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ABSTRACT
X-ray “ghost” imaging has drawn great attention for its potential to obtain images with a high resolution and lower radiation dose in medical
diagnosis, even with only a single-pixel detector. However, it is hard to realize with a portable x-ray source due to its low flux. Here, we
demonstrate a computational x-ray ghost imaging scheme where a real bucket detector and specially designed high-efficiency modulation
masks are used, together with a robust deep learning algorithm in which a compressed set of Hadamard matrices is incorporated into a multi-
level wavelet convolutional neural network. With a portable incoherent x-ray source of ∼37 μm diameter, we have obtained an image of a
real object from only 18.75% of the Nyquist sampling rate. A high imaging resolution of ∼10 μm has been achieved, which is required for
cancer detection and so represents a concrete step toward the realization of a practical low cost x-ray ghost imaging camera for applications
in biomedicine, archeology, material science, and so forth.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5140322., s

I. INTRODUCTION

Safety and image quality are the two major factors in x-ray
imaging. In traditional schemes, according to the Ross criterion,1

there has to be a balance between radiation dose and image qual-
ity since high resolution and good contrast require a sufficiently
long exposure, which means greater dose. Brilliant phase contrast
images with nanometer resolution can be obtained in state-of-the-
art synchrotron facilities that provide monochromatic ultra-bright
x-ray beams.2,3 For most users, however, incoherent x-ray sources
for use in a laboratory are more accessible, but compared with syn-
chrotron or free-electron laser sources, they are much weaker, and
conventional focusing or diffractive optical elements are not appli-
cable. As a result, straightforward shadow projection microscopes

are widely used, especially in clinical medical imaging, in which case
the resolution is mainly limited by the source size.4,5 In raster scan-
ning transmission x-ray microscopy, high resolution images can be
obtained by focusing a soft x-ray beam onto a spot, which is then
scanned over the whole sample. However, focusing is complicated,
costly, and greatly attenuates the beam, again necessitating a high
intensity source. Hence, how to increase the resolution while lower-
ing the cost of x-ray imaging with such polychromatic sources is a
significant problem.

Different from traditional imaging, ghost imaging (GI) is a
second-order correlation based technology that retrieves informa-
tion about an object from a series of reference patterns and the
corresponding intensity values measured by using a single-pixel
(“bucket”) detector.6 As this type of detector is more sensitive than
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an array of pixels, even in poor weather7 or ultra-low exposure
situations,8 GI can still retrieve an acceptable image. The key point is
to generate or record a series of reference speckle patterns that illu-
minate the object plane; then by convoluting the total intensity mea-
sured at the bucket detector with the reference patterns, the image
can be retrieved. Since the speckle patterns are similar to the matrix
arrays in pixel detectors, the resolution is limited by the average
size of the speckles. However, through various means, GI can now
achieve resolutions beyond the Rayleigh criterion9 and has already
been applied to many fields such as microscopy,10,11 lidar detection,
and remote sensing.12–14

Over the past few decades, GI has been demonstrated with
quantum light,6 classical light,15 and even particles—atoms16 and
electrons.17 There is great potential in the fabrication of cheap
high resolution GI cameras at terahertz18 and infrared10 wave-
lengths that cannot use silicon sensors. Ghost tomography has broad
prospects in various fields.19–21 At visible wavelengths, it is easy
to obtain reference patterns with the aid of a beamsplitter, which
can further be replaced by a spatial light modulator and just the
bucket detector in a single light path, as in computational GI.22,23

At x-ray wavelengths, however, a major difficulty is that there
are no suitable optics. Several approaches have been proposed to
overcome this problem. In the beam splitting strategy,24–27 a

crystal can be taken as a beamsplitter based on Laue diffraction
if the flux density of the source in a narrow bandwidth is very
strong; even so, mechanical vibration may blur the image if not con-
trolled strictly. Another strategy is pre-recording;28,29 with a phase
or amplitude modulation plate, a series of repeatable speckle pat-
terns can be generated quite easily, but saving and transferring
the large amount of data required entails much extra time, which
greatly reduces practicability. Another problem is that all the exist-
ing schemes rely on a high resolution x-ray camera for calibration,
which increases the cost, while the resolution is limited by the pixel
size of the CCD (or CMOS) arrays. Recently, x-ray GI of a one-
dimensional slit has been realized with a single-pixel detector, but
with the bright monochromatic beam from a synchrotron source.30

For common practical applications such as in biomedicine, a reso-
lution of several micrometers must be achieved to be of real use in
diagnosis.

