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Metallic quantum criticality is among the central themes in the
understanding of correlated electronic systems, and converg-
ing results between analytical and numerical approaches are
still under review. In this work, we develop a state-of-the-art
large-scale quantum Monte Carlo simulation technique and sys-
tematically investigate the itinerant quantum critical point on
a 2D square lattice with antiferromagnetic spin fluctuations at
wavevector Q = (π,π)—a problem that resembles the Fermi sur-
face setup and low-energy antiferromagnetic fluctuations in high-
Tc cuprates and other critical metals, which might be relevant to
their non–Fermi-liquid behaviors. System sizes of 60 × 60 × 320
(L × L × Lτ ) are comfortably accessed, and the quantum critical
scaling behaviors are revealed with unprecedented high precision.
We found that the antiferromagnetic spin fluctuations introduce
effective interactions among fermions and the fermions in return
render the bare bosonic critical point into a different univer-
sality, different from both the bare Ising universality class and
the Hertz–Mills–Moriya RPA prediction. At the quantum critical
point, a finite anomalous dimension η∼ 0.125 is observed in
the bosonic propagator, and fermions at hotspots evolve into a
non-Fermi liquid. In the antiferromagnetically ordered metallic
phase, fermion pockets are observed as the energy gap opens
up at the hotspots. These results bridge the recent theoreti-
cal and numerical developments in metallic quantum criticality
and can serve as the stepping stone toward final understand-
ing of the 2D correlated fermions interacting with gapless critical
excitations.
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In the study of correlated materials, quantum criticality in itin-
erant electron systems is of great importance and interest

(1–8). It plays a vital role in the understanding of anoma-
lous transport, strange metal, and non–Fermi-liquid behav-
iors (9–13) in heavy-fermion materials (14, 15), Cu- and
Fe-based high-temperature superconductors (16–18) as well
as the recently discovered pressure-driven quantum critical
point (QCP) between magnetic order and superconductiv-
ity in transition-metal monopnictides, CrAs (19), MnP (20),
CrAs1−xPx (21), and other Cr/Mn-3d electron systems (22).
However, despite extensive efforts in recent decades (1–9, 23–
30), itinerant quantum criticality is still among the most chal-
lenging subjects in condensed matter physics, due to its non-
perturbative nature, and many important questions and puzzles
remain open.

The recent development of sign-problem-free quantum Monte
Carlo techniques has paved an additional pathway toward sharp-
ening our understanding about this challenging problem (see
a concise commentary in ref. 31 and a review in ref. 32 that
summarize the recent progress). Via coupling a Fermi liq-
uid with various bosonic critical fluctuations, a wide variety of
itinerant quantum critical systems have been studied, such as
Ising-nematic (33, 34), ferromagnetic (13), charge density wave

(35), spin density wave (36–41), and interaction-driven topolog-
ical phase transitions and gauge fields (42–47). With the fast
development of quantum Monte Carlo (QMC) techniques, in
particular the self-learning Monte Carlo (SLMC) (48–54) and
elective momentum ultrasize quantum Monte Carlo (EQMC)
(41), it now becomes possible to explore larger system sizes
than those handled with conventional determinantal quantum
Monte Carlo, consequently allowing us to access the genuine
scaling behaviors in the infrared (IR) limit for itinerant quantum
criticality.

Although many intriguing results and insights have been
obtained, for the search of novel quantum critical points beyond
the Hertz–Millis–Moriya theory, a major gap between theory
and numerical studies still remains. So far, in QMC simulations,
among all recently studied itinerant QCPs, either the Hertz–
Millis mean-field scaling behavior is found (33, 40) or unpre-
dicted exponents, deviating from existing theories, are observed
(13), while theoretically proposed properties beyond the Hertz–
Millis–Moriya scaling behaviors still remain to be numerically
observed and verified.

In this paper, we aim at improving the convergence between
theoretical and numerical studies by focusing on itinerant QCPs
with finite ordering wavevector Q 6= 0, e.g., charge/spin density
waves (CDW/SDW). One key question in the study of these
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QCPs is about the universality class, i.e., whether all these types
of QCPs, e.g., commensurate and incommensurate CDW/SDW
QCPs, belong to the same universality class or not. To the
leading order, within the random phase approximation (RPA),
as long as the ordering wavevector Q is smaller than twice
the Fermi wavevector 2kF or, more precisely, as we shift the
Fermi surface (FS) by the ordering wavevector Q in the momen-
tum space, the shifted FS and the original one shall cross
at hotspots, instead of tangentially touching with or overrun-
ning each other, and the same (linear ω) Landau damping
and critical dynamics are predicated regardless of microscopic
details, implying the dynamic critical exponent z = 2. For a
2D system, this makes the effective dimensions d + z = 4, coin-
ciding with the upper critical dimension. As a result, within
the Hertz–Millis approximation, mean-field critical exponents
shall always be expected, up to possible logarithmic correc-
tions, and thus all these QCPs belong to the same universality
class (1–3, 55).

