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Single-mode diode lasers1 are the standard light sources for 
numerous applications, in which the mode selectivity is pro-
vided by the semiconductor cavity with subwavelength fea-

tures. In long-haul fibre networks, the distributed feedback (DFB) 
laser2 (Fig. 1) of a uniform Bragg grating has two competing 
band-edge modes with the lowest group velocities and degenerate 
thresholds. Although the mode selection can be done by facet cleav-
ing with a certain yield, a much stabler solution is to introduce a 
quarter-wavelength shift3,4 so that a single mid-gap mode can lase 
first at the Bragg frequency where the grating feedback is the stron-
gest. Such one-dimensional (1D) mid-gap design is also adopted 
for vertical-cavity surface-emitting lasers (VCSELs)1 to select a 
single longitudinal mode, used in local communications, computer 
mice and face recognition. Advancing to two-dimensional (2D) 
periodicity5,6, the photonic-crystal surface-emitting laser (PCSEL) 
has recently been commercialized7 for its broader area and higher 
brightness8,9 than the 1D counterparts, while maintaining the 
single-mode operation. However, PCSELs again have at least two 
high-quality-factor (Q) band-edge modes competing for lasing. It is 
obviously important to have a 2D cavity of a single robust mid-gap 
mode, which has been lacking since the notion of 2D DFB was first 
introduced5.

In order to design the 2D mid-gap defect cavity, we first recog-
nize that the mid-gap modes of both the phase-shifted DFB and 
VCSEL are in fact topological (details in Supplementary Part A) 
and are mathematically equivalent to the Shockley surface state10, 
Jackiw–Rebbi zero mode11 and Su–Schrieffer–Heeger (SSH) edge 
state12. This topological view leads us to the Jackiw–Rossi zero 
modes in 2D Dirac equations13 and the Hou–Chamon–Mudry 
(HCM) model in graphene14, which we realize in a honeycomb pho-
tonic crystal with a vortex gap—the Dirac-vortex cavity. So far, the 
topological photonic research15–17 has focused on robust waveguid-
ing, including topological lasers18–21 in which the cavities are formed 
by wrapping around topological waveguides. Although the defect 
cavity has recently been found at the corner of the 2D bulk crystal 
due to high-order topology22–25, it requires precise edge cuttings and 
has limited scalability in size.

Our Dirac-vortex cavity offers both a single mid-gap mode 
and the largest free spectral range (FSR) among all known sizable 
resonators—a property not shared by the 1D topological counter-
parts. A large FSR is important for stabler single-mode operation, 
a higher spontaneous emission factor and a wider spectral tuning 
range. The FSR of a Dirac-vortex cavity can be one to two orders 
of magnitude larger than that of the conventional cavities (details 
in Supplementary Part B), due to a completely different scaling law 
between the FSR and mode volume (V). For conventional cavities, 
such as the Fabry–Perot, whispering-gallery and photonic crystal 
band-edge cavities26, the FSR (/ 1

V
I

) is inversely proportional to 
the mode volume, so that the routine practice to widen the FSR is 
to shorten the cavity size. Being uniquely advantageous, the FSR 
(/ 1ffiffiffi

V
p

I

) of the Dirac-vortex cavity is inversely proportional to the 
square root of its mode volume. This remarkable feature comes 
from the construction of a single cavity mode at the middle of the 
Dirac spectrum where the optical density of states vanishes, so 
that the FSR is spectrally non-uniform and peaks at the Dirac fre-
quency. This is in contrast to the constant photon density of states 
in other types of cavities, in which the FSR is spectrally uniform. 
Consequently, the Dirac-vortex cavity has an ideal single-mode 
behaviour over large areas27.

Jackiw–Rossi zero modes
The Dirac-vortex cavity is a photonic realization of the zero-mode 
solutions to the Dirac equations with mass vortices, proposed by 
Jackiw and Rossi13. Equation (1) is the time-reversal invariant Dirac 
Hamiltonian containing all five anti-commuting terms, where ki is 
the momentum and σi and τi are both Pauli matrices. A non-zero 
mass term (mi) produces a gapped Dirac spectrum. Consistent ter-
minology as the effective mass is used in semiconductor physics to 
describe the band curvature.
 

