, and symmetry requirements for 
stabilizing Dirac-point-like band crossings7 have not been deter-
mined. Recently, some of us proposed that topological magnon 
band crossing may occur in antiferromagnets15 with PT (time rever-
sal followed by space inversion) symmetry. This unlocks far more 
materials to be considered than previously thought.

As an insulator, Cu3TeO6 develops antiferromagnetic order below 
the Néel temperature TN =​ 61 K (Supplementary Fig. 1). The order 
features a bipartite and predominantly collinear arrangement17 of 
spin-1/2 on the Cu2+ sublattice (Fig. 1a). Figure 2 presents spin exci-
tation signals measured with inelastic neutron scattering (INS) in 
and out of the magnetically ordered state. Well-defined magnons 
are observed at 4 K (Fig. 2a), and they have collapsed into a feature-
less cloud of excitations at 73 K (Fig. 2b,d), which is not far above 
TN. At 4 K, a total of 6 magnon branches are observed, suggesting 
that they are all doubly degenerate (since the primitive cell has 12 
Cu2+ ions) and that the spin Hamiltonian has U(1) spin-rotation 
symmetry15. However, this can be only approximately true, because 
we do observe a small gap at the bottom of the ‘acoustic’ branch 
(Fig. 2e,f). Since exact cubic (or tetrahedral) symmetry precludes a 
global magnetic easy axis, the gap can be ascribed to the presence 
of Dzyaloshinsky–Moriya interactions and hence the lack of U(1) 
symmetry. We will revisit this point later.

Our highly extensive INS data allow us to determine the magnon 
spectra over many Brillouin zones (BZs, Fig. 2c), in which we expect 
a different dynamic structure factor S(Q,ω) but the same dispersion 
ωm(q). Here, Q and ω are respectively the momentum and energy 
transfers of the scattering, m is the magnon branch index and q is 
the displacement of Q from the nearest BZ centre. Figure 3a–c dis-
plays INS data recorded along three sets of high-symmetry lines 
in Q space. The data are free from phonon contributions, which 
become noticeable only in higher BZs (Supplementary Fig. 2).

Before we proceed to the modelling of our INS data and the 
analysis of the band topology, we note that magnetic INS signals 
are not always clear and sharp. Poor sample mosaic, crystal defects, 
thermal broadening and instrumental resolution all contribute to 
the experimental linewidth. For antiferromagnets, the intrinsic 
linewidth (even in perfect crystals at zero temperature) is further 
increased by quantum fluctuations24 that are strong in systems with 
reduced dimensionality, frustrated interactions and small spins. In 
fact, quantum fluctuations can be as severe as causing magnons to 
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disintegrate into fractionalized ‘spinon’ excitations in one25 and two 
dimensions26,27. Such quantum effects render the prediction of topo-
logical magnon band structures13–15 based on a harmonic, non-inter-
acting picture of the magnons potentially questionable. The above 
considerations appear to challenge the proposal15 that Cu3TeO6 is a 

candidate material for the observation of topological magnons. The 
apparent difficulty is that each Cu2+ has only four nearest neigh-
bours connected by the antiferromagnetic interaction J1; that is, the 
coordination number (N =​ 4) is the same as in a two-dimensional 
square lattice18. Even though a second-nearest-neighbour interac-
tion (J2) might exist, it is expected to be weak, as otherwise the mag-
netic lattice becomes frustrated17. Moreover, spin-1/2 is the extreme 
case for strong quantum fluctuations.