On the other hand, more recent theoretical developments
point out that this conclusion becomes questionable once higher-
order effects are taken into account. In particular, 2 differ-
ent universality classes need to be distinguished, depending on
whether 2Q coincides with a lattice vector or not, which are
dubbed as 2Q = Γ and 2Q 6= Γ to demonstrate that 2Q, mod
a reciprocal lattice vector, coincides or not with the Γ point.
Among these 2 cases, 2Q = Γ (e.g., antiferromagnetic QCP with
Q = (π,π)) is highly exotic. As Abanov et al. (23) pointed out
explicitly, in this case the Hertz–Millis mean-field scaling law
breaks down and a non-zero anomalous dimension emerges. In
addition, the critical fluctuations will also change the fermion
dispersion near the hotspots, resulting in a critical-fluctuation–
induced Fermi surface nesting: i.e., even if one starts from a
Fermi surface without nesting, the renormalization group (RG)
flow of the Fermi velocity will deform the Fermi surface at
hotspots toward nesting (23). This Fermi surface deformation
will further increase the anomalous dimension and make the
scaling exponent deviate even farther from Hertz–Millis predic-
tion (23, 24), and even modifies the dynamic critical exponent z ,
as pointed out explicitly by Metlitski and Sachdev (26) and others

(28, 29). For 2Q 6= Γ, on the other hand, these exotic behav-
iors are not expected, at least up to the same order in the 1/N
expansion, and thus presumably they follow the Hertz–Millis
mean-field scaling relation.

On the numerical side, a QCP with 2Q 6= Γ was recently
studied (40, 41) and the results are in good agreement with
the Hertz–Millis–Moriya theory. For the more exotic case with
2Q = Γ, the numerical result is less clear because in QMC
simulations, a superconducting dome usually arises and covers
the QCP (38, 39, 56). Outside the superconducting dome, at
some distance away from the QCP, mean-field exponents are
observed to be consistent with the Hertz–Millis–Moriya theory.
However, whether the predicted anomalous (non–mean-field)
behaviors (23, 26, 28, 29) will arise in the close vicinity of
the QCP remains an open question, which requires the sup-
pression of the superconducting order. In addition, due to the
divergent length scale at a QCP, to obtain reliable scaling expo-
nents, large system sizes are necessary to overcome the finite-size
effect.

In this paper, we perform large-scale quantum Monte Carlo
simulations to study the antiferromagnetic metallic quantum
critical point (AFM-QCP) with 2Q = Γ. In this study, 2 main
efforts are made to accurately obtain the critical behavior in
the close vicinity of the QCP. 1) We design a lattice model that
realizes the desired AFM-QCP with the superconducting dome
greatly suppressed to expose the quantum critical regions and
2) we use the determinantal quantum Monte Carlo (DQMC)
as well as the EQMC, both with self-learning updates to access
much larger system sizes beyond existing efforts. The more con-
ventional DQMC technique allow us to access system sizes up
to 28× 28× 200 for L×L×Lτ for a 2D square lattice, while
EQMC can access much larger sizes (60× 60× 320) to further
reduce the finite-size effect and confirms scaling exponents with
higher accuracy. These 2 efforts (1 and 2) allow us to access
the metallic quantum critical region and to reveal its IR scaling
behaviors with great precision, where we found a large anoma-
lous dimension significantly different from the Hertz–Millis the-
ory prediction, and we also observed that the Fermi surface near
the hotspots rotates toward nesting at the QCP, as predicted in
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Fig. 1. (A) Illustration of the model in Eq. 1. Fermions reside on 2 of the layers (λ = 1,2) with intralayer nearest-, second-, and third-neighbor hoppings t1,
t2, and t3. The middle layer is composed of Ising spins sz

