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Defective spectral degeneracy, known as exceptional point (EP), lies at the heart of various intriguing
phenomena in optics, acoustics, and other nonconservative systems. Despite extensive studies in the past
two decades, the collective behaviors (e.g., annihilation, coalescence, braiding, etc.) involving multiple
exceptional points or lines and their interplay have been rarely understood. Here we put forward a universal
non-Abelian conservation rule governing these collective behaviors in generic multiband non-Hermitian
systems and uncover several counterintuitive phenomena. We demonstrate that two EPs with opposite
charges (even the pairwise created) do not necessarily annihilate, depending on how they approach each
other. Furthermore, we unveil that the conservation rule imposes strict constraints on the permissible
exceptional-line configurations. It excludes structures like Hopf link yet permits novel staggered rings
composed of noncommutative exceptional lines. These intriguing phenomena are illustrated by concrete
models which could be readily implemented in platforms like coupled acoustic cavities, optical
waveguides, and ring resonators. Our findings lay the cornerstone for a comprehensive understanding
of the exceptional non-Abelian topology and shed light on the versatile manipulations and applications
based on exceptional degeneracies in nonconservative systems.
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Exceptional points (EPs) are peculiar spectral singularities
induced by non-Hermiticity [1–4]. The past decade
has witnessed a myriad of remarkable phenomena and
functionalities in optics, photonics, and acoustics pivoted
on the non-Hermitian degeneracy [5,6], such as single-mode
lasing [7,8], unidirectional transmission or reflection [9–11],
enhanced sensing [12–15], and unconventional quantum
interference or correlation [16–19]. Unlike Dirac or Weyl
point in Hermitian systems, both the eigenenergies and
eigenvectors coalesce at an EP. Without symmetry con-
straints, an EP of second order is stable in two-dimensional
(2D) parameter space [20] and extends to exceptional line
(EL) in 3D [21–31].
From a “local” perspective, the simplest EP is dictated by a

nondiagonalizable two-by-two Hamiltonian whose eigen-
values have a square-root singularity. The EP can be assigned
a topological charge [32–34], or discriminant number [20]
that signifies the eigenvalue permutation [35,36] and ensures
its stability against small perturbations. While most of the
aforementioned phenomena are well understood by scruti-
nizing one single EP, in most generic non-Hermitian settings,
multiple exceptional degeneracies may emerge, annihilate,
coalesce, and braidwith varying system parameters. Thus far,
a holistic framework governing these collective behaviors
involving multiple EPs (or ELs) and their interplay in

multiband systems remains elusive. What new interesting
physics is nurtured by multiple EPs or ELs beyond their local
descriptions? And are there any “emergent” phenomena
intrinsic to multiband systems beyond the two-band case?
Addressing these questions not only provides a fundamental
understanding of non-Hermitian physics, but also sheds light
on the manipulations and functional design of exceptional
degeneracies relevant in a wide range of nonconservative
systems like coupled ring resonators [37–42], optical wave-
guides [43–47], acoustic cavities [48–52], or photonic quan-
tum walks [53,54].
In this Letter, we demonstrate that the collective behav-

iors and parametric evolution of multiple EPs or ELs are
governed by a universal non-Abelian conservation rule
(NACR). From the rule, we uncover two intriguing and
counterintuitive phenomena. Firstly, it is usually taken for
granted that two EPs with opposite charges annihilate
each other. In stark contrast, we show that an EP pair
(even the pairwise created) in multiband non-Hermitian
systems does not necessarily annihilate. Their annihilation
or coalescence is path dependent and exhibits an “adjacent”
effect. Secondly, as stereotyped in the two-band case, either
the nodal lines [27,28,55–61] or ELs [21–31] can form any
desired configurations (e.g., Hopf link, trefoil knot, etc.).
In multiband settings, the NACR puts strict constraints on
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the permissible configurations and evolution of ELs. For
instance, structures like Hopf link composed of non-
commutative ELs are forbidden, while novel staggered
exceptional rings are allowed. We further propose a three-
state system readily realizable in various experimental
platforms (e.g., acoustic cavities) to observe these phenom-
ena. We emphasize that these unexpected results are a
consequence of the underlying non-Abelian topology and
intrinsic to multiband non-Hermitian systems.
Non-Abelian conservation rule (NACR).—We consider a