II. RESULTS
In this letter, we report a computational x-ray GI (CXGI)

scheme by which high resolution images were obtained with only an
inexpensive single-pixel detector and a portable incoherent low flux
x-ray source, plus the use of a deep learning algorithm. Instead of our

FIG. 1. (a) Experimental setup of CXGI. The set of masks is mounted on a motorized 2D translation stage. (b) A typical set of the specially designed Hadamard matrices;
one of the patterns (enclosed in red) for the Au mask is shown enlarged in the upper right, and its 3D visualization in the lower right. (c) Cross section of the portion enclosed
by the red dashed line in (b); blue solid line: Cu on a laminate substrate with a modulation depth ratio of 75% and red dashed line: Au on a SiO2 substrate with a modulation
ratio of 83%.

APL Photon. 5, 056102 (2020); doi: 10.1063/1.5140322 5, 056102-2

© Author(s) 2020

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

previous scheme in which randomly modulated patterns were pre-
recorded by using an array detector,29 a transmission mask engraved
with custom designed orthogonal patterns was fabricated to pro-
vide amplitude modulation. The layout of the experiment is shown
in Fig. 1(a). As shown, the incoherent hard x-ray beam from a
micro-focus x-ray tube (Incoatec Source Iμs) first passes through an
adjustable shutter and then through a certain matrix in the modu-
lation mask, which is mounted on a two-dimensional motor stage.
The modulated x-ray pattern illuminates the sample, which is par-
tially transmitting, and its intensity is measured by using a bucket
detector. Another aperture blocks out unwanted light from around
the object and helps to identify the field of view. Since only the
total intensity has to be recorded, the distance between the object
and the detector is quite flexible and can be made as far apart as
convenient, which will further reduce the influence of undesirable
scattered photons. After each exposure, the shutter is closed, the
mask is translated to the next adjacent matrix, and the measurement
is repeated. The single-pixel detector used in our experiment was an
x-ray diode (Hamamatsu) with a beryllium window and wrapped in
a copper shell, which converted the incident intensity to a current
of several pico-amperes. Of course, a CCD camera could be used as
a bucket detector by integrating the total intensity registered on all
the pixels, but this requires a much longer processing time and is
much more expensive, while a true bucket detector can have better
sensitivity and is more efficient for data collection and processing.
After several measurements, the image is retrieved by an appropriate
algorithm.

The amplitude modulation board was fabricated from a metal
layer etched into a series of patterns upon a flat substrate, the former
being strongly absorbing and the latter being transparent to hard

x rays. Two different masks were made: the first was an inexpensive
printed circuit board composed of a 100 μm thick copper foil on a
500 μm thick laminate substrate; this was used to test the feasibil-
ity of our scheme. The second consisted of a 10 μm thick layer of
gold foil electroplated onto a 4 in. square, 500 μm thick SiO2 sub-
strate; this board was made for high resolution CXGI. Both masks
were etched with a set of Hadamard matrices;31 the number and size
of the pixels of the Cu and Au masks were 32 × 32, 150 μm and
64 × 64, 10 μm, respectively. A detailed description of the matrix
design is given in the supplementary material, Sec. 3. An illustration
of part of the masks is shown in Fig. 1(b). An enlargement of the area
outlined by the red solid line for the Au mask is shown in the upper
right, and the lower right is the corresponding three-dimensional
(3D) visualization. We define the modulation depth ratio Dr as
Dr= (Dmax − Dmin)/Dmax, where Dmax and Dmin represent the max-
imum and minimum intensities recorded by using an x-ray CCD
(Andor iKon-M), respectively. The cross section of the part enclosed
by the red dashed line in Fig. 1(b) is shown in Fig. 1(c), from which
we can see that the modulation depth ratio Dr of the Cu and Au
masks is about 75% and 83%, respectively. This profile was plotted
from the gray values of a direct image on a CCD camera of the x-ray
transmission through the mask.