In contrast to these concerns, the INS data in Figs. 2a and 3a–c 
consistently indicate highly coherent quasiparticles throughout 
the magnon band width, which invites a harmonic modelling of 
the spin dynamics. To this end, we employ linear spin-wave the-
ory (LSWT), which is by far the most commonly used method for 
calculating magnons. We assume that LSWT offers an effective 
account for the microscopic harmonic spin Hamiltonian, so that if 
it successfully models the data, the harmonic description is consid-
ered justified, and the band topology can be faithfully represented 
by its results as a motivational principle. We have applied a two-
step modelling approach to the INS data. In the first step, we only 
estimate the effective spin interactions (J terms) and anisotropy 
by fitting the experimental ωm(q), which we obtain by inspection 
(Supplementary Figs. 3a and 4). This step is useful for avoiding a 
blind parameter search directly based on S(Q,ω), and it becomes 
clear already in this step that interactions up to J9, the interaction 
between the ninth-nearest neighbours, are necessary (see Methods). 
In the second step, we fit the S(Q,ω) patterns in Fig. 3b by introduc-
ing two more parameters: an overall intensity coefficient and effec-
tive damping (see Methods). Optimizing all parameters results in 
modest updates to the values of J terms (Supplementary Table 1). 
The excellent agreement (Fig. 3 and Supplementary Fig. 4) between 
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Fig. 1 | Primary magnetic interactions in Cu3TeO6. a, The magnetic lattice 
shown in a cubic unit cell that contains two primitive cells and eight formula 
units. Cu3TeO6 belongs to the cubic space group Ia-3 (no. 206; a =​ 9.537 Å), 
and its collinear magnetic ground state assumed here belongs to the 
magnetic space group R-3ʹ​ (no. 148.19). Spin-up and spin-down Cu2+ are 
represented in different colours. The nearest-neighbour (J1) and the ninth-
nearest-neighbour (J9) interactions constitute a highly interconnected 
network. b, Exchange pathways (dashed lines) of J1 and J9 via oxygen 
atoms. The relatively straight pathway of J9 makes it comparable to  
J1, despite the greater distance.
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Fig. 2 | Basic properties of spin excitations. a,b, Representative INS data taken with incident neutron energy Ei =​ 28 meV in the ordered and the 
paramagnetic states, respectively. The data are shown near a magnetic ordering wavevector Q =​ (1,1,2) (in reciprocal lattice units, r.l.u.). c, The BZ, with 
high-symmetry lines indicated in red. d, Energy distribution of INS intensities averaged over more than ten BZs. The total spectral weights (shaded areas), 
mostly magnetic, are the same at both temperatures within 2% accuracy. e,f, Data near the bottom of the acoustic magnon branch, measured at 4 K with 
Ei =​ 8 meV, indicating a small gap of about 2 meV. All measured intensities are displayed in absolute cross-section units (see Methods), and the error bars 
indicate statistical uncertainty (1 s.d.).
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our LSWT results (with 12 adjustable parameters) and the INS data 
(raw-format data >​ 30 GB, reduced to about 300 kB for plotting in 
Fig. 3) indicates that our LSWT model provides an excellent effec-
tive account for the spin excitations in Cu3TeO6.

The fitting parameters (see Supplementary Table 1) indicate 
that the magnetic interactions are dominated by antiferromagnetic 
J9 and J1 with very similar strengths. Although surprising at first 
sight, the prominence of J9 can be understood as originating from a 
strong super-superexchange interaction28 on the relatively straight 
bond sequence Cu–O–O–Cu (Fig. 1b). Additional analyses of the 
exchange interactions are presented in Supplementary Fig. 5 and 
Supplementary Table 1. With J1 ≈​ J9, the spin lattice is highly inter-
connected (N =​ 8) without frustration (Fig. 1a), so quantum fluctua-
tions are strongly suppressed. This further justifies the use of the 
LSWT modelling.

According to the general theory15, the P-point of the BZ (Fig. 2c) 
is always a topological crossing point (a Dirac point, DP) when the 
system has U(1) symmetry. These DPs are indeed found in our cal-
culated dispersions (Fig. 4a, solid lines): the six doubly degenerate 
bands cross at three DPs located at the P-point at different energies. 
Two of them are too close together near 15 meV for a reliable deter-
mination (Supplementary Fig. 6). Therefore, we focus here on the 
DP at about 17.8 meV involving the topmost two magnon bands, 
which can be more clearly resolved.