From the eigen-solution EðkÞ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðk2i þm2
i Þ

q

I

, the two 
momentum terms in equation (1) form four-by-four massless 

k
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Dirac cones in two dimensions and the three mass terms represent 
three independent mathematical degrees of freedom that can gap 
the double Dirac cones. If the system has only two mass terms28, 
a vortex solution can form by spatially winding the mass terms 
in-plane. Fortunately, the third mass term m0

I
 vanishes when the 

dispersion spectrum is up–down symmetric with respect to the 
Dirac frequency. This protecting symmetry is the chiral symmetry 
S ¼ σyτz
I

 (SHS�1 ¼ �H
I

) whose presence requires m0 ¼ 0
I

 (details 
in Supplementary Part C). Then the remaining two mass terms 
form a complex number (m = m1+ jm2) that can wind in-plane w 
times as mðrÞ / exp½jw argðrÞ

I
, in which r is the spatial coordinate 

and j2 = −1. The w is the Dirac-mass winding number, the topo-
logical invariant of the vortex29 belonging to the Altland–Zirnbauer 
symmetry class BDI (Z

I
). The magnitude and sign of w determine 

the number and chirality of the mid-gap modes. We note that in a 
realistic photonic system at a non-zero frequency, the chiral sym-
metry is slightly broken and m0

I
 is not precisely zero. The resulting 

Dirac spectrum is not exactly up–down symmetric and the w topo-
logical modes are not rigorously degenerate in frequency.

Honeycomb photonic crystal with generalized Kekulé 
modulations
The realization of Jackiw–Rossi modes in condensed matter systems 
was first proposed by Hou, Chamon and Mudry14 in a Kekulé-textured 
graphene14. Although creating a vortex potential at the atomic level 
is a tall order, the realizations in designer photonic30–32 and pho-
nonic lattices33,34 have clear advantages. In this section, we construct 
the Jackiw–Rossi modes in an air-clad photonic-crystal membrane, 
and focus on the transverse-electric-like (TE-like) modes (electric 
field in-plane) that are favoured for most applications.

The starting point is a hexagon supercell consisting of three 
honeycomb primitive cells (Fig. 2a). This supercell folds the two 
Dirac points from the Brillouin-zone boundary (±K points below 
the light cone) to the zone centre (Γ point above the light cone), 
forming a four-by-four double Dirac cone dispersion (Fig. 2b). The 
two honeycomb sublattices are coloured in black and grey, both 
representing air holes in the silicon membrane. The triangular hole 
shape, compared to the circular shape, improves the frequency 
isolation of the Dirac points35,36. In fact, the previous topological 
waveguide design37 between two deformed honeycomb lattices, by 
expanding and shrinking, corresponds to two discrete phase values  
(0 and π) of the Dirac gap (mass terms). By contrast, the topological 
cavity untilizes the complete 2π vortex phase for in-plane photon 
confinement.

We apply a generalized Kekulé modulation14,30 in the supercell 
to generate the 2π vortex gap of the double Dirac cones. Shown in  
Fig. 2a, the three grey sublattice air holes are shifted from their orig-
inal positions by the same amplitude m0 and correlated phase ϕ0. 
The key observation is the persistent gap opening for all 2π values of 
ϕ0 with non-zero m0, while the gap closes at the vortex centre where 
m0 = 0. As plotted in Fig. 2c, the vortex band gap has an angular 
periodicity of π/3 due to the lattice symmetry, and the minimal gap 
size occurs at ϕ0 = 0. The gap size as a function of m0 is plotted in 
Fig. 2d. The 2π vortex gap peaks at 6% and eventually closes for 
large m0 because the band at the M point drops. Since the modula-
tion vector m ¼ m0ejϕ0

I
 has the same physical consequence as that 

of the complex Dirac mass m = m1 + jm2 in equation (1), we use the 
same symbol in this paper.