generic N-band non-Hermitian system. The parameter space
is punctured by some exceptional degeneracies [EPs (ELs) in
2D (3D)], as sketched in Fig. 1(a). To address their collective
behaviors, we investigate the closed paths with a base
point P (start and end point) enclosing these degeneracies
in the parameter space. Such closed paths are characterized
by the fundamental group of the Hamiltonian space
XN [62–68]:

π1ðP; XNÞ ¼ BN: ð1Þ

BN is the braid group. Thus each path is assigned a braid-
valued topological invariant. It describes how the complex
eigenenergies evolve along the path. BN is non-Abelian
except forN ¼ 2withB2 ¼ Z, wherein the braid invariant is
the discriminant number [20]. Figure 1(b) depicts a repre-
sentative eigenlevel braiding along some closed path. A
convenient way to obtain the braid invariant is through
Artin’s word. After sorting the real parts of eigenenergies as
ReE1 ≤ ReE2 ≤ … ≤ ReEN , the ith level crosses over or
under the (iþ 1)th level is marked as τi or τ−1i . Any braid-
group element is represented as a sequence of over and under
crossings [e.g., τiτ−1iþ1 in Fig. 1(b)]. τi’s satisfy the braid
relations

�
τiτj ¼ τjτi; if jj − ij > 1;

τiτiþ1τi ¼ τiþ1τiτiþ1; any 1 ≤ i ≤ N − 1.
ð2Þ

The homotopy theory [70,71] immediately implies
that a smoothly morphing path without touching any
EPs or ELs, e.g., Γ → Γ0 as in Fig. 1(a), yields the same
braid invariant. It can be regarded as the NACR for static
non-Hermitian Hamiltonians. The flow conservation [72],
non-Hermitian doubling theorem [20], and no-go
theorem [65] are the special cases of this static NACR [68].
We proceed to consider a time-varying HamiltonianH½λðtÞ�
with parameter λ. We investigate the stroboscopic evolution
[35,36,48,73–75] of EPs or ELs wherein the nonadiabatic
transitions typically encountered in dynamic evolutions can
be avoided, and focus on a fixed path Γ in the parameter
space, as sketched in Fig. 1(a). It can be shown that as long
as no EPs or ELs pass through the path Γ during the whole
evolution, the braid invariants at the initial time bΓðtiÞ and
final time bΓðtfÞ are conjugate,

bΓðtfÞ ¼ b−1dynbΓðtiÞbdyn: ð3Þ

Here bdyn is purely a dynamical factor describing the
accumulated braiding of (instantaneous) eigenenergy from
time ti to tf at the base point P [68]. As the factor bdyn acts
indiscriminately on all the closed paths based at P, it would
not affect the non-Abelian properties of multiple EPs or
ELs. By suitably choosing the base point, we can set
bdyn ¼ 1. We dub Eq. (3) as a dynamical NACR under
parametric evolution. The braid invariant may change
during the evolution once extra EPs (ELs) enter or leave
the path. As will be seen later, this ostensibly simple rule is
powerful in analyzing the collective phenomena of multiple
EPs or ELs.
Annihilation and coalescence of EPs.—The non-Abelian

exceptional topology brings key nonlocal features in the
merging, annihilation, and coalescence process of EPs. As
the first application of the NACR, we investigate the
merging of two EPs with opposite charges. Figure 2(a)
sketches a bizarre case of two EPs (labeled as X and Y) in
the parameter space with a time-varying Hamiltonian. Y
bypasses another EP (labeled as Z) before rejoining with X.
For this case, Z enters and then leaves the closed
path Γ during the process. Suppose X and Y were initially
created pairwise from a Dirac point or a hybrid EP
[34,50,51,68,76–78]. The local braidings of X, Y, Z are
denoted as bX, bY , and bZ, respectively. We have the initial
braiding bΓðtiÞ ¼ bXbY ¼ 1 and final braiding bΓðtfÞ ¼
bXb−1Z b−1X bZ [68]. The two EPs do not annihilate each
other eventually, except when bX and bZ commute,
bXbZ ¼ bZbX. Otherwise, they would coalesce into a
higher-order EP. To visualize the difference, we note that
the path Γ at ti and tf is smoothly deformed to topologically