We first compare INS spectra measured along momentum cuts 
that have the same ωm(q) but different S(Q,ω), to utilize the contrast 
in S(Q,ω) to better identify (or verify) the underlying dispersions. 
Figure 4a,b presents cuts connecting a P-point to two of its neigh-
bouring H-points. In both the measurement and the calculation, 
the two bands near 18 meV are equally intense as Q moves from 
P(1.5,0.5,1.5) towards H(1,0,2), whereas only the high-energy band 

is pronounced as Q moves towards H(2,1,2). This results in a dis-
tinct envelope of the signal, indicated by the magenta dotted lines 
in Fig. 4a,b. Similar comparisons when moving Q in other pairs of 
equivalent directions are displayed in Supplementary Fig. 7, all indi-
cating that there are two bands crossing at P without opening a gap.

A key signature of a DP is the nearby linear dispersions. To verify 
this, we turn to intensity patterns recorded in Q planes that con-
nect a P-point to its neighbouring N-points (bottom of Fig. 4c). 
Our LSWT calculation predicts that the dispersions in this plane 
are four-fold symmetric about P with relatively high velocities  
(Fig. 4e), so that away from P the two bands differ by more than 
0.5 meV (Fig. 4d) and should become marginally resolvable (our 
resolution is about 0.58 meV near 18 meV). In Fig. 4c, we show 
that such sub-resolution structures are indeed observed, after we 
combine and symmetrize all available data round P(1.5,0.5,1.5) (see 
captions for details). The linear dispersions can be further checked 
by organizing the INS data into energy distribution curves (EDCs). 
Figure 4f displays EDCs at a series of Qs along the trajectory indi-
cated in Fig. 4d. Fitting all of the EDCs collectively, assuming the 
presence of two peaks away from P, results in an X-shaped disper-
sion. However, even if we were to fit the EDCs with a single peak, we 
still come to the same conclusion, as the peak width becomes broader 
away from P in a fashion that suggests sub-resolution DP-like dis-
persions. Additional EDCs are presented in Supplementary Figs. 8 
and 9, all supporting this understanding. On the basis of this highly 
consistent set of evidence, we conclude that the characteristic dis-
persions near the DP are confirmed in our experiment.

The topological nature of the band crossing at the DPs can be 
verified beyond the linear dispersions. Using magnon eigenvectors 
calculated with our LSWT model, we confirm that the DPs indeed 
have non-trivial topological charges (Supplementary Fig. 6).  
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Moreover, as the eigenvectors are represented by the structures of 
S(Q,ω), the similarity between the measured and the calculated 
spectra (Fig. 4a,b and Supplementary Fig. 7) in the vicinity of 
the DPs can be taken as evidence for the non-trivial band topol-
ogy. Last but not least, we expect magnon ‘surface-arc’ states to 
arise from the non-trivial band topology15. Indeed, as the bulk of 
Cu3TeO6 hosts a wealth of topological DPs beyond our above dem-
onstration, the calculated surface-arc states are also extremely rich 
(Supplementary Fig. 10).

Given the topological magnon band structure, we expect the 
presence of topological Hall effects on magnon currents, which may 
enable novel spintronics (or ‘magnonics’) applications. The topo-
logical surface states can be probed by techniques that require only 
a small sample volume, such as high-resolution electron energy-loss 
spectroscopy (EELS) and resonant inelastic X-ray scattering (RIXS). 
Although the energy scale of Cu3TeO6 presents a challenge even to 
the best EELS and RIXS resolutions available at present, now that 
we have verified the general principles, new opportunities may 

arise as the techniques are improved and new materials discovered. 
Moreover, the surface states have a different energy distribution 
from the bulk states (Supplementary Fig. 10f), so even a carefully 
designed INS experiment on fine-powder samples of Cu3TeO6 (that 
is, with a large surface volume) might be able to detect them.