Since we have a library of supercells with a vortex band gap 
whose phase continuously varies by 2π, the cavity formation is a 
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Fig. 1 | comparison of the Dirac-vortex cavity and the three types of commercialized semiconductor laser cavities for single-mode operation. The 
cavities of uniform lattices, both 1D DFB and 2D PCSEL, have two competing high-Q band-edge modes. The cavities of topological defects, both 
the phase-shifted DFB and the Dirac-vortex cavities, have a single mid-gap mode. The years and references indicate when the device ideas and the 
corresponding topological models were first proposed. ω, frequency; λ, wavelength; k, wavevector; a, lattice constant.
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matter of arranging these supercells angularly around a cavity cen-
tre (r0), as illustrated in Fig. 2e. Since the original honeycomb lat-
tice (m0 = 0) has C6v symmetry, the vortex cavity (m0 ≠ 0) can always 
remain C3v symmetric if a w-dependent vortex centre (r0) is chosen 
(illustrated in Supplementary Part D). A highly symmetric (D3h) 
design reduces the computation domain and eases the analysis 
through group theory.

The topological mid-gap mode is plotted in Fig. 2f. The Fourier 
components of the mode, in Fig. 2g, reveal its momentum distribu-
tion in relation to the light cone. Once the K points move inside the 
light cone of the substrate, the cavity resonance is no longer well 
defined (see the subsequent section Substrate compatibility).

cavity parameters
The design of the Dirac-vortex cavity is equivalent to the choice of 
spatial function for the vortex modulation m(r − r0). Without loss of 
generality, we choose the following form of equation (2):

mðr� r0;w;m0;R; αÞ ¼ m0 tanhðj
r� r0
R

jαÞej½ϕ0�w argðr�r0Þ ð2Þ

The potential-well function tanhðxαÞjx!þ1 ¼ þ1
I

 and 
tanhðxαÞjx!0 ¼ xα

I
, interpreting from the central zero modulation  

amplitude ∣m(r = r0)∣ = 0 to the boundary maximum modula-
tion amplitude ∣m(r ≫ r0)∣ = m0. The cavity is determined by four 
parameters (w, m0, R and α), illustrated in Fig. 2e.

The first parameter w is the winding number of the vortex. The 
magnitude ∣w∣ determines the number (degeneracy) of mid-gap 
modes and the mode area increases with w, similar to the topologi-
cal fibre case28. The sign of w is the mode chirality, determining 
which sublattice the field distribution will occur on. The topological 
mode populates only one of the honeycomb sublattices and, when w 
changes sign, populates the other (details in Supplementary Part E). 
In Fig. 2f, both the magnetic (Hz) and electric (Ex,y) fields peak only 
at the triangles pointing to the left.

The second parameter m0 is the maximum modulation ampli-
tude, the maximum shift of the honeycomb sublattice in Fig. 2a, 
determining the depth of the potential well in Fig. 2e; m0 is also the 
strength of the radiative coupling that couples the two (originally 
guided) Dirac points into the light cone (radiation continuum). 
Therefore the cavity Q increases as m0 decreases.

The third parameter R, the vortex radius, should not be mistaken 
as the size of the whole cavity outside of which the photonic-crystal 
pattern ends. In fact, we pad at least fifty extra periods outside the 
vortex radius R to ensure sufficient mode confinement. The R can 
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I
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be very different from the size of the confined topological mode. For 
example, in Fig. 2f, the mode size is non-zero when R = 0a, where a 
is the lattice constant. As shown in Fig. 3a, the mode size increases 
with α for the same non-zero 2R.

The fourth parameter α is the shape factor—a positive expo-
nent that controls the shape of the Dirac potential well (Fig. 2e); α 
equal to 1, 2, 3 or 4 means a linear, quadratic, cubic or quartic well, 
respectively. When α → ∞, tanhðx1Þ

I
 becomes a square well, inside 

which is the uniform unmodulated Dirac lattice (m0 = 0). In this case, 
the vertical radiation only takes place at the periphery of the well, 
resulting in a far-field pattern of many fringes (Fig. 3a) undesired for 
input–output coupling. (The Q and V dependence on α is plotted in 
Supplementary Part F.) Considering both the radiative pattern and 
the mode area, a choice of α = 4 is made in the following studies.

Scaling laws
The Dirac-vortex cavity is continuously scalable in area by varying 
the vortex size 2R. In Fig. 3, we examine numerically how the mode 
diameter, FSR and far-field angle scale with the vortex size (2R). We 
set w = +1 for single mode and choose a large band gap (m0 = 0.1a) 
for large FSRs.