(a) (b)

FIG. 1. Schematics of the NACR and braid invariant. (a) Sketch
of closed paths based at P (start and end point) enclosing multiple
EPs (black dots) in the 2D parameter space. The (black) arrow
marks the direction of the path. The analysis equally applies to
ELs in the 3D parameter space. Path Γ (solid line) and Γ0 (dotted
line) are topologically equivalent by smooth deformation. With
varying system parameters, the EPs are shifted from their initial
positions to final positions (red circles), as marked by blue
arrows. (b) An exemplary braiding of eigenenergy strands of an
N-band non-Hermitian system along a closed path based at P.
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distinct paths s1 and s2 at some intermediate time [Fig. 2(a)].
As the noncommutativity occurs between neighboring
braidings from the relation in Eq. (2), the annihilation and
coalescence exhibit an “adjacent” effect, where an EP pair
between the ith and (iþ 1)th bands (with braiding τ�1

i ) is
unaffected (affected) by its nonadjacent (adjacent) EP (with
braiding τ�i�1).
Experimental realization.—The path-dependent annihi-

lation of EPs is best illustrated by the following three-state
model:

H ¼

0
BB@

ffiffiffi
2

p
i½γðtÞ þ iδ� −κ 0

−κ i½γ̃ þ iδ̃ðtÞ� −κ

0 −κ −
ffiffiffi
2

p
i½γðtÞ þ iδ�

1
CCA:

ð4Þ

The model can be readily implemented in various exper-
imental platforms, e.g., coupled acoustic cavities [48–52],
as depicted in Fig. 2(b). Here κ is the coupling strength
between neighboring cavities. κ ¼ 1 is set as the energy
unit. δ, δ̃ðtÞ, −δ are the detunings and γðtÞ, γ̃, −γðtÞ are the

gain or loss in the respective cavities. We note that the
main physics stays unchanged if only the loss term is
present [79,80].
We vary the system parameters as γðtÞ ¼ ðtþ 1Þ=4 and

δ̃ðtÞ ¼ 1 − ðt − 2Þ2 and examine the evolution of EPs in the
2D ðδ; γ̃Þ space [68]. Figure 2(c) plots the EP loci, with
different colors marking their braid-valued invariants [68].
In acoustic cavities, the EP loci can be extracted by
measuring the pressure response spectra. Targeted on a pair
of EPs created at ta ≈ 0.39 with opposite braidings τ1 and
τ−11 , we observe their subsequent detouring, merging at
tb ¼ 3, and splitting for t > tb. Note the abrupt change of
braid invariant [marked by the black triangle in Fig. 2(c)]
from τ−11 (red) to τ−12 τ−11 τ2 (green) when the EP undercrosses
another EP with braiding τ2 (orange). This is due to the
noncommutativity between the braidings τ−11 and τ2 [68].
Instead of annihilation, the two initial EPsmerge into a third-
order EP at tb ¼ 3. Figure 2(d) shows the eigenenergy
braidings associated with the path Γ at the two time instants
t ¼ ta (when they are created) and t ¼ tb (when they
coalesce). The braid invariant is 1 (trivial) for the former
and τ1τ

