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Knots have a twisted history in quantum physics. They were abandoned as failed models of atoms. Only
much later was the connection between knot invariants and Wilson loops in topological quantum field
theory discovered. Here we show that knots tied by the eigenenergy strings provide a complete topological
classification of one-dimensional non-Hermitian (NH) Hamiltonians with separable bands. A Z2 knot
invariant, the global biorthogonal Berry phaseQ as the sum of the Wilson loop eigenphases, is proved to be
equal to the permutation parity of the NH bands. We show the transition between two phases characterized
by distinct knots occur through exceptional points and come in two types. We further develop an algorithm
to construct the corresponding tight-binding NH Hamiltonian for any desired knot, and propose a scheme
to probe the knot structure via quantum quench. The theory and algorithm are demonstrated by model
Hamiltonians that feature, for example, the Hopf link, the trefoil knot, the figure-8 knot, and the Whitehead
link.

DOI: 10.1103/PhysRevLett.126.010401

Extending topological band theory to non-Hermitian
(NH) systems has significantly broadened and deepened
our understanding about the topology of Bloch bands. NH
Hamiltonians [1–9] are effective descriptions of a diverse
set of many-body systems ranging from photonic systems
with gain or loss [10–31] to quasiparticles of finite
lifetime [32–39]. In contrast to Hermitian systems, NH
Hamiltonians have complex eigenenergies. This unique
property gives rise to a number of intricate phenomena
without Hermitian counterparts including, for example, the
exceptional point (EP), where eigenstates coalesce [40–46],
and the NH skin effect [47–62], where an extensive number
of eigenmodes are localized at the boundary. A synopsis of
earlier NH band theory is the classification of topologically
distinct NH Hamiltonians based on symmetry [63–68] akin
to the Hermitian tenfold way [69–72]. This classification
scheme starts by distinguishing two types of band gaps, the
line gap and point gap. While NH bands with line gaps can
be continuously deformed to their Hermitian counterparts,
the point-gap topology is intrinsically NH [73–75] and
explains the NH skin effect.
Recently it was recognized that the NH band theory in

Refs. [63–66] based on the gap dichotomy is incomplete. A
NH Hamiltonian may not possess a well-defined point or
line gap. A more general theory only assumes separable
bands [76], i.e., the eigenenergies EjðkÞ ≠ ElðkÞ for all
j ≠ l and crystal momentum k. Moreover the ubiquitous
twisting and braiding of complex eigenenergies give
rise to new topological invariants. For example, in one
dimension, as k is varied form 0 to 2π, the eigenenergy
trajectories fEjðkÞg may form a “braid” (see Fig. 1 below).
Two topologically distinct NH band structures (two braids)

cannot be continuously deformed into each other while
keeping the bands separable. Based on homotopy analysis,
recent work established that the distinct topological sectors
of 1D NH Hamiltonians with N separable bands corre-
spond to the conjugacy classes of the braid group BN
[77,78]. Unfortunately, homotopy theory alone does not
offer an algorithm to compute the invariants directly from
the Hamiltonian [79]. This raises the following open
questions. (i) Given a generic NH Hamiltonian, how to
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FIG. 1. Four examples of links and knots in 1D NH Bloch
bands. Braid operator τi (τ−1i ) denotes the ith string crossing over
(under) the (iþ 1)th string from the left. Colors label different
knot components. Q is the biorthogonal Berry phase defined in
Eq. (3). The four knots are realized by NHHamiltonians T2, T3 as
defined in Eq. (6),H8 andHw [81], respectively. The eigenenergy
strings are shown in space (ReE, ImE, k).
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determine its topological invariant? (ii) How to describe the
phase transition between two topologically distinct phases?
(iii) How to design a NH Hamiltonian whose bands form a
desired braid pattern?
In this Letter, we answer these questions by developing

a knot theory for NH Hamiltonians. We prove that the
topology of 1D NH Hamiltonians with separable bands is
fully characterized by the knots (or links) formed by
the eigenenergy strings, and the topological invariants
are thus knot invariants. This perspective based on
knots enables us to predict two types of phase transitions
accompanied by the emergence of EPs and abrupt
changes in the biorthogonal Wannier centers. We also
present an algorithm to design tight-binding Hamiltonians
to realize arbitrary knots, and demonstrate how the knots
could be revealed from quantum quench experiments and
realized in electric circuits and photonic arrays. In contrast
to the various knots residing in the 3D k space and formed
by the zero-energy nodal lines of topological semimetals
[86–99], the knots here live in the energy-momentum
space and describe the topology of the entire NH band
structures.
Knot classification of non-Hermitian band structures.—

Our first main result is that 1D NH Hamiltonians with
separable bands and no symmetry are completely classified
by knots inside a solid torus. It follows that a topological
invariant of the band structure must be a knot invariant. To
prove this statement, first we summarize the results of
Refs. [77,78]. A 1D NH band structure with N separable
bands defines a map from the Brillouin zone, a circle S1, to
the configuration space XN ¼ ðConfN × FNÞ=SN . Here
ConfN is the ordered N tuples of complex energy eigen-
values, the quotient space FN ¼ UðNÞ=UNð1Þ describes
the energy eigenvectors, and SN is the permutation group.
Since π1ðFNÞ ¼ 0, the equivalent classes of non-based
map ½S1; XN � can be reduced to ½S1;ConfN=SN �, and further
to the conjugacy classes of the braid group BN ¼
π1ðConfN=SNÞ [77,78]. While this formal result based
on homotopy theory is rigorous, the conjugacy classes
of BN are hard to compute or visualize [80]. Here, we
further relate them to knots. Notice that the braids of energy
eigenvalues (constructed explicitly below) are closed due to
the periodicity of the Brillouin zone, so the braid space is a
solid torus. A theorem in knot theory dictates that two
closed N braids in BN can be smoothly deformed into each
other in the solid torus iff they are conjugate to each other
[80]. Thus, thanks to the one-to-one correspondence
between the conjugacy class of N braids and knots, we
reach the conclusion that knots provide a natural language
to classify 1D NH Bloch bands.
It is physically intuitive to construct the knot for a given