When the Cu mask was used, a 5 mm thick stainless steel sten-
cil with the letters “CAS” cut out was chosen as the object, as shown
in Fig. 2(a). We compared the performance of two different modu-
lation means: random sandpaper speckles and a set of pre-designed
Hadamard matrices. The same second-order correlation algorithm
was taken for fairness. By adjusting the magnification and speckle
size, the resolution was set at 150 μm for both cases. We adopt the
contrast-to-noise ratio (CNR) as a criterion of image quality, defined

FIG. 2. (a) Object: 5 mm thick stainless steel stencil with the letters “CAS” cut out. [(b)–(f)] Sandpaper x-ray GI images retrieved after 5000, 10 000, 128, 512, and 1024
exposures. [(g)–(i)] CXGI images retrieved with the Cu mask after 128, 512, and 1024 exposures. (j) CNR vs number of exposures for x-ray GI (red line) and CXGI (black
line).
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as

CNR ≡ ⟨G1⟩ − ⟨G0⟩√
σ2

1 + σ2
0

, (1)

where G1 and G0 are the GI values for any pixel where the transmis-
sion is 1 or 0, respectively; σ2

1 and σ2
0 are the corresponding variances,

i.e., σ2
1 = ⟨G2

1⟩ − ⟨G1⟩2.
When sandpaper is used, since the modulation is random and

its speckles are quite uniformly distributed, it can perform well when
the number of exposures equals or exceeds the number of pixels.
This can be seen from Figs. 2(b) and 2(c), which correspond to 5000
and 10 000 exposures, respectively; the retrieved image contains
about 3500 pixels in this case. Figures 2(d)–2(f) and Figs. 2(g)–2(i)
show the results of the sandpaper speckles and Hadamard masks
for 128, 512, and 1024 measurements, respectively. We see that the
Hadamard mask performs much better than the sandpaper under
the same number of measurements. Figure 2(j) provides a more
quantitative comparison, where the CNR of both methods is plot-
ted as a function of the number of exposures. Here, for the same
CNR, when the Hadamard board is used, the number of measure-
ments is reduced by an order of magnitude due to the orthogonality
of the mask patterns. However, the CNR begins to decrease when
the exposure number exceeds 300. In addition, it is evident from
Fig. 2(i) that even in the full Nyquist sampling case, there is still some
unwanted noise. There are two explanations for this: one is imper-
fections of the Hadamard patterns due to uneven etching during the
electrochemical processing, which become more pronounced in the

finer patterns containing more complex structures; the other is that
the finer structures produce smaller fluctuations of the x-ray inten-
sity, which therefore cannot be easily detected when the detector is
not sensitive enough. The first problem could be solved with more
precise lithography, and the second by either increasing the source
intensity or improving the sensitivity of the detector, e.g., by using a
photomultiplier tube.

Aside from the updates in the hardware device, the CXGI
image can also be further improved by specially designed algo-
rithms. Compressed sensing (CS) has been widely used in GI and
single-pixel cameras.32–34 For the same bucket signals of the “CAS”
object mentioned above, Fig. 3(c) shows the image reconstructed
by the total variation augmented Lagrangian alternating direction
algorithm (TVAL3), one of the most popular CS algorithms.35 The
image is greatly improved as it has less noise, and the edges are much
sharper than in Fig. 3(b). The CNR values of Figs. 3(b) and 3(c)
are 1.49 and 1.75, respectively. To test the universality of this algo-
rithm, we take a more complex sample as the object, which is a metal
gear with 14 teeth, about 1.5 mm in diameter. The CNR of Fig. 3(g)
retrieved by TVAL3 is 0.5, which is even a little bit poorer than 0.6
of Fig. 3(f) obtained by traditional GI. It seems that the CS algorithm
is not robust enough when the image contains a complex structure
and the Hadamard mask is imperfect.

