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We provide additional experimental (Sec. 1), theoretical (Sec. 2), and Monte Carlo simulation (Sec. 3) results supporting the
conclusions of the main paper. Additional µSR A(t) data are presented in Sec. 1 A and the fitting procedures are explained.
Neutron diffraction data in the columnar AFM state are presented in Sec. 1 B and in Sec. 1 C we explain how the cross-over
temperature T ⇤ was determined from the neutron data. In Sec. 2, we derive the scaling form of the µSR relaxation rate �. In
Sec. 3, we present additional Monte Carlo results for the classical 2D Heisenberg model with W-type impurities.

1. ADDITIONAL EXPERIMENTAL INFORMATION

Polycrystalline samples of Sr2CuTe1�x

W
x

O6 were synthe-
sized from stoichiometric mixtures of SrO, CuO, TeO2, and
WO3 powders by the solid-state reaction method reported pre-
viously [25–27, 29]. The µSR experiments were performed at
the S1 ARTEMIS spectrometer (Proposal No. 2018B0156),
J-PARC, with the mini cryostat down to 4 K. The neutron-
diffraction experiments were carried out at Bamboo (� =
2.358 Å) and Xingzhi (� = 2.7302 Å) triple-axis spectrome-
ters, and at the PKU High-Intensity Powder Neutron Diffrac-
tometer (� = 2.3 Å) at China Advanced Research Reac-
tor (CARR), and the Kunpeng triple-axis spectrometer (� =
2.7302 Å) at Key Laboratory of Neutron Physics and Institute
of Nuclear Physics and Chemistry, China. Neutron speed ve-
locity selectors were used before the monochromator with the
Bamboo and Xingzhi spectrometers.

A. Raw µSR data

The time dependent asymmetry A(t) from our µSR exper-
iments for x = 0 and 1 are shown in Fig. S1. As discussed
in the main text, the x = 0 sample [Fig. S1(a)] has long-rage
Néel AFM order, while the x = 1 sample [Fig. S1(b)] has
long-range columnar order. It is clear that the fits by Eq. (1)
are not good at low temperatures. This is in contrast with the
good fits at x = 0.05 and 0.1, as shown in Figs. 3(a) and 3(b).

The reason for the suboptimal fits at x = 0 and 1 is that,
in the ordered states, we need multiple relaxation rates to de-
scribe the data, as shown in Ref. [28]. Here we test the fol-
lowing simpler function:

A(t) = A0[f + (1� f)exp(��t)]G
z

(t) +ABG. (S1)

Compared to the fitting function in the main text, the new
function introduces a factor f to effectively account for a sec-
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Figure S1. (a) and (b) show zero-field µSR spectra of Sr2CuTe1�x

W
x

O6 samples with x = 0 and 1, respectively. Results for several
temperatures are shown, witth the highest and lowest indicated for both samples. The curves are fits to the form Eq. (1) with a single relaxation
rate. (c) and (d) show the spectra for x = 0 and 1, respectively, at the corresponding base temperatures. The curves are fits to the modified
form Eq. (S1), which provides a better description of the data in the ordered state.

ond relaxation rate that is very small, so that its value is ef-
fectively zero on the time scale of the experiment. The very
well fitted low-temperature results for x = 0 and 1 are shown
in Figs. S1(c) and S1(d). It is worth noting that f is close to
1/3 for x = 0, and 1/2 for x = 1. We stress that we need the
modified fitting form only for analyzing the ordered samples.
As noted in the main text and shown in Figs. 3(a) and 3(b), for
the short-range correlated samples with x = 0.05 and 0.1 the
form Eq. (1) works essentially perfectly.

When fitting the µSR spectra, we have chosen a
temperature-independent background ABG = 0.035 for all the
samples. This value is derived from the fact that the value of
A(t) at 1 µs at base temperature is about 1/3 of that above T

c

,
as shown in Ref. [28]. The same instrument was used for all
the µSR measurements and all the samples have similar mass
and were mounted in similar holders. For all these reasons we
expect that the background should be close to the same for all
the samples. Reasonable fits can be obtained for ABG rang-
ing from 0 to 0.1, and using different values in this range does
not affect the conclusion of low-temperature power-law scal-
ing � ⇠ T�� for x = 0.05 and 0.1; the exponent changes only
marginally and �(0.1) > �(0.05) always holds.