−1
2 τ−11 τ2 for the latter, in agreement with their non-

annihilation at t ¼ tb. In experiments, the different proper-
ties of the twomerging points can be extracted bymeasuring
the eigenspectra nearby or the phase rigidity [49].
Admissible ELs by the conservation rule.—In 3D, the

exceptional non-Abelian topology manifests as permissible
EL structures compatible with the NACR. To gain intuition,
Fig. 3(a) shows two configurations with the red EL
component either above or under the blue EL component.
Each EL’s orientation (arrow) is assigned through the right-
hand rule [72]. For the red EL in the left case, the braid
invariants at the two ends are the same because the two
paths are equivalent by smoothly sliding along the red EL.
For the right case, their braid invariants are conjugate by the
blue EL: b01 ¼ b−12 b1b2 when the blue EL lies above the red
EL [68]. The NACR implies that if the two ELs do not
commute b1b2 ≠ b2b1, one configuration cannot morph
into another: noticing that no EL crosses the two end paths
during the deformations (inside the black box), and the
braid invariants should stay intact.
Further, two noncommutative ELs cannot form a Hopf

link, as depicted in Fig. 3(b). One can check that the braid
invariants along the central and faraway paths are not
identical. It contradicts the static NACR as the two paths are
equivalent. An alternative viewpoint from the dynamical
NACR starts from two Weyl points (of a Hermitian system)
of two adjacent band gaps separated in the parameter space.
By adding gain or loss, two unlinked ELs are spawned from
the two Weyl points. The formation of the Hopf link
necessitates the illegal crossings in Fig. 3(a). Similarly, we
can exclude many other no-go EL structures solely from the
NACR without sophisticated model calculations.
We proceed to illustrate a permissible evolution ① → ⑤

as per the NACR [Fig. 3(c)]. The overall process effectively

FIG. 2. Annihilation and coalescence of EPs in multiband non-
Hermitian systems. (a) Time-evolution loci of the three EP X, Y, Z
in the parameter space (black curves). Path Γ at the initial (final)
stage is topologically equivalent to s1 (s2). (b) (top) Schematics of
three coupled acoustic cavities to realize the model (4). κ is the
coupling strength. δ, δ̃ are the detunings. (bottom) Control
parameters γðtÞ and δ̃ðtÞ of the protocol as a function of time
t. Here γðtÞ ¼ ðtþ 1Þ=4, δ̃ðtÞ ¼ 1 − ðt − 2Þ2. (c) EP loci of the
model (4) in the 2D ðδ; γ̃Þ space. The EPs are marked by different
colors according to their braidings. ta ≈ 0.39 and tb ¼ 3 are
the time instants when the EP pair emerges and coalesces. The
sudden changes of colors are marked by black triangles. (d) The
eigenvalue braidings along the path Γ in (c) at t ¼ ta and t ¼ tb.
For (c) and (d) the base point P is pinned at ðδ; γ̃Þ ¼ ð0;−3Þ.
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changes EL configurations from a direct crossing to a
“tangled” crossing. We take the cavity model (4) yet with a
different dynamical protocol:

H ¼

0
BB@

ffiffiffi
2

p
i½γðtÞ− iδ� −κ 0

−κ i½−γ̃þ iδ̃ðβÞ� −κ

0 −κ −
ffiffiffi
2

p
i½γðtÞ− iδ�

1
CCA:

ð5Þ

We set δ̃ðβÞ ¼ 0.3½ðβ − 1Þ3 þ 3ðβ − 1Þ2 − 2� (β ∈ R) and
slowly vary the parameters γðtÞ ¼ t to examine the evo-
lution of ELs in the 3D ðβ; γ̃; δÞ space at different time
instants [68]. Starting from two noncommutative ELs (red
and blue) in ①, we observe their subsequent touching in ②,
recombination into staggered rings in ③, and further
touching and recombination into tangled ELs in ④⑤.
The commutative (noncommutative) components are
marked in the same (different) color. In all steps, the braid
invariants for the representative path l1 stay unchanged as
required by the NACR. The touching in ② is through
higher-order EPs, while in ④, it leads to the reconnection of
ELs with adjusted orientations. Unlike the Hopf link in
Fig. 3(b), the configuration in ③ has additional EL
components at the two wings and is allowed by the