The DPs that we have observed are the limiting case of nodal lines 
that carry Z2 topological monopole charges15,19. This limiting case 
requires U(1) symmetry, which is in principle absent in Cu3TeO6. 
Nonetheless, neglecting U(1) symmetry-breaking interactions, as 
we have done in our LSWT model, must be a very good approxima-
tion because their effect, namely, to expand each DP into a nodal 
line15, occurs only in the second and higher order. Finding sizable 
such nodal lines in other materials will be interesting, and magnon 
systems are superior to electron systems for finding them: electron 
bands are typically detected (for example, by angle-resolved photo-
emission spectroscopy) with limited Q resolution perpendicular to 
the exposed surface, whereas magnons can be probed by INS with 
excellent resolution in all dimensions. Moreover, for electron bands 

0 80
a c

b

d e

f

H(1,0,2) P(1.5,0.5,1.5) H(2,1,2)

H(1,0,2) P(1.5,0.5,1.5) H(2,1,2)

13

14

15

16

17

18

19

20

E
ne

rg
y 

(m
eV

)

13

14

15

16

17

18

19

20

E
ne

rg
y 

(m
eV

)

N
(1

.5
,0

,1
.5

)

N
(1

.5
,0

.5
,2

)

N(2,0.5,1.5)

N(1,0.5,1.5)

0.
28

0.
38

0.
50

m
eV

16.5 17 17.5 18 18.5 19

Energy (meV)

0

2

4

6

8

10

12

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Low

Γ

High

PPP

H

N

17.15 meV

17.35 meV

17.55 meV

17.75 meV

17.95 meV

18.15 meV

18.35 meV

Fig. 4 | Evidence for Dirac-point-like magnon band crossing. a,b, INS and calculated S(Q,ω), respectively, along an H–P–H momentum trajectory. The 
solid lines indicate LSWT-calculated dispersions, and the magenta dotted lines indicate a characteristic intensity envelope (see text) identical between the 
two panels. Both the measured and calculated intensities are displayed in the same absolute units (see Methods) after Fig. 2. c, INS intensity distribution in 
0.2 meV intervals in Q-space planes that connect P with its four neighbouring N-points (P–N planes). To enhance the visibility of sub-resolution structures, 
data from all available P–N planes (see Supplementary Fig. 11) are included and symmetrized around P(1.5,0.5,1.5). For each energy interval, the intensities 
are false-colour rendered with respect to their own maximum and minimum. The dotted lines in the upper part are a guide to the eye for illustrating the 
Dirac-cone-like structure. d, LSWT-calculated Q contours in the (90°-folded) P–N plane displayed in c, with indicated constant energy distances between 
the topmost two magnon bands. e, LSWT-calculated dispersions of the topmost two magnon bands in the P–N plane. f, EDCs of INS data at Q positions 
corresponding to the intersections between the arrows and the contours in d, colour-coded with the contours and offset for clarity. The vertical error bars 
indicate statistical uncertainties (1 s.d.), and are comparable to the size of the symbols for most of the data points. The solid and dotted lines are two-peak 
fits to the data and the individual peak components, respectively, obtained under the constraint that equivalent Q positions must have the same peak 
energies (open squares). Pairs of horizontal arrows indicate full-widths at half-maximum of the top four EDCs when fitted with a single peak (fits not 
shown), from the top: 0.99(7), 0.83(6), 0.77(6) and 0.66(5) meV, where the uncertainty (in parenthesis) corresponds to 1 s.d.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


LettersNATUre PHysiCs

to have such nodal lines, the PT symmetry is required in conjunc-
tion with the absence of spin–orbit coupling, which is never strictly 
true19. Only the PT symmetry is required for magnons.

On top of this minimal requirement, additional symmetries, 
such as in the case of Cu3TeO6 here, may bring intriguing features to 
the magnon bands that deserve further investigation. The symme-
try-enforced DPs (with U(1)) at the two P-points can be shown to 
have the same topological charges15, so their presence necessitates 
the existence of additional DPs elsewhere in the BZ, as is reaffirmed 
by the rich surface-arc states (Supplementary Fig. 10). Moreover, 
we discover a ‘sum rule’ of magnon energies at high symmetry 
points of the BZ: ω ω ω ω∑ + + = ∑Γ( 4 ) 6m m m m m m,

2
P,
2

H,
2

N,
2 , which 

imposes constraints on how the bands may cross into one another. 
The sum rule holds exactly in the LSWT (for models with at least 
nine J terms), and to a precision of about 1% in our measured dis-
persions. At present, we do not know the precise origin of the sum 
rule, but we believe that it must be related to the space-group sym-
metry of the entire lattice and the site symmetry of Cu2+. A close-
knit comparison between real- and reciprocal-space pictures has led 
to recent progress in the understanding of electronic band topol-
ogy29,30, where the high symmetry of Cu3TeO6 has been noted as an 
extreme case of interconnected bands29. A counterpart analysis for 
magnon states in the magnetic groups20 may lead to new insights for 
the prediction of novel magnon systems.