i , subject to nearest-neighbor antiferromagnetic Ising coupling J and a transverse magnetic field
h. Between the layers, an on-site Ising coupling is introduced between fermion and Ising spins (ξ). (B) Brillouin zone (BZ) of the model in Eq. 1. The blue
lines are the FS of Hf and Qi = (±π,±π), i = 1, 2, 3, 4 are the AFM wavevectors, and the 4 pairs of {Ki , K′i }, i = 1, 2, 3, 4 are the position of the hotspots (red
circles), where each pair is connected by a Qi vector. The folded FS (gray lines) comes from translating the bare FS by momentum Qi . The green patches show
the k mesh built around hotspots, and the number of momentum points inside each patch is denoted as Nf . (C) Phase diagram of model Eq. 1. The light
blue line marks the phase boundaries of the pure bosonic model Hb, with a QCP (light blue circle) at hc = 3.044(3) (57, 58) with 3D Ising universality. After
coupling with fermions, the QCP shifts to higher values. The green solid circle is the QCP obtained with DQMC (hc = 3.32(2)). The violet solid circle is the
QCP obtained from EQMC (hc = 3.355(5)); although the position of the QCP shifts, as it is a nonuniversal quantity, the scaling behavior inside the quantum
critical region is consistent between DQMC and EQMC. The EQMC scheme can comfortably capture the IR physics of AFM-QCP, with much larger system
sizes, 60× 60× 320, compared with those in DQMC with 28× 28× 200. The procedure of how the phase boundary is determined is shown in SI Appendix,
Thermal Phase Transition.
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the RG analysis (23, 26, 28, 29). And quantitative comparison
between theory and numerical results is also performed. These
results bridge the recent theoretical and numerical developments
and are the precious stepping stone toward final understanding
of the metallic quantum criticality in 2D.

Model and Method
Antiferromagnetic Fermiology. The square lattice AFM model
that we designed is schematically shown in Fig. 1A with 2 fermion
layers and 1 Ising spin layer in between. Fermions are subject
to intralayer nearest-, second-, and third-neighbor hoppings t1,
t2, and t3, as well as the chemical potential µ. The Ising spin
layer is composed of Ising spins szi with nearest-neighbor anti-
ferromagnetic coupling J (J > 0) and a transverse magnetic
field h along sx . Fermions and Ising spins are coupled together
via an interlayer on-site Ising coupling ξ. The Hamiltonian is
given as

H =Hf +Hb +Hfb , [1]

where

Hf =−t1
∑
〈ij〉,λ,σ

c†i,λ,σcj ,λ,σ − t2
∑

〈〈ij〉〉,λ,σ

c†i,λ,σcj ,λ,σ

− t3
∑

〈〈〈ij〉〉〉,λ,σ

c†i,λ,σcj ,λ,σ + h.c.−µ
∑
i,λ,σ

ni,λ,σ [2]

Hb = J
∑
〈ij〉

szi s
z
j − h

∑
i

sxi [3]

Hfb =−ξ
∑
i

szi
(
σz
i,1 +σz

i,2

)
, [4]

and σz
i,λ = 1

2
(c†i,λ,↑ci,λ,↑− c†i,λ,↓ci,λ,↓) is the fermion spin

along z .
Hb describes a 2D transverse-field Ising model and has a phase

diagram spanning along the axes of temperature T and h . As
shown in Fig. 1C (light blue line), at h = 0, the system undergoes
a 2D Ising thermal transition at a finite T . Gradually turn-
ing on a finite h , the system experiences the same AFM 2D
Ising transition with a lower transition temperature, until h = hc
(3.04438(2)), where the transition turns into a T = 0 quan-
tum phase transition in the 3D Ising universality class (57, 58).
Such an antiferromagnetic order has a wavevector Q = (π,π), as
denoted by the Qi with i = 1, 2, 3, 4 in Fig. 1B.

The fermions in Hf experience the AFM fluctuations in Hb

via the fermion-spin coupling Hfb . As shown in Fig. 1B, the
original FS and FSs from zone folding (shifted by the ordering
wavevector Qi (i = 1, 2, 3, 4)) form Fermi pockets and the so-
called hotspots, which are crossing points between the original
and the folded FSs labeled as Ki and K′i with i = 1, 2, 3, 4.

In the simulation, we set t1 = 1.0, t2 =−0.32, t3 = 0.128,
J = 1, µ=−1.11856 (electron density 〈ni,λ〉∼ 0.8), the coupling
strength ξ= 1.0, and leave h as control parameters. The param-
eters are chosen according to ref. 59, such that deep in the AFM
phase of Ising spins, the FS exhibits 4 big Fermi pockets and
4 pairs of hotspots (hotspot number Nh.s. = 8× 2 = 16 where the
factor 2 comes from 2 fermion layers) as a result of band folding
due to AFM ordering. Such an antiferromagnetic fermiology is
summarized in Fig. 1B.