A typical cavity spectrum is shown in Fig. 3b. For small cavities, 
the topological mode does not appear exactly at the gap centre, due 

to the lack of exact chiral symmetry. (Fortunately, almost constant 
cavity frequencies, for all vortex sizes, can be realized by tuning the 
air-hole sizes at the cavity centre, as shown in Supplementary Part 
G.) For large cavities, the topological mode always converges to 
the Dirac-point frequency, since the central area of the large cavity 
approaches the unmodulated Dirac lattice with the original Dirac 
spectrum. As R increases, the high-order cavity modes originate 
from the continuum of bulk modes above or below the band gap. 
These high-order modes have both doublet and singlet states, due 
to the C3v symmetry. The near fields and far fields of the singlet 
modes are plotted in Fig. 3b. The details of all modes are tabulated 
in Supplementary Part H. Compared to the high-order modes, the 
topological mode has the most extended mode area.

The modal diameter (L) increases with the vortex diameter 
(2R). The scaling is L / R

α
αþ1

I
 for large R, as shown in Fig. 3c. This is 

derived from the known result13 that the zero-mode wavefunction 
Ψ0(r) is determined by the radial integration of the mass function: 
jΨ0ðrÞj / e�

R r

0
jmðr0Þjdr0 / e�

R r

0
ðr0=RÞαdr0 / e�

rαþ1
Rα

I
, according to the 

mass definition in equation (2). The size of the topological mode 
grows sub-linearly with R for finite α. When α = 4, L / R

4
5

I
 is close 

to a linear relation.
We numerically verify that the scaling law of FSR (/ 1ffiffiffi

V
p / 1

L

I

) 
of the Dirac-vortex cavity is inversely proportional to the square 
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root of the mode volume V and inversely proportional to the mode 
diameter L. As denoted in Fig. 3b, the FSR of the Dirac-vortex cav-
ity is the frequency separation between the mid-gap and the neigh-
bouring (doublet) modes. As plotted in Fig. 3c, the FSR of any α 
values conforms to the same scaling law. It has been pointed out26 
that the FSR at a Dirac point (scales as L−1) can be much larger than 
the FSR of the usual quadratic band edge (scales as L−2). However, 
the proposed accidental ‘Dirac point’ at Γ in a previous study26 is 
sensitive to the system parameters such as the air-hole size. In addi-
tion, the central flat band, in this three-fold accidental degeneracy, 
complicates the photonic states there. These problems are not pres-
ent in the Dirac-vortex cavity.

The far-field half angle is inversely proportional to the mode 
diameter, as plotted in Fig. 3c. The beam angle is below 1° once the 
vortex diameter exceeds 200a. Shown in Fig. 3a,b, the far fields of 
the singlet modes are vector beams, obtained by integrating the near 
fields (Ex,y) using the Rayleigh–Sommerfeld diffraction theory. The 
polarization states of the vector beams are plotted with green lines at 
the bottom of Fig. 3b. Since the free-space polarization-degenerate 
modes belong to the doublet representation of C3v, the singlet cavity 
modes cannot couple out in the exact vertical direction due to the 
distinct representations. If the C3v symmetry is broken, one can con-
vert the doughnut beam to a single-lobe beam38. We show such an 
example by non-uniform winding of the vortex in Supplementary 
Part I.

Substrate compatibility
Substrate compatibility is crucial for device applications due 
to the practical requirements of heat dissipation, current con-
duction and mechanical support. In Fig. 4, we show that the 
Dirac-vortex cavities can work on various substrates. We place the 
cavity on uniform substrates and compute the Q as a function of 
substrate refractive index (nsub) for two different core waveguide  
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configurations: Si–air and PCSEL. Both high-index core wave-
guides are patterned with air.