Deep neural networks are computational models that learn
representations of data with multiple levels of abstraction.36 They
are proven to be very successful at discovering features in high-
dimensional data in many areas, including GI. Recently, deep

FIG. 3. Results of x-ray GI with the Cu modulation mask and their corresponding images. (a) Same object as in Fig. 2(a). [(b)–(d)] Images retrieved by traditional GI, TVAL3,
and deep learning after 1024 exposures, with CNR values of 1.49, 1.75, and 2.43, respectively. (e) Object: a metal gear with 14 teeth. [(f)–(h)] Images of metal gear retrieved
by traditional GI, TVAL3, and deep learning after 1024 exposures, with CNR values of 0.6, 0.5, and 1.56, respectively.
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learning was successfully used to recover structured signals (in par-
ticular, images) from their under-sampled random linear measure-
ments.37–39 With an irregular trained basis, it can process an image at
high speed even under a 2% exposure compression ratio.40 However,
the rectangular Hadamard matrices that we chose (because these
shapes are relatively easy to fabricate) are not suitable for the deep
convolutional auto-encoder network used in the deep learning algo-
rithm mentioned above. Thus, we developed a new compressible
Hadamard plus multi-level wavelet convolutional neural network
(CH-MWCNN) algorithm, which takes the receptive field size and
computational efficiency into consideration and can be rather robust
even with an imperfect modulation mask, as in our case. With this,
we succeeded in obtaining greatly improved images, as shown in
Figs. 3(d) and 3(h), where the CNR ratios are 2.43 and 1.56, respec-
tively, higher than all the other methods. Admittedly, there is still
some blurring present due to the fact that the size of the modula-
tion mask is only 32 × 32 pixels, which means that the sparser pixels
cannot bring out enough detail, while the finer structures tend to
be over-fitted by our CH-MWCNN algorithm. This could be greatly
improved by increasing the density of the pixels although, of course,
this would require better precision in the mask fabrication. Fur-
ther details of the effect of noise on the algorithm are given in the
supplementary material.

To improve both hardware and software, the Cu mask was
replaced by a 64 × 64 Au mask with pixels of size 10 μm2. A

semi-cylindrically shaped object made of gold and glued onto a
rectangular column was used here as our object. Its 3D visualiza-
tions from different angles are shown in Fig. 4(a); the exposed area
of the object was actually just 0.64 × 0.64 mm2. A direct absorp-
tion/projection x-ray image of the object is presented in Fig. 4(c),
where the exposure time was 5 s. Although the gap is visible,
there are many noisy dots widely distributed throughout the whole
image, which makes it hard to resolve the true distance between the
semi-cylinder and rectangular column. Figure 4(d) shows the image
recovered by TVAL3; we can see that it is seriously blurred, and the
CNR is only 0.27. Similar to the problems in the manufacturing of
the Cu mask, there is also distortion in the ion etched Au mask, part
of which is shown in the scanning electron microscope (SEM) image
of Fig. 4(b) taken at an angle of 52○. Here, we observe the sloping
profile of the etched edges, which ideally should be perpendicular.
This is probably the reason why the TVAL3 algorithm failed to give
better detail. On the other hand, when CH-MWCNN was used, the
CNR of the retrieved image, shown in Fig. 4(e), improved signif-
icantly; here, it is 2.65 and there are many fewer noisy dots. The
gap between the semi-cylinder and the rectangular column, which is
∼10 μm wide, can be distinguished clearly [note that Figs. 4(c)–4(e)
show 2D transmission images of the 3D object]. This result was
obtained under a sampling rate of 18.75% with 0.3 s recovery
time, a performance much better than TVAL3, and certain other
compressed sensing algorithms. The average processing time of