Ising Scaling for the Bare Boson Model. Before presenting our
results about the itinerant AFM-QCP, we first discuss the QCP in
the pure boson limit without fermions, which serves as a bench-
mark for the nontrivial itinerant quantum criticality. It is known
that the pure boson QCP (Hb) belongs to the (2 + 1)D Ising uni-

versality class (13, 57, 58). This can be demonstrated numerically
by calculating the dynamic spin susceptibility

χ(T , h,~q ,ωn) =
1

L2

∑
ij

∫ β

0

dτe iωnτ−i~q·~rij 〈szi (τ)szj (0)〉. [5]

In principle, near the QCP, the functional form of the dynamic
spin susceptibility is complicated and hard to write explicitly.
However, in the quantum critical region, as we set h = hc , the
scaling functional form of χ(T , hc ,~q ,ωn) can be described by
the asymptotic form

χ(T , hc , q,ωn) =
1

ctT 2 + (cq |q|2 + cωω2)aq/2
, [6]

where aq = 2− η= 1.964(2) is the universal critical exponent of
the 3D Ising universal class, and ct , cq , and cω are nonuniver-
sal coefficients. This scaling form Eq. 6 explicitly respects the
emergent Lorentz symmetry at the Ising critical point.

Without fermions, we can use the standard path-integral
scheme to map the 2D transverse-field Ising model to a (2 + 1)D
classical Ising model (60). To solve this anisotropic 3D Ising
model with Monte Carlo simulations, we performed Wolff (61)
and Swendsen–Wang (62) cluster updates to access sufficiently
large system sizes and low temperature. The dynamic sus-
ceptibilities are shown in Fig. 2. To explore the momentum

A

B

Fig. 2. (A) Momentum dependence of the χ(q,ω= 0) at h = hc, for the
bare boson model Hb. The system sizes are L = 48, 60, 72, respectively, and
to achieve quantum critical scaling, β∝ L is applied. The line going through
the data points is aq ln(|q|) +

aq
2 ln(cq), with aq = 2− η= 1.96. (B) Frequency

dependence of χ(q = 0,ω) at h = hc, for the bare boson model Hb. The sys-
tem size is L = 20 with increasing β= 20, 30, 40, 50, and 60. The line going
through the data points is aq ln(ω) +

aq
2 ln(cω), with aq = 2− η= 1.96.
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dependence of the susceptibility, we plot χ−1(T , hc , q,ω= 0)−
χ−1(T , hc , q = 0,ω= 0), where the momentum q is measured
from Q = (π,π) and the substraction is to get rid of the finite-
temperature background, such that the following scaling relation
is expected at low T :

χ−1(T , hc , q,ω= 0)−χ−1(T , hc , q = 0,ω= 0) = c
aq/2
q |q|aq .

[7]

As shown in Fig. 2A such a scaling relation is indeed observed
with L= 48, 60, and 72 with β= 1/T ∝L. The power-law diver-
gence of the (2 + 1)D Ising quantum critical susceptibility
with power aq = 2− η= 1.96 is clearly revealed (the 3D Ising
anomalous dimension η= 0.04).

A similar scaling relation is also observed in the frequency
dependence as shown in Fig. 2B, where we plot

χ−1(T , hc , 0,ω)−χ−1(T , hc , 0,ω= 0) = c
aq/2
ω ωaq [8]

for L= 20 with increasing β. The expected power-law decay
with the small anomalous dimension aq = 2− η= 1.96 is clearly
obtained. Hence, the data in Fig. 2 A and B confirm the QCP for
the pure boson part Hb in Eq. 1 belongs to the (2 + 1)D Ising
universality class.

DQMC and EQMC. To solve the problem in Eq. 1 we use 2
complementary fermionic quantum Monte Carlo schemes.

The first one is the standard DQMC (13, 63–65) with the
SLMC update scheme (48–54) to speed up the simulation. In
SLMC, we first perform the standard DQMC simulation on the
model in Eq. 1 and then train an effective boson Hamiltonian
that contains long-range 2-body interactions both in spatial and
in temporal directions. The effective Hamiltonian serves as the
proper low-energy description of the problem at hand with the
fermion degree of freedom integrated out. We then use the ef-
fective Hamiltonian to guide the Monte Carlo simulations; i.e.,
we perform many sweeps of the effective bosonic model (as
the computational cost of updating the boson model is O(βN ),
dramatically lower than the update of the fermion determinant
which scales as O(βN 3)) and then evaluate the fermion determi-
nant of the original model in Eq. 1 such that the detailed balance
of the global update is satisfied. As shown in our previous works
(40, 49, 50, 53, 54), the SLMC can greatly reduce the autocorre-
lation time in the conventional DQMC simulation and make the
larger systems and lower temperature accessible.

The other method is the EQMC (41). EQMC is inspired by
the awareness that critical fluctuations mainly couple to fermions
near the hotspots. Thus, instead of including all of the fermion
degrees of freedom, we ignore fermions far away from the
hotspots and focus only on momentum points near the hotspots
in the simulation. This approximation will produce different
results for nonuniversal quantities compared with the original
model, such as hc or critical temperature. However, for universal
quantities, such as scaling exponents, which are independent of
microscopic details and the high energy cutoff, EQMC has been
shown to generate values consistent with those obtained from
standard DQMC (41).