In the Si–air configuration, we place the silicon membrane stud-
ied in Fig. 2 on the substrates. The cavity Q gradually decreases with 
increasing nsub until a critical index value ncsub ¼ 2:6

I
, where Q drops 

off. This critical point is where the Dirac-point states, in the unper-
turbed primitive cell, are no longer guided in the core waveguide. 
The critical band structure is shown in Fig. 4, where the Dirac points 
almost merge into the light cones. This ncsub

I
 value already covers the 

common substrates such as silica, sapphire39 and gallium nitride40.
In the PCSEL configuration, we aim to further increase ncsub

I
 

and estimate the potential of the Dirac-vortex PCSELs. The PCSEL 
waveguide is twice as thick as the Si–air waveguide with the air-hole 
pattern through half of its total thickness from top and bottom. This 
structure is similar to the current PCSEL devices containing air 
holes8. The results in Fig. 4 show ncsub ¼ 3:0

I
 and the band structures 

in Supplementary Part J show ncsub ¼ 3:3
I

 for the all-semiconductor 
design41. These high ncsub

I
 values indicate the possible compatibility 

with the mature semiconductor material systems. The topological 
resonance persists even when the Dirac point is no longer frequency 
isolated. When the mode area is large enough, the wavevectors of 
the mode are too localized (in momentum space) to couple to the 
other bulk states of distinct momenta at the same frequency.

Silicon-on-insulator experiments
We fabricate the Dirac-vortex cavities on silicon-on-insulator at 
telecommunication wavelength. The scanning electron micro-
scope images of a typical device are shown in Fig. 5a. The photonic 
crystals were patterned in a 220 nm silicon layer by electron-beam 
lithography and dry-etching. The underneath SiO2 cladding ensures 
mechanical stability. The cavity Q of asymmetric claddings (silica 
and air) sits in between the Q values of symmetric (both silica or 
both air) claddings in Fig. 4.

In Fig. 5b, cavities of different winding numbers (w = +1, +2, 
+3) are measured. Their spectra verify that the number of topologi-
cal modes equals the winding number. The far fields of all six modes 
compare favourably with the numerical results. The simulated near 
fields are listed in Supplementary Part K. These radiation patterns 
are captured after a horizontal polarizer in our cross-polarization 
set-up, illustrated in Supplementary Part L. The number of 
zero-intensity radial lines equals the topological charges (in magni-
tude) of these vector beams.

In Fig. 5c, we plot the dependence of Q and FSR on the cavity 
size. The Q increases with the increase of mode area and saturates 
between 104 and 105, limited by fabrication imperfections. (The data 
of varying the maximum modulation amplitude m0 are plotted in 
Supplementary Part M.) The FSR is plotted as a function of the esti-
mated mode volume (V) according to numerical results in Fig. 3. 
The FSR of V−1/2 scaling is much larger than that of the V−1 scaling 
(dashed line) of regular cavities. For example, the experimental FSR 
is 8.22 nm for a 50 μm Dirac-vortex cavity in Fig. 5d, while the FSR 
of a Fabry–Perot cavity with the same mode volume is only 1.28 nm, 
computed in Supplementary Part B.

In Fig. 5d, we plot the cavity resonances as a function of the vor-
tex diameter. Consistent with the numerical results in Fig. 3b, the 
wavelength of the topological mode converges to the Dirac wave-
length when the vortex diameter increases to about 30 μm. We also 
track the high-order modes and a full spectrum is plotted for the 
cavity of 2R = 50 μm (100a). The polarized far fields of the singlet 
modes are imaged and are in agreement with the numerical results. 
The far fields of all modes are tabulated in Supplementary Part H.

conclusions
Topological photonics15–17 enabled us to design an on-chip opti-
cal microcavity42 with separate controls over mode number (w), 
mode area (R), radiation coupling (m0) and scaling property (α). 

The Dirac-vortex cavity is the 2D upgrade of the 1D feedback 
structures in phase-shifted DFBs and VCSELs, the two most widely 
used industrial single-mode semiconductor lasers. This topologi-
cal resonator provides a single mid-gap mode with a large modal 
diameter continuously tunable from a few micrometres towards 
one millimetre, during which the FSR remains the largest among all  
known resonators.

The Dirac-vortex cavities offer a number of exciting opportu-
nities. (1) They can be readily integrated with topological wave-
guides43–47 to explore the potential of a topological photonic 
circuitry. (2) They provide a new method for on-chip vector-beam 
generation. (3) They are new types of degenerate cavities whose 
modal degeneracy is due to topology rather than ray optics48. (4) 
They can be used to construct topological PCSELs, by changing the 
lithography pattern, in the same semiconductor platform as that 
of the current PCSELs7–9,40,49, for a stabler single-mode operation, 
which generally implies higher yield, wider tuning range, narrower 
linewidth and greater output power.
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