FIG. 4. Object and images with a gold modulation mask. (a) Two 3D views of the object from different angles where the area enclosed by the red dashed line is the actually
exposed part of the object. (b) SEM image of part of the Au mask. (c) Direct x-ray absorption/projection image of the sample with 5 s exposure time. (d) CXGI image retrieved
by TVAL3 after 4096 exposures; its CNR is 0.27. (e) Image reconstructed by CH-MWCNN after 768 exposures; its CNR is 2.65.
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CH-MWCNN was between 0.2 s and 1 s for an image of 64 × 64 pix-
els, depending on its complexity, running on a laptop with an Intel®
CoreTM i7-6600U central processing unit and 12 GB random access
memory.

III. DISCUSSION
In shadow projection imaging, how to ensure both magnifi-

cation and resolution is a difficult problem because according to
geometrical optics the object’s penumbra will blur the image when
the object is smaller than half the source size; this is the key limit
of resolution in both traditional absorption and propagation based
phase contrast x-ray imaging. The x-ray source size in our exper-
iment was 30 × 37 μm2, measured by a knife edge method, so it
would be difficult to distinguish details as fine as 19 μm directly.
A possible solution would be to decrease the source size by a pin-
hole, but this would reduce the flux significantly, or to perform
focused raster scanning, but this requires a monochromatic beam as
well as sophisticated optics. In contrast, the Hadamard patterns in
our CXGI scheme have high transmittance, while a bucket detector
can be much more sensitive than the array detectors used in tra-
ditional x-ray microscopy; thus, our scheme is very suitable for a
low-flux source. The image quality of CXGI depends on the design
and quality of the illumination masks, which in our case are quite
good. The resolution of our current experiments is, in fact, limited
by the mask lithography technology, and so far we have achieved a
value of several micrometers, as shown in Fig. 4. Our low sampling
rate means lower dose, less measurement time, and faster process-
ing, which are all essential for real applications. Of course the image
quality needs to be improved further, but the real objects imaged
by our CH-MWCNN algorithm fully indicate the huge potential
of our CXGI scheme. If applied to a certain field such as medi-
cal diagnosis where training can be acquired with the vast clinical
image data resources available, the results should certainly be much
better.

In conclusion, we have realized CXGI with an incoherent x-
ray source and a true bucket detector, with both simulation and
experimental results showing that we have surpassed the resolution
limit of incoherent x-ray imaging even at subsampling rates. The
setup is simple, cost effective, and convenient to operate. Compared
with random speckle modulation, the pre-designed masks have a
consistent speckle size so that the resolution can be predetermined,
and combined with certain orthogonal matrices such as Hadamard
matrices, the measurement efficiency can be greatly improved. A
new CH-MWCNN algorithm has been implemented, by which even
when the modulation mask contains some distortions, we can still
observe fine structures under a low subsampling rate, regardless of
the complexity of the object. As a result, images with 10 μm res-
olution have been obtained for a source size of about 37 μm at a
sampling rate of 18.75%, which indicates that both the measure-
ment time and the radiation dosage in x-ray diagnosis can be greatly
reduced. The resolution could be improved further if finer and bet-
ter masks were used, in addition to optimization of other technical
aspects. With more sensitive photodiodes and less noisy electron-
ics, we should be able to reduce the dosage down to single-photon
levels. The image quality would also be much better if imaging
data for real samples could be used to strengthen our deep learn-
ing algorithm. Already, our current CXGI scheme demonstrates

that it should be quite feasible to build a practical, low-cost, single-
pixel x-ray camera for use in biomedicine, archeology, and material
diagnosis.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details.
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APPENDIX: METHODS
1. Experimental setup