In EQMC, because a local coupling (in real space) becomes
nonlocal in the momentum basis, one can no longer use
the local update as in standard DQMC, as that would cost
βN ·O(βN 3

f ) computational complexity. Fortunately, cumula-
tive update schemes in the SLMC have been developed recently
(49, 50). Such a cumulative update is a global move of the Ising
spins and gives rise to the complexity O(βN 3

f ) for computing
the fermion determinant. Since Nf can be much smaller than N ,
speedup of the order ( N

Nf
)3∼ 103 of EQMC over DQMC, with

N
Nf
∼ 10, can be easily achieved.

In the square lattice model, as shown in Fig. 1B, the AFM
wavevectors Qi connect 4 pairs of hotspots (Nh.s. = 8 in 1 layer
and Nh.s. = 16 in 2 layers). In the IR limit, only fluctuations
connecting each pair of hotspots are important to the univer-
sal scaling behavior in the vicinity of the QCP (7, 9, 23–26, 66).
Hence, to study this universal behavior, we draw 1 patch around
each Kl and keep fermion modes therein and neglect other
parts of the BZ. In this way, instead of the original N =L×L
momentum points, EQMC keeps only Nf =Lf ×Lf momentum
points for fermions inside each patch. Here, L and Lf denote
the linear size of the original lattice and the size of the patch,
respectively.

DQMC and EQMC are complementary to each other; the for-
mer provides unbiased results with relatively small systems and
the latter, as an approximation, provides results closer to the
QCP with finite-size effects better suppressed. One other benefit
of EQMC is that it provides much higher momentum resolution
close to the hotspots. Fig. 3 depicts the FS of the model in Eq. 1
obtained from G(k,β/2)∼A(k,ω= 0) via DQMC (Fig. 3 A and
B) and EQMC (Fig. 3 C and D). Fig. 3 A and C is for h < hc ,
i.e., inside the AFM metallic phase, whereas Fig. 3 B and D is
for h ∼ hc , i.e., at the AFM-QCP. The DQMC data are obtained
from L= 28, β= 14 simulations, and it is clear that the momen-
tum resolution is still too low to provide detailed FS structures
near the hotspots. With EQMC, the system sizes are L= 60 and
β= 14 in Fig. 3 C and D, and the momentum resolution is dra-
matically improved. For example, in Fig. 3C, inside the AFM
metallic phase, the gap at hotspots is clearly visualized. And in
Fig. 3D, at the AFM-QCP the FS recovers the shape of the non-
interacting one, and non–Fermi-liquid behavior emerges at the
hotspots as shown in the next section. To capture these impor-
tant physics, EQMC and its higher-momentum resolution play a
vital role.

Results
Non-Fermi Liquid. As we emphasized above, the dramatically
improved momentum resolution in EQMC enables us to study
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Fig. 3. (A–D) Fermi surface obtained from DQMC (A and B) and EQMC
(C and D). Here we show the Fermi surface by plotting the fermion spec-
trum function at 0 energy A(k,ω= 0) using the standard approximation
G(k, β/2)∼A(k,ω= 0). (A and C) FS in the AFM ordered phase (h< hc),
where Fermi pockets are formed from zone folding. DQMC and EQMC
results are consistent with each other, while EQMC (with system size L = 60)
gives much higher resolution in comparison with DQMC (L = 28). (B and D)
Similar comparison at the QCP (h = hc).
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Fig. 4. (A) Self-energy obtained from EQMC inside the AFM-metal phase
(h< hc). On the Fermi pockets, the system is in a Fermi-liquid state as shown
by the linearly vanishing Im(Σ(k,ω)) at small ω. At the hotspot, due to
the Fermi surface reconstruction, an energy gap opens up, resulting in a
divergent Im(Σ(k,ω)). (B) Self-energy obtained from EQMC at the AFM-QCP
(h∼ hc). On the Fermi pockets, the system remains a Fermi liquid as shown
by the linearly vanishing Im(Σ(k,ω)) at small ω. At the hotspot, Im(Σ(k,ω))
has a small but finite value as ω goes to 0, which is the signature of a
non-Fermi liquid. C and D show the same quantities produced in DQMC
simulations with smaller system sizes, where qualitative behaviors remain
the same.

the fermionic modes on the FS more precisely. We studied
the fermion self-energies in the AFM-metal phase and at the
AFM-QCP. The results are shown in Fig. 4.