B. Neutron diffraction results for the columnar AFM state

Neutron diffraction data for x from 0.7 to 1 are shown in
Fig. S2. At these W fractions the system is expected from

previous studies [32] to have columnar AFM order at low tem-
perature, which we confirm here with the resolution limited
peaks at the corresponding wave-vectors.
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Figure S2. Neutron diffraction data along with Gaussian fits for x =
1 (a) 0.9 (b), 0.8 (c), and 0.7 (d). The peak locations correspond
to q = (0.5, 0, 0.5) and (0, 0.5, 0.5), i.e., columnar AFM structure.
The temperature is indicated in each panel and data taken at T = 40
K have been subtracted as background contributions. The green bars
indicate the instrumental resolution.
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Figure S3. Temperature dependence of the magnetic peak intensity at q = (0.5, 0.5, 0) in the sample with x = 0.1 in (a) and x = 0.2 in (b).
The curves are guides to the eye and the cross-over temperature is defined as the point where the signal above background becomes significant,
which implies errors of up to 3 K in these cases.

C. The cross-over temperature T

⇤ from neutron diffraction

For the samples showing no phase transition into an or-
dered phase, in Fig. 4 we have indicated a temperature T ⇤

where both the µSR and netron data show the onset of signif-
icant short-range correlations. It should be noted that, strictly
speaking, T ⇤ can not be defined unambiguously or uniquely
as it merely signifies a sharp cross-over. Therefore, T ⇤ deter-
mined from the neutron-diffraction measurements is not nec-
essarily exactly equal to that from the µSR data, since these
two techniques measure the system in different ways and with
very different energy resolution. We here show that both ex-
periments nevertheless produce compatible results for T ⇤.

Figures S3(a) and S3(b) show the temperature dependence
of the magnetic peak intensity measured with neutron diffrac-
tion at wave-vector q = (0.5, 0.5, 0) (corresponding to Néel
AFM order) for the x = 0.1 and 0.2 samples, respectively. T ⇤

is determined to be the temperature where a signal is detected
above the high-T background, which is T ⇤ ⇡ 25 and T ⇤ ⇡ 6

K, respectively, for x = 0.1 and x = 0.2, with rather large
error bars of 2-3 K due to the weak signal. Comparing with
the µSR result for x = 0.1 in Fig. 4, the results agree well.
We do not have µSR results for x = 0.2.

2. CRITICAL SCALING OF THE RELAXATION RATE

As discussed in the main paper, the x = 0.05 and 0.1 sam-
ples exhibit quantum-critical scaling in the µSR relaxation
rate and are candidates for the RS state at low temperatures.
According to QMC simulations of a “designer model” relizing
the RS phase in a 2D quantum magnet [22, 23], this state is
critical with large dynamic exponent, z � 2, with z = 2 at the
transition from the Néel state and z increasing upon moving
into the RS phase, and with dominant Néel type spin correla-
tions decaying with distance r as r�2 universally. This cor-
relation function formally implies that the exponent ⌘ in the
standard form [36] of the quantum-critical correlation func-
tion for a system in d space dimensions,

C(r) / r�(d+z�2+⌘), (S2)

depends on z through the relationship ⌘ = 2� z. Thus, in the
RS state this exponent is negative, which is normally not pos-
sible in uniform systems but is not uncommon in disordered
systems.

The exponent ⌘ appears also in dynamical scaling forms,
e.g., the NMR relaxation rate 1/T1 scales as T ⌘ at the O(3)
quantum-critical point in uniform antiferromagnets, where
z = 1 [37]. One can expect the µSR relaxation rate �, which
like 1/T1 depends on local low-energy spin fluctuations, to
scale in the same way. However, since the dynamic expo-
nent z 6= 1 in the RS state, the T ⌘ form has to be modified
as follows: The correlation length in a quantum-critical sys-
tem scales as ⇠ / T�1/z , and we can therefore formally ex-
press the temperature as T / ⇠�z . For z = 1, we can write
� / T ⌘ / ⇠�⌘ , and the generalization to z 6= 1 is obtained by
inserting the correct T -dependent expression for the correla-
tion length. Thus, � / ⇠�⌘ / T ⌘/z . Using the form ⌘ = 2�z
in the RS state, we expect � / T�� , where we have defined
the positive exponent � = 1� 2/z, with z � 2. This is the
exponent that was extracted from the data fits in Fig. 3(d).

The asymptotic scaling form of �(T ) can also be derived in
a more transparent way: First, consider the well known NMR
spin-lattice relaxation rate 1/T1, which for a spin-isotropic
system is given by [55]

1

T1
=

�2

2

X

q

A2
(q)S(q,!N), (S3)

where � is the gyromagnetic ratio, A
q

is the Fourier trans-
form of the hyperfine constants describing the coupling be-
tween the nuclear and electronic spins, and !N is the field-
dependent nuclear resonance frequency. The hyperfine cou-
pling is short-ranged in space, and if the nucleus considered
is in the ion hosting the localized electronic spins (e.g., Cu
NMR in the material considered here), it is often sufficient to
consider purely local on-site interactions A0, so that the mo-
mentum sum in Eq. (S3) reduces to A2

0S0(!N), where S0(!)
is the on-site (single-spin) dynamic structure factor.