Note added in proof: Recently, ref. 31 appeared, which has some 
overlap with the present work. The main experimental results and 
interpretation of the two studies are consistent with each other.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0213-x.
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Methods
Sample growth and characterization. High-quality single crystals of Cu3TeO6 
were grown by a flux method using molten PbCl2 as a solvent32. X-ray Laue 
backscattering from natural crystal surfaces produces sharp diffraction patterns 
with an approximate four-fold symmetry (Supplementary Fig. 1a), consistent  
with the cubic space group Ia-3 (no. 206; a =​ 9.537 Å)17. For the INS experiments, 
we co-aligned about 80 pieces of single crystals by gluing them on aluminium 
plates using a hydrogen-free adhesive, amounting to a total crystal mass of about 
16.8 g (Supplementary Fig. 1a). The entire array has a total mosaic spread of 
about 2°, as determined from the full-widths at half-maximum of rocking curves 
measured on the (0,0,3) and (2,2,0) Bragg reflections (Supplementary Fig. 1b). 
Temperature-dependent intensities of the magnetic Bragg reflection (1,1,0), 
as well as uniform magnetic susceptibility, indicate a sharp antiferromagnetic 
transition below TN =​ 61 K (Supplementary Fig. 1c,d). Fitting the high-temperature 
susceptibility data suggests a Curie–Weiss temperature of about −​165 K, consistent 
with previous results17.

INS experiments. Our INS experiments were performed on the 4SEASONS 
time-of-flight spectrometer at the MLF, J-PARC, Japan33. The spectrometer has 
a multiple-Ei capability34, so that data in different energy ranges (with different 
energy resolutions) can be obtained simultaneously. All data presented were 
obtained with two chopper conditions: primary incident energy Ei =​ 28 meV with 
chopper frequency 250 Hz (low resolution), and primary Ei =​ 31 meV with chopper 
frequency 400 Hz (high resolution). Two different sample orientations were used 
in our measurements, with a crystallographic direction of either (1,0,0) or (1,1,0) 
being placed in the vertical direction. During the measurement, the sample 
is rotated about the vertical axis over a range of 180° in steps of 0.5°, and data 
accumulated at each angle were combined together, forming a four-dimensional 
data set, which we used the Utsusemi35 and Horace36 software packages to 
reduce and analyse. After a careful alignment of the measured data set with the 
crystallographic coordinate system using all available nuclear Bragg reflections, 
the entire data set was down-folded in the three-dimensional momentum space 
using the full cubic symmetry (Th point group, plus four-fold rotations about the <​
100>​ directions; the four-fold rotational ‘symmetries’ were introduced by twinning 
during the crystal growth and the co-alignment processes). The folding resulted 
in a data volume that is 1/48 of the original, and it greatly enhanced the counting 
statistics by combining physically equivalent data points acquired by different 
detector pixels, without introducing any noticeable error. The recorded neutron 
intensities, first normalized by the amount of proton charge hitting the spallation 
target, were then compared against measurements of a vanadium standard sample 
using exactly the same spectrometer conditions, to convert the intensities to 
absolute scattering cross-section units37. The resultant cross-sections were further 
corrected for neutron absorption, which is estimated to cause a minimum of 22% 
reduction of the scattering intensity based on tabulated data38, Ei =​ 28 meV, and 
an effective sample thickness of 18 mm. The absorption-corrected absolute cross-
sections are presented throughout the paper.