In the AFM-metal phase, although the bands are folded
according to Fig. 1B, the system remains a Fermi liquid, with a
band gap opening up at hotspots. Such expectations are revealed
in Fig. 4 A and C. The Matsubara-frequency dependence of
the Im(Σ(k,ω)) either goes to 0 linearly (on the pockets) or
diverges (at the hotspot). Near the AFM-QCP, however, the
situation is very different. Fermions at the hotspots show non–
Fermi-liquid behavior; namely, as shown in Fig. 4 B and D,
Im(Σ(k,ω)) goes to a small constant at low ω, and no sign of
either vanishing or diverging is observed. The fermions away
from the hotspots remain Fermi liquid-like. Once again, DQMC
and EQMC simulations give consistent results with the same
qualitative behavior.

It is worthwhile to point out that, at the QCP, for fermions
at the hotspot, a finite imaginary part in fermion self-energy is
observed, which does not seem to decay to 0 as we reduce the
frequency. This behavior (a constant term in the imaginary part
of the self-energy) is not yet theoretically understood. However,
it is consistent with similar QMC studies, where such a finite
or constant term always seems to emerge near itinerant QCPs
(13, 40, 41).

Universality Class and Critical Exponents. In our previous work
on triangle lattice AFM-QCP (40) with 2Q 6= Γ (in fact in that
case one has 3Q = Γ), the bosonic susceptibilities χ(T , hc , q,ω)
(defined in Eqs. 5 and 6) close to the QCP, revealed with 30×
30× 600 (L×L×Lτ ) from DQMC, fit to the form of

χ(T , hc , q,ωn)

=
1

(ctT + c′tT
2) + cq |q|2 + cωω+ c′ωω2

. [9]

In particular, at low ω, χ−1(0, hc , 0,ω) exhibits a crossover
behavior from ω2 to ω and the susceptibility scales with q as

χ−1(0, hc , q, 0)∝ |q|2; i.e., no anomalous dimension is observed.
The system acquires a dynamic critical exponent z = 2, consistent
with the Hertz–Millis mean-field expectation of the AFM-QCP
at its upper critical dimension d + z = 4.

For the square lattice model in this paper, we expect that the
dynamic spin susceptibility has the following asymptotic form in
the quantum critical region (h = hc):

χ(T , hc , q,ωn)

=
1

ctT at + (cq |q|2 + cωω)1−η + c′ωω2
. [10]

This functional form is similar to the Hertz–Millis theory, but we
allow an anomalous dimension (η) as a free fitting parameter.
We used this functional form to guide our data analysis.

We first look at the q dependence of χ−1; as shown in
Fig. 5A, the momentum |q| is measured with respect to the
hotspot K. Here we plot the susceptibility data by substract-
ing the finite-temperature background as χ−1(T , hc , |q|, 0)−
χ−1(T , hc , 0, 0) = cq |q|aq , where aq = 2(1− η), and fit the curve
to obtain the coefficient cq and the anomalous dimension η, as
shown by the solid line in Fig. 5A. Using EQMC, with the sys-
tem size as large as L= 60, the power-law behavior χ−1(|q|)∝
|q|aq clearly manifests, with cq = 1.04(1) and aq = 2(1− η) =
1.75(2) with η= 0.125. In DQMC simulation, we observed
the same exponents η= 0.11(2), with slightly lower accuracy
due to smaller system sizes; the DQMC results are shown in

B

A

Fig. 5. (A) |q| dependence of the bosonic susceptibilities χ(T = 0, h =

hc, q,ω= 0) at the AFM-QCP. The system sizes are L = 40, 50, and 60. The
fitting line according to the form in Eq. 10 reveals that there is an anoma-
lous dimension in χ−1(q)∼ |q|2(1−η) with η= 0.125. (B) ω dependence of
the bosonic susceptibilities χ(T = 0, h = hc, q = 0,ω) at the AFM-QCP. The
system size is L = 50 and the temperature is as low as β= 25 (Lτ = 500). The
fitting line according to the form in Eq. 10 reveals that there is an anoma-
lous dimension in χ−1(ω)∼ω(1−η) at small ω and crossover to χ−1(ω)∼ω2

at high ω.
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Fig. 6. (A) Feynman diagram representing a 4-boson interaction vertex.
Dashed lines, φ(k), represent spin fluctuations at momentum k and we set
q<<Q. Because low-energy physics are dominated by fermionic excita-
tions near the FS, 2 of the 4 boson legs must have momenta near Q, while
the other 2 are near −Q to keep the fermions near the FS as shown. For
2Q = Γ, +Q and −Q become identical, and thus there exist 2 ways to con-
tract the external legs as shown in B and C. For 2Q 6= Γ, however, only the
contraction shown in B is allowed, while the momentum conservation law is
violated in C.