Typically, the resonance frequency is much lower than other
energy scales in the system, and the zero-frequency limit
can be considered (unless there are significant spin diffusion
contributions, which can cause low-frequency divergencies).
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Thus, with these simplifications, which are often completely
valid, the relaxation rate is proportional to S0(! ! 0) (with
prefactors that are known or can be measured). Since µSR
also is a probe of low-frequency local spin fluctuations, we
expect the same form;

� / S0(! ! 0). (S4)

The local dynamic spin structure factor S0(!) (and also its
q dependent variant) can be calculated in various analytical
approximative schemes or numerically; for example, it was
calculated in the case of the 1D RS state in Ref. 56. However,
the low-frequency limit is often challenging, especially in
QMC calculations, where the corresponding imaginary-time
dependent spin correlation function G0(⌧) has to be calcu-
lated and analytically continued to real frequency. To circum-
vent the latter step, Randeria et al. suggested a very useful ap-
proximation [57], which was expressed in a slightly different
form in Ref. 56. Neglecting unimportant factors, the approxi-
mation amounts to

S0(! ! 0) / 1

T
G0(⌧ = �/2), (S5)

and then the relaxation rate Eq. (S4) is approximated as

� / 1

T
G0(⌧ = �/2), (S6)

where � = 1/T . Here we will use this form, which is ex-
pected in general to become better with decreasing T , to de-
rive the critical scaling behavior of � in the RS phase.

As already mentioned above, a quantum-critical spatial cor-
relation function is conventionally written as Eq. (S2), where
d = 2 in our case. The on-site correlation in imaginary time
is modified by the dynamic exponent [36]

G0(⌧) / ⌧�(d+z�2+⌘)/z, (S7)

reflecting that space and (imaginary) time distances are related
as ⌧ ⇠ rz , which is used to obtain Eq. (S7) from Eq. (S2).
Thus, in the RS state with the staggered spatial spin corre-
lation function C(r) / r�2, the time correlations take the
form G0(⌧) / ⌧�2/z . Using this form in Eq. (S6) immedi-
ately gives the scaling form � / T�(1�2/z), in agreement
with the result presented earlier. The fact that we observe
this kind of scaling with z > 2, Fig. 3(d), with z also in-
creasing upon moving further away from the Néel phase as
predicted [22], constitutes strong support for an RS phase in
Sr2CuTe1�x

W
x

O6.

3. 2D HEISENBERG MODEL

For the Monte Carlo simulations of the classical Heisenberg
models, we used methods that have been previously explained
in detail in the literature [46, 47]. The simulations combine
heat-bath sweeps with energy conserving “over-relaxation”
updates. We found the latter to be particularly important for
reaching the ground state of systems with a small number of
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Figure S4. Plaquette impurity induced deformation of the Néel order
parameter for different system sizes, as in Fig. 5 but with J

0
2 = 0.

W-type impurities. In all simulations, we started at a high
temperature and gradually lowered the temperature in order
to alleviate problems with long autocorrelation times. For the
systems with more than one W impurity (random mixes of Te
and W plaquettes) disorder averages were taken over hundreds
of realizations of random locations of the impurities.

In Fig. 5 in the main text we demonstrated an impurity in-
duced deformation of the sublattice magnetization that decays
with the distance r from the impurity as 1/r2. This decay
implies that the total response of a single impurity diverges
logarithmically with increasing system size. We here provide
additional results demonstrating that the order parameter in-
deed vanishes for any concentration x > 0 of the impurities.

In the main paper, the Monte Carlo simulations were car-
ried out with parameters approximating those estimated [33]
for Sr2CuTe1�x

W
x

O6. The bulk parameters for x = 0, illus-
trated in Fig. 1(a), were J1 = 1 and J 0

2 = 0.1. Even with the
small frustrating J 0

2 terms, the T = 0 order parameter is the
fully colinear Néel state, and we do not expect that the frustra-
tion is in any way required to obtain the r�2 decay of the de-
formation. To explicitly demonstrate that the classical Heisen-
berg model with only the first-neighbor couplings J1 also has
the same impurity response as in Fig. 5, here in Fig. S4 we
show simulation results for J 0

2 = 0. These results confirm
that the r�2 form emerges as the system size increases.