LSWT fitting and simulations. Although the collinear antiferromagnetic ground 
state of Cu3TeO6 can be readily understood by considering only the antiferromagnetic 
nearest-neighbour exchange interactions (Fig. 1a), spin interactions over longer 
distances turn out to be necessary for describing the observed spin excitations. To 
handle the workload of searching a large parameter space and avoid local minima 
in the optimization process, we employ a two-step method, namely, first fitting the 
dispersion ωm(q) extracted by data inspection to estimate the effective interactions, 
and then fitting the entire intensity patterns starting from the preliminary 
interactions. We model the effective spin interactions as:

∑ ∑= + + ⋯ = ⋅
= ∈

H H H H J S SM
d

M

d
i j d

i j1NN 2NN NN
1 , NN

where Jd is the Heisenberg exchange interaction between the dth-nearest neighbours.
For the first step of our model optimization, once the number of interactions 

(M) and their strengths are chosen, standard Holstein–Primakoff transformation 
is performed, and the magnon dispersions are obtained after a straightforward 
calculation15. Comparing the model to the measurement results, we can first 
rule out the M =​ 2 model. Under the notion that there are a total of six observed 
magnon branches (Figs. 2 and 3), the optical branches meet at a two-fold and a 
three-fold degenerate energy point at the Γ​-point of the BZ, with the two-fold 
degenerate energy ( ΓE ,2) higher than the three-fold degenerate energy ( ΓE ,3). At 
the H-point, the six branches meet at two energies (EH,+ and EH,−), both of which 
are three-fold degenerate. Altogether, we have < < <ΓΓ − +E E E E,3 H, ,2 H, , which 
turns out to be incompatible with the analytical expressions of the corresponding 
energies calculated from the M =​ 2 model:
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As M is further increased, analytical expressions at high-symmetry BZ points 
are no longer sufficient to determine the interactions. Nevertheless, we are able to 
obtain the following analytical expressions for models with interactions up to J6:
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These expressions allow us to quickly determine whether a given parameter set 
can reproduce the experimentally measured dispersions at Γ​ and H, where we have 
used the following criteria:
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We are then able to quickly sample through the large six-dimensional 
parameter space and eliminate a large portion of it. It turns out that for 
the remaining regions, the calculated dispersions severely depart from the 
experimentally measured ones, and that the global best-fit parameters (with 
minimal χ2, see below and Supplementary Fig. 3b) belong to a region that does 
not satisfy the above criteria. Therefore, we conclude that interactions up to J6 are 
insufficient for describing our experimental dispersions.

We proceed by attempting to fit the magnon dispersions along high-symmetry 
momentum cuts. The high-quality INS data allow us to extract a discrete set of 
ωm(q) points along the high-symmetry lines, as displayed in Supplementary Fig. 3a.  
As our main goal here is to use LSWT calculations to guide our search for 
topological magnon band crossing, we have purposely refrained from introducing 
band-crossing structures into the extracted ωm(q) data, to avoid biasing the 
model. We then perform nonlinear least-squares fitting of the ωm(q) data by 
the Levenberg–Marquardt method. To overcome local-minima problems in the 
fitting process, we have performed a systematic search by starting from a multi-
dimensional grid of the initial parameter set, and used a chi-square (χ2) test to 
assess the goodness of the fit obtained from each initial parameter set before a 
globally optimized result is obtained. We estimate a reading error of 0.2 meV on 
ωm(q), which is used for calculating the χ2 values presented in Supplementary  
Fig. 3. As has been stated in the preceding paragraph, the experimental dispersions 
cannot be well described by the M =​ 6 model (Supplementary Fig. 3b), but the 
quality of the fit is much improved with M =​ 7 (Supplementary Fig. 3c), which 
results in a parameter set that is dominated by J1 and J7, and which satisfies 
the above criteria pertaining to the energies at Γ​ and H. However, structural 
considerations indicate that the exchange pathway of J9 is even more favourable 
for a strong interaction than that of J7 (see Fig. 1b and Supplementary Fig. 5, as 
well as Supplementary Table 1). Therefore, we have further extended the model to 
M =​ 9. Indeed, not only do we find that the M =​ 9 model is more likely to converge 
to parameters dominated by J1 and J9, but the fit quality is noticeably improved 
with χ2 becoming close to unity (Supplementary Fig. 3d,e). Thus, we conclude 
that the M =​ 9 model dominated by J1 and J9 is the most suitable description of 
the spin interactions in Cu3TeO6. This result is very different from all previous 
understandings of the spin-interaction network of this compound17,18,32,39, can be 
substantiated by first-principles calculations (O. Janson, personal communication) 
and is beyond the analysis employed in ref. 31.