A schematic diagram of the experimental setup is presented in
Fig. 1(a). The hard x-ray source is a portable x-ray tube (Incoatec
Microfocus Source Iμs); when operating at 40 kV and 600 μA, it
emits polychromatic x rays composed mainly of Kα radiation with a
characteristic central wavelength of 0.15 nm (corresponding to 8.04
keV photon energy). The object was placed at a distance of 45.5 cm
from the source, and a detector was placed 5 cm behind the object.
For a fair comparison, these distances were kept the same in both
the direct projection and CXGI experiments although an x-ray CCD
was used for the former and a single-pixel detector setup for the lat-
ter. The modulation patterns projected onto the object are shadows
of predesigned masks, created by absorption and transmission, not
interference. Since the beam size and its divergence angle (0.1○) are
rather small, the masks had to be sufficiently far from the source
so that the beam could cover an entire sample; the distances were
168 cm and 44.5 cm for the Cu and Au masks, respectively, with
the sample placed 1 cm behind, as close as convenient, to avoid
magnification and ensure resolution. Since there has to be a finite
horizontal and vertical spacing between each matrix, three pixels
for the copper mask and six pixels for the gold mask, this would
transmit spurious random x rays into the bucket detector. A square
aperture was therefore put behind the sample to block unwanted
signals. The modulation board was mounted on a two-dimensional
motorized translation stage that could be controlled to a precision of
0.1 μm. A different Hadamard mask was used for each illumination
of the sample, so the stage had to be translated through (4.8 + 0.45)
= 5.25 mm (Cu mask case) or (0.64 + 0.06) = 0.7 mm (Au mask case)
after each measurement; this was performed by using a computer
program. Every bucket signal was converted to a current signal that
was read out by using a Keithley Model 6485 picoammeter, which
was set in the low speed mode to reduce the readout noise since the
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response time is about 300 ms. As our x-ray source is continuous, a
shutter was used to block the beam and opened only during image
exposure.

2. The CH-MWCNN algorithm
The CH-MWCNN algorithm consists of two parts, the encod-

ing and decoding layers. The main function of the former is to sort
out the best arrangement of the masks according to their sparsity
based on a large amount of image datasets so that although the
less sparse masks contain more distortion, they can still produce a
high quality image by maintaining the balance between the measure-
ments and the noise arising from processing distortion. In this layer,
90 000 images were used to train the arrangement of the Hadamard
bases, each image being convoluted with the whole set of matrices.
For each resulting image, its signal is expressed as a 4096 × 1 vector
yi, where i = 1 to 90 000. The Hadamard bases are then rearranged
in descending order according to the absolute value of the summed
signals β = |yi|. The first 768 rearranged Hadamard bases indexed by
768 elements of β (those with the highest value) are retained. In our
experiment, the selected 768 Hadamard bases are used to measure
the real sample, and a vector y768×1 representing all the bucket sig-
nals is obtained. In the decoding layer, this y768×1 vector is padded
to y4096×1 with zeros and indexed in the Walsh order; then, a fast
Walsh–Hadamard transform is used to recover the image vector,
and a final 64 × 64 image acquired after reshaping and normalizing.
From this preliminary reconstructed 64 × 64 image, the multi-level
wavelet convolutional neural network40 is used to further improve
the reconstruction of the image, and the output is our final image.

3. Micro-manufacture of modulation masks
The patterns in our Cu mask were fabricated on a 3 oz printed

circuit board by wet etching, a common industrial process. However,
creation of the finer 10 μm resolution Au mask was much more com-
plex and required photolithography combined with ion beam etch-
ing. A 4 in. diameter quartz wafer was coated by electron evaporation
with a seed layer of 10 nm titanium and 60 nm gold, followed by elec-
trochemical deposition of a 10 μm thick film of gold. Then, the wafer
was coated with AZ4620 photoresist and soft-baked at 100 ○C for
3 min for solvent removal prior to patterning. The photoresist was,
in turn, patterned using a Karl Suss MA6 Contact Aligner and pho-
tomask with 250 mW/cm2 of uv exposure at 365 nm. The patterned
wafer was then immersed in the developer (AZ400k: deionized water
= 1:3) for 2 min. Finally, the photoresist pattern was transferred onto
the gold film via ion beam etching by using an Ar ion milling system
(LKJ-150, Beijing Institute of Advanced Ion Beam Technology) with
an ion energy of 300 eV and ion current of 0.5 mA/cm2.
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