NACR. In ③, the first (or third) and second components
(counted from left to right) do not commute and cannot be
trivially untied. This is verified by the nontrivial braiding of
eigenvalue strands in Fig. 3(d) (top panel). The braid
invariant for path l2 at step ①⑤ is obviously trivial. The
NACR indicates that the braid invariant for l2 in step ③ is
also trivial, as verified from the trivial braiding of eigen-
value strands in Fig. 3(d) (bottom panel). Thus the second
and fourth (or the first and third) components commute
(in the same color). We leave detailed model calculations
and more interesting examples of admissible ELs to the
Supplemental Material [68].
Discussions.—To conclude, we have demonstrated that

the collective behaviors of multiple EPs or ELs in generic
multiband non-Hermitian systems are governed by the
universal NACR. From this rule, we have uncovered the
exotic non-Abelian features of exceptional degeneracies,
including the path-dependent annihilation (coalescence) of
EPs and the admissible or no-go EL structures. We have
further proposed the realizations of these counterintuitive
phenomena in acoustic-cavity experiments.
The collective behaviors of multiple EPs or ELs can only

be fully captured by the braid invariant which records
all the necessary information of non-Abelian topology
in multiband non-Hermitian systems. It avoids the
oversimplification or ambiguity of the discriminant number
or permutation group [52,68,75] (a finite subgroup of BN).
For instance, a closed path enclosing two EPs of the
same topological charge (which cannot annihilate) has
trivial band permutations. As a bonus, our framework, in
an intuitive and exact way, solves the starting-point
problem in stroboscopic encircling multiple EPs [81,82].
Different from the homotopy-knot theory of separable
bands [62–64], or an isolated EP [65,83] without a base
point, the based path is necessary to account for the
interplay of multiple EPs. Choosing another base
point ends up with a conjugate braid invariant [84]. Yet
the non-Abelian physics does not rely on any specific
choice.
Applying our results to the 2D or 3D momentum space,

the NACR brings distinct non-Abelian features to multi-
band non-Hermitian metals with exceptional band touch-
ings. It is worth mentioning the key differences from
multiband Hermitian topological metals protected by PT
or C2T symmetry described by quaternion charges [85–88]
(a finite group). There, the non-Abelian topology is
attributed to the frame rotations of wave functions, and
there is a definite meaning for band gaps and labeling.
(Note the subtlety for Floquet systems [89].) In stark
contrast, the complex eigenvalues and defective degener-
acies in non-Hermitian settings invalidate a globally
consistent numbering of energy bands and band gaps.
The non-Abelian topology is encoded in the eigenenergies.
Furthermore, the (second-order) EPs (ELs) are defective
and stable without symmetry requirements.

(a) (b)

(c) (d)

FIG. 3. Admissible exceptional lines (ELs) constrained by the
NACR. (a) Two different configurations of ELs (red and blue
lines). The dotted lines denote the encircling paths based at P with
their braid invariants labeled. (b) Hopf link of noncommutative
ELs as a no-go structure. (c) The permissible evolution process of
two noncommutative ELs (in red and blue) for model (5). The
touchings in step ② are through higher-order EPs (black dots).
The braid invariants stay unchanged in all the steps for path l1 and
l2 as per the NACR. (d) the eigenvalue braidings for path l1 and l2
at step ③. The arrows of the ELs in (a)(b)(c) mark the flow.
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Besides acoustic cavities, the illustrated models and
phenomena could also be realized and observed in other
platforms like coupled optical waveguides [43–47] or ring
resonators [37–42]. Besides the EP annihilation (coales-
cence) and admissible EL structures presented here, the
NACR can be utilized to analyze various other collective
phenomena, e.g., the exchanges or braidings of EPs or ELs,
where the infinite many braid-group elements should
give rise to unique non-Abelian properties. Our findings
are generic with far-reaching implications in various fields,
including optics and photonics to microwaves and
acoustics. They should motivate further research on the
applications and functionality based on exceptional non-
Hermitian physics.
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