Although the M =​ 9 Heisenberg model successfully describes the optical 
magnon dispersions, a noticeable discrepancy from the experimental data is the 
lack of a low-energy excitation gap at the BZ centre. This is expected because the 
antiferromagnetic order breaks the continuous SU(2) symmetry, which guarantees 
that the low-energy excitations are gapless Goldstone modes. A physically 
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rigorous remedy to this discrepancy is to introduce site-dependent exchange 
anisotropy that respects the crystal symmetry, such as Dzyaloshinsky–Moriya 
interactions15,40, since spin-1/2 systems (which would be the case for Cu2+ in the 
absence of spin–orbit coupling) cannot have single-ion anisotropy, and because 
the cubic (or tetrahedral) crystal symmetry of Cu3TeO6 is incompatible with 
any global magnetic easy axis. However, the presence of such site-dependent 
exchange anisotropy generally favours a non-collinear magnetic structure, which 
significantly complicates the LSWT calculations. Meanwhile, neutron powder 
diffraction results indicate that the magnetic order in Cu3TeO6 is predominantly 
collinear, with possible non-collinear canting of the spins being no more than 6° 
(ref. 17); moreover, our INS data suggest that all magnons are two-fold degenerate 
(6 instead of 12 branches), which indicates that the magnetic ground state is 
approximately collinear. Therefore, we believe that the experimentally observed 
anisotropy gap can be accounted for by introducing a phenomenological global 
single-ion anisotropy term = −H D S( )i

z
a

2(D >​ 0), without affecting the description 
of the optical branches. For the M =​ 9 model, this term leads to a gap at the  
Γ​-point, Δ = + + + + +D J J J J J D(8 4 4 8 8 )1

2 1 3 5 7 9 . Indeed, Supplementary Fig. 3f 
shows that the successful description of the optical magnon dispersions remains 
intact after the anisotropy gap has been accounted for, and the best-fit parameters 
after introducing this anisotropy are very similar to those in the Heisenberg model 
(Supplementary Table 1). We note that such global single-ion anisotropy does not 
break the U(1) symmetry; hence, our anisotropic model still results in Dirac-point-
like band crossings rather than nodal rings, which are generally expected with the 
more realistic site-dependent exchange anisotropy15. However, given the very small 
effect of the single-ion anisotropy term on the optical magnon dispersions, we 
believe that the exchange anisotropy in Cu3TeO6 would not lead to any observable 
consequences in the optical magnon dispersions either.

In the second step of our optimization, our goal is to describe the measured 
INS intensity. To obtain the excitation spectra at any general Q and ω using a given 
parameter set of the M =​ 9 model with global single-ion anisotropy, we calculate

∫ ∑ω =
π

⟨ ⟩αβ ω α β

−∞

∞
− ⋅S t S S tQ( , ) 1

2
d e e (0) ( )i t

l

i
l

Q r
0

l

which can be converted into absolute scattering cross-section units:

∑

σ
Ω
γ

δ ω

′
=

ℏ
∣ ∣ −

αβ
αβ α β

αβ−







k
k E
N r

g F Q Q SQ Q

d
d d

2
( ) e ( ) ( , )e W Q

2

2
2 2 2 ( )

where N is the number of primitive cells in the sample, = . ×γ −( ) 72 65 10r
2

2 3e  
barn, g ( =​ 2) is the Landé splitting factor, and α and β are indices (xyz) of a 
Cartesian coordinate system41. For simplicity, we assume the Debye–Waller factor 