SI Appendix, Comparison of EQMC and DQMC at Quantum
Critical Region.

For the frequency dependence in χ, as shown in Fig. 5B, we
analyze the χ−1(T , hc , 0,ω)−χ−1(T , hc , 0, 0) to subtract the
finite-temperature background and test the predicted anomalous
dimension η= 0.125 in Eq. 10 and the data points fit very well the
expected functional form

χ−1(ω) = (cωω)1−η + c′ωω
2, [11]

where we obtained the values of the coefficients cω = 0.068(1)
and c′ω = 0.071(3). It is worthwhile to note that the crossover
behavior in χ−1(ω) is very interesting, since at low frequency,
the anomalous dimension in ω0.875 dominates bosonic suscepti-
bility and this means that the coupling of the fermions with the
critical bosons has changed the universality behavior from the
bare (2 + 1)D Ising universality with η= 0.036 to a new one of
AFM-QCP with η= 0.125. However, at high frequency, where
the coupling between fermions and bosons becomes irrelevant,
the bare boson universality comes back and the ω2 term dom-
inates over the susceptibility, consistent with our observation
of the bare boson susceptibility. We also note that because the
frequency dependence here is polluted by the IR irrelevant ω2

contributions, whose contribution is about 10% at ω∼ 0.25, this
frequency exponent has a lower accuracy, in comparison with the
momentum dependence shown in Fig. 5A. Although the data are
consistent with dynamical exponent z = 2, small corrections in
the form of an anomalous dimension in the dynamical exponent
as predicted in ref. 26 cannot be excluded.

In the absence of fermions, χ−1(0, hc , |q|, 0)∝ |q|1.96
[(2 + 1)D Ising]. According to the Hertz–Millis theory, this expo-
nent should increase from 1.96 to 2 in the presence of fermions
χ−1(0, hc , q, 0)∝ |q|2. Such an increase is indeed observed
in the triangular lattice model (2Q 6= Γ) (40). However, it is
remarkable that for the square lattice model (2Q = Γ), exactly
the opposite was observed. Instead of increasing, this power
actually decreases from 1.96 to 1.75, χ−1(0, hc , q, 0)∝ |q|1.75.
Such a significant contrast is beyond numerical error, and it
indicates that QCPs with 2Q 6= Γ and 2Q = Γ belong to totally
different universality classes, which is one of the key observations
in our study.

This difference can be understood in the following way.
Between 2Q = Γ and 2Q 6= Γ, the constraints that the momentum
conservation law enforces are different. As shown in ref. 23, the
QCPs with 2Q = Γ deviate from the Hertz–Millis theory already
at the level of 4-boson vertex correction, as shown in Fig. 6A.
For 2Q = Γ, this 4-boson vertex shows 2 topologically different
bosonic self-energy diagrams, Fig. 6 B and C, and in particular
the diagram shown in Fig. 6C results in logarithmic corrections
and is responsible for the breakdown of the Hertz–Millis scal-
ing. However, for 2Q 6= Γ (e.g., in the triangular lattice model,
we have 3Q = Γ instead), this crucial diagram is prohibited by
the momentum conservation law, and thus, at least within the
same level of approximation, deviations from the Hertz–Millis
picture are not expected. Further investigations, both analyti-
cal and numerical, are needed to better understand the role of
this subtle difference, as well as the RG flows in other cases like
3Q = Γ, etc.

Comparison with RG Analysis. On the theory side, perturbative
renormalization group calculation has been performed for
Heisenberg AFM-QCPs with SU(2) symmetry (23, 26), while the
same study for Ising spins has not yet been carefully analyzed
to our best knowledge. However, because some of the key fea-
tures in the RG analysis are insensitive to the spin symmetry (23,
26), many qualitative results will hold and thus here we com-
pare our numerical results with existing theoretical predictions
for Heisenberg AFM-QCPs, but it must also be emphasized that
agreement at the quantitative level is not expected here because
of this difference in symmetry.

In the perturbative renormalization group calculation (23,
26), the anomalous dimension depends on the angle between
the hotspot Fermi velocity and the order wavevector ~Q . As
shown below, for our model, this angle is close to 45◦. At this

A

B

Fig. 7. (A and B)
ω0ReG(k,ω0)