The 1/r2 form with no angular dependence of the defor-
mation of the order parameter may appear surprising in light
of there being no such momopole-like solution of the Pois-
son equation, which provides the long-distance continuum de-
scription of the Néel state with impurities [58]. As will be
discussed in more detail elsewehere [59], the plaquette impu-
rity considered here can be regarded as a composite of two
dipoles, with the relative angle of the deformation vectors in
the xy plane chosen to minimize the energy. The angular de-
gree of freedom of the deformation is missing in treatments of
impurities in long-range ordered systems of spins with only
two components [60].

For the following results we go back to J 0
2 = 0.1, and

we expect the same kinds of behaviors also for J 0
2 = 0. In

Fig. S5(a) we show results for the disorder-averaged T = 0
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Figure S5. (a) Disorder averaged order parameter versus the concen-
tration of W-type plaquette impurities, graphed for several system
sizes. (b) Order parameter at several fixed impurity concentrations x
graphed vs the inverse system size.

Néel order parameter m versus the concentration of impuri-
ties. Increasing the system size consistently leads to a smaller
value of m. In Fig. S5(b) we show results versus the inverse
system size for several low impurity concentrations. Here we
can observe that m always decreases with increasing L. Given
the logarithmic singularity suggested by the single-impurity
response, the most natural scenario is that m vanishes in the
thermodynamic limit for all x > 0, but it is difficult to demon-
strate that reliably using results such as those in Fig. S5, be-
cause of the logarithmic-type singularity that makes extrapo-
lations difficult.

A better way to investigate the presence or absence of order
for small x, introduced in Ref. 5, is to consider a system with
a single impurity to have concentration x = 1/L2, and to
compute the initial slope,

R =

dm

dx
, (S8)

of the order parameter vs x based on this value;

R1(L) = L2
[1�m1(L)], (S9)

where m1 is the value of m computed with the single impurity
(averaged over the entire system). Then, if indeed m = 0 for
L ! 1 at x = 0

+, the slope R1(L) will diverge. In order to
take into account possible subtle interaction effects, we here
additionally use a modified approach with L randomly placed
impurities in the L2 system, for which the concentration is
x = 1/L and the slope is

R
L

(L) = L[1�m
L

(L)], (S10)
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Figure S6. (a) Néel order parameter vs inverse system size in systems
with a single impurity (blue symbols) and with L impurities (red
symbols), graphed versus the inverse of the system size L. (b) Slope
graphed on a log-linear plot of the magnetization curve at x = 0
based on the size-dependent definitions, Eqs. (S9) and (S10), with
the data in (a). The lines are fits corresponding to the logarithmically
divergent forms R

n

(L) ⇠ a

n

+b

n

log(L) with both definitions (with
systems containing n = 1 and n = L impurities).

where m
L

(L) is the impurity-averaged order parameter for L
impurities in the lattice with L2 spins.

In Fig. S6(a) we show m1(L) and m
L

(L) versus 1/L. In
the former, we can see clearly the expected approach to the
fully saturated bulk order parameter m = 1 when L increases.
For m

L

(L) we also have to asymptotically approach the same
limit, and this appears plausible though the convergence is
slower, as expected, because of the higher concentration x
for a given system size. In Fig. S6(a) we graph the initial
slopes defined in Eqs. (S9) and (S10). Both quantities diverge
logarithmically, confirming that the impurity response in the
x ! 0 limit has a logarithmic singularity. Any other inter-
pretation than m(x) = 0 for all x > 0 is then unlikely, as
indicated also by the results in Fig. S6 for small but finite im-
purity concentrations.

The Néel order suppression for any x > 0 is also supported
by the strong sensitivity of T

c

(x) to the 3D coupling J? in
Fig. 4(b), which suggests that the transition into the ordered
phase at x > 0 and T > 0 is due to the inter-layer effect. It
would be intersting to also study the deformation induced by
a single-impurity in the 3D coupled-layer system, but we have
not yet done so. We should expect the 1/r2 decay to be cut off
at some distance depending on J? (diverging as J?/J1 ! 0)
and, therefore, the slopes defined in Eqs. (S9) and (S10) to be
finite for any J? > 0.
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Related issues were recently discussed by Dey et al. in the
context of a host system (the Heisenberg model on the tri-
angular lattice) with coplanar AFM order [8]. While previ-
ous works have considered distruction of long-range order by
dipolar impurities in two-component spin systems (the XY
model) [60], this system lacks the rotational degree of free-
dom of the distortion field of impurities in the Heisenberg

case. The lack of previous works on the plaquette impurity
(which, as we pointed out, can be regarded as a composite
of two dipoles at a certain relative angle) likely reflects the
absence of experimental motivation before the investigations
of Sr2CuTe1�x

W
x

O6 demonstrated these particular coupling
patterns [30–33].