−e W Q2 ( )  to be unity, and calculate the magnetic form factor F Q( ) in the isotropic 
approximation (for our measured momentum region, ∣ ∣F Q( ) 2 amounts to about 
0.75). To reproduce the measured INS spectra, we perform the same Q-space 
folding of the calculated S(Q,ω) and use ⟨ − ⟩ =αQ1 2

domain
2
3 , both of which account 

for the presence of multiple antiferromagnetic domains in our sample17,40 and the 
fact that the neutron beam is not spin-polarized. A global harmonic oscillator 
damping to the magnons has been introduced, so that the calculated magnon 
intensities have a finite energy width rather than being delta-function-like 
singularities42. In addition, we introduce a global coefficient to the calculated 
intensities, to account for possible reduction of the coherent magnon signals caused 
by, for example, quantum fluctuations.

We use the intensity patterns from 13 to 19.5 meV in Supplementary Fig. 3a as 
the target of our optimization, to concentrate on the optical branches. Our fitting 
involves a total of 12 free parameters: the effective spin interactions (J1, J2 …​, J9), 
anisotropy (D), damping and global intensity coefficient. We use the preliminary 
results from the first step as initial values of the former ten parameters, and 
all parameters are simultaneously adjusted to minimize the χ2 deviation of the 
calculated intensities from the measured ones. The statistical uncertainty (1 s.d.) of 
the measured intensities is used as variance for the calculation of χ2.

As shown in Supplementary Table 1, the fit converges to parameters with a 
modest change in the interaction and anisotropy energies. The intensity coefficient 
reads 0.872 ±​ 0.006 for g =​ 2. The presented calculated intensities have been 
adjusted accordingly throughout the manuscript. The global agreement between 
the calculated and the measured spectra is very good, with χ2 =​ 7.2 in spite of 
the very small statistical errors in our data that are used for the calculation of χ2. 

Importantly, the LSWT simulation successfully reproduces most of the rather 
complicated details in S(Q,ω) contained in the many gigabytes of INS data of 
our measurement (Fig. 3), and the global standard deviation is within 10% of 
the maximum intensity. Finally, to assess the convergence property of our fitting 
method, we have run test fits starting from interaction and anisotropy parameters 
that are purposely set different from the preliminary results from the first step. As 
long as the deviation is within 20%, the fit always converges to the same result.

Using the fully optimized parameters of the LSWT model, we have calculated 
the ordered moment magnitude, by accounting for the reduction to the moment 
size due to zero-point motions of the magnons, to be 0.85 μB per Cu2+ for g =​ 2. 
This value is considerably larger than the expected value (0.60 μB) in a two-
dimensional square lattice43, and is very close to that (0.83 μB) in a body-centred 
cubic lattice44 that has the same coordination number (N =​ 8) as the magnetic 
lattice of Cu3TeO6. The LSWT-calculated ordered moment magnitude for Cu3TeO6 
is greater than the value of 0.64 μB per Cu2+ reported previously based on neutron 
diffraction measurement17. We note that the LSWT prediction on the dynamic 
spectral weight departs less (by 13%) from our experimental value than the 
departure (by 76%) of the calculated diffraction intensity (proportional to the 
ordered moment squared) from the previous experimental result17.

Topological surface states. An important consequence anticipated from the 
non-trivial band topology in the bulk is the associated surface states, as ensured 
by the bulk-edge correspondence principle for topological matter. We consider a 
typical open surface of the (001) crystallographic plane, and calculate the dynamic 
susceptibility on the surface, using Green’s function of the spin-wave field as 
explained in ref. 15. The resultant broad features and sharp lines indicate bulk and 
surface magnon excitations, respectively (Supplementary Fig. 10a,c–e). The sharp 
lines are then picked up numerically throughout the surface Brillouin zone, to 
simulate the surface magnon density of states in comparison to that of the bulk 
states (Supplementary Fig. 10b,f). The different energy distributions of these two 
types of magnon suggest that an INS experiment with sufficiently good energy 
resolution might be able to differentiate them in a fine-powder sample, which has a 
significantly larger surface-layer volume compared to single crystals.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding authors upon 
reasonable request.
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