ImG(k,ω0) variation (A) along the Q = (π,π) direction k‖
and (B) perpendicular to the Q = (π,π) direction k⊥ at the K′3 hotspot mesh
shown in Fig. 1. We use the simple trigonometric function f(k‖) and g(k⊥)
to fit the data in A and B.
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Table 1. The Fermi velocity vF at the hotspot in the K′
3 hotspot

mesh obtained from ω0ReG(k,ω0)
ImG(k,ω0) data shown in Fig. 7 and the

Fermi velocity in the free-fermion case

Hotspots location kx ky

2.5800 0.5615
vF at hotspots v‖ v⊥
Near QCP 1.523(8) 1.435(8)
Free fermion 1.506 1.468

angle, the RG prediction for the anomalous dimension is η=
1/Nh.s., where Nh.s. is the number of hotspots (23, 26). In our
model, Nh.s. = 16, and thus the RG predicted value is η= 1/16.
However, as shown above, although we observed the same qual-
itative behavior, the value of η that we observed is close to
2/Nh.s. instead. Whether this quantitative disagreement is due
to the symmetry difference (Heisenberg vs. Ising) or some other
contributions is an interesting open question.

In addition, the RG analysis also predicts that near the QCP
the Fermi surface at hotspots will rotate toward nesting (23). This
rotation of the Fermi surface will further increase the anomalous
dimension and can even renormalize the value of the dynamic
critical exponent z (23, 26). As is shown below, our study indeed
observed this Fermi surface rotation near the QCP. However,
because this RG flow is very slow, our hotspot Fermi surface
rotated only by about 0.5

◦
in our simulation before being stopped

by a cutoff. For such a small rotation, the resulting increase of
the anomalous dimension and the change in the dynamic critical
exponent are too weak to be observed.

We calculate the Fermi velocity vF as

vF =
∂

∂k

ω0ReG(k ,ω0)

ImG(k ,ω0)

∣∣∣∣
k=kF

, [12]

where ω0 =π/β. To accurately compute the derivative, we first
use simple functions to fit the discrete data points of ω0ReG(k ,ω0)

ImG(k ,ω0)

vs. k as shown in Fig. 7. Then, we compute the derivative for the
fitting function to obtain the Fermi velocity, which is recorded in
Table 1. v‖ and v⊥ are the 2 components of the Fermi veloc-
ity at a hotspot parallel and perpendicular to Q, respectively.
In Table 1, we showed both the noninteracting Fermi veloc-
ity (bare values) and the Fermi velocity measured at the QCP
(renormalized values).

According to the RG analysis (23), v‖ and v⊥ will flow to
infinity and 0, respectively, but at the same time their prod-
uct v‖× v⊥ will remain a constant. In a numerical simulation,
this RG flow will be stopped by numerical cutoffs, e.g., finite-
size effects. Because this RG flow is marginal at the tree level,
the flow is expected to be very slow (logarithmic) and thus our
observed renormalized value will not differ dramatically from the
bare ones. As can be seen from Table 1, this is indeed what we

observed. The renormalized value of v‖ (v⊥) is slightly larger
(smaller) than its bare value, and the product of v‖ and v⊥
remains largely a constant (2.210 for the bare values and 2.186 for
the renormalized ones), as the RG theory predicts. It is worth-
while to highlight here that although changes in v‖ and v⊥ are
small, they are beyond numerical error as shown in Table 1, and
theoretically, these small changes are consistent with the slow
RG flow predicted by theory.

Discussion
If we compare the AFM-QCPs with 2Q 6= Γ and 2Q = Γ, QMC
studies indicate that they belong to 2 different universality
classes, in contrast to the Hertz–Millis prediction, which does
not rely on the value of Q. This observation supports the 1/Nh.s.

expansion and RG analysis discussed in ref. 23.
In the study of criticality and anomalous critical scalings, the

comparison between theory and numerical results plays a vital
role. For QCPs in itinerant fermion systems, although non–
mean-field scaling beyond the Hertz–Millis theory has been
predicted in theory and observed in QMC simulations, it has
been a long-standing challenge to reconcile numerical and the-
oretical results. Our study offers a solid example where an
agreement between theory and numerical simulations starts to
emerge, which is 1 first step toward a full understanding about
itinerant QCPs (32). In particular, to pinpoint the exact value of
the frequency exponent and to probe the predicted anomalous
dynamical critical exponents (26, 28, 29), lower temperature and
frequency range need to be explored. As pointed out in ref. 31,
future works along this line are highly desirable and are actively
being pursued by us (32).

At the technical level, a combination of DQMC and EQMC
methodologies in this work shows a very promising direction in
the numerical investigations of itinerant QCPs. Besides the con-
sistency check in ref. 41 for triangular lattice AFM-QCP, the
square lattice AFM-QCP investigated here provides the second
example of the consistency in DQMC and EQMC in terms of
revealing critical properties. Such consistency suggests another
pathway for future studies about quantum criticality in fermionic
systems, in that one can use DQMC on small systems to provide
benchmark results and use EQMC to reveal IR physics at the
thermodynamic limit.
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