1D NH Hamiltonian HðkÞ. The procedure is outlined
as follows. The complex eigenenergies form a set E ¼
fEjðkÞgwith band index j ¼ 1;…; N. They are the roots of
the characteristic polynomial (ChP)

fðλ; kÞ ¼ det½λ −HðkÞ� ¼
YN
j¼1

½λ − EjðkÞ�: ð1Þ

As k evolves from 0 to 2π, the trajectory of EiðkÞ defines a
string in the 3D space spanned by ðReE; ImE; kÞ.
Overall N such strings may tangle with each to form a
braid shown in Fig. 1. A braid can be faithfully described by
its braid diagram obtained by projecting the N strings onto a
chosen 2D plane parallel to the vertical k axis. A braid
diagram consists of a sequence of string crossings, each
characterized by a braid operator τi in Artin’s notation. For
instance, when projected on plane ImE ¼ þ∞, τi ðτ−1i Þ is
defined by ReEi ¼ ReEiþ1 and ImEi < ImEiþ1ðImEi >
ImEiþ1Þ. In other words, τi ðτ−1i Þ indicates that the ith string
crosses over (under) the (iþ 1)th string from the left. Note
that two nonadjacent braid operators commute: τiτj ¼ τjτi
for jj − ij ≥ 2, and τiτiþ1τi ¼ τiþ1τiτiþ1. The entire braid is
then specified by its braid word, a product of braid operators,
see Fig. 1. The set E is identical for k ¼ 0 and k ¼ 2π, so the
braid is closed and becomes a knot (oriented with increasing
k) in the ðReE; ImE; kÞ space, which is topologically a solid
torus. The end result of k evolution over one period 2π is the
permutation

σ ¼
�

E1ð0Þ E2ð0Þ … ENð0Þ
E1ð2πÞ E2ð2πÞ … ENð2πÞ

�
: ð2Þ

As usual, we define its parity PðσÞ ¼ �1 if σ can be
expressed as an even or odd number of transpositions.
The braid diagram may not be unique for a given band

structure. Different choices of the projection plane yield
isotopic braids related to each other by Reidemeister
moves. Moreover, choosing different starting points k0
for the k interval ½k0; k0 þ 2π� corresponds to braids within
the same conjugacy class. This provides a clear under-
standing of why the conjugacy classes, not the elements, of
BN are used for classification. These different choices,
however, always yield the same unique knot, which is
invariant under Reidemeister moves or translations along
the k axis. Thus using knots to describe the NH band
structure is not only natural but also economical, free from
the arbitrariness in braid representations. Topologically
distinct NH band structures correspond to distinct knots.
Figure 1 lists four knots, known as the Hopf link, trefoil
knot, figure-8 knot, and Whitehead link. The associated
braids are also shown. To avoid clutter, hereafter we will
also refer to links loosely as knots.
Knot invariants.—It follows immediately that 1D NH

bands are characterized by knot invariants [100,101]. In
addition to the well-known polynomial invariants [81], here
we introduce a Z2 topological invariant Q and relate it to
the parity of band permutations defined earlier. For NH
Hamiltonians, the right and left eigenvectors are defined as
HðkÞjψni ¼ EnðkÞjψni and H†ðkÞjχni ¼ E�

nðkÞjχni, which
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satisfy the biorthogonal normalization hχmjψni ¼ δmn
[102]. Define the non-Abelian Berry connection Amn

B ¼
ihχmj∂kjψni and the global biorthogonal Berry phase [103]

Q ¼
I

2π

0

dkTr½AB�: ð3Þ

One can prove [81] that Q is quantized to 0 (π) when the
band permutation σ is even (odd),

eiQ ¼ ð−1ÞPðσÞ: ð4Þ

While Q is indeed a knot invariant, due to its Z2 nature it
only coarsely classifies knots into two groups. For example,
the Hopf and figure-8 knot have the same Q ¼ 0,
and similarly trefoil and Whitehead knot have Q ¼ π.
In Hermitian systems, Wilson loop provides a powerful
characterization of band topology [104–106]. For NH
systems, we define the biorthogonal Wilson loop from
the Berry connection

WB ¼ Pei
H

2π

0
dkAB; ð5Þ

where P denotes path ordering. Its eigenphases νn,
defined by WBjμni ¼ eiνn jμni, are the Wannier centers
[31,107,108]. It can be shown [81] that Q ¼ P

n νn.
A toy model: The twister Hamiltonian.—To illustrate

different knots and their phase transitions, we introduce a
simple two-band NH Hamiltonian

Tn ¼
�
0 eink

1 0

�
; ð6Þ

where n counts the number of twists of the two band
strings, E� ¼ �eiðnk=2Þ, as k evolves from 0 to 2π. The
braid word of Tn is simply τn1. The twister [109]
Hamiltonian Tn for n ¼ 0, 1, 2 gives rise to the unlink,
unknot, and Hopf link, respectively. We will use Tn as a
building block to construct a model with two tunable
parameters (m1, m2),

H12ðkÞ ¼ im1σz þm2T1 þ T2: ð7Þ

It has three topologically distinct phases, the Hopf link
(blue region), the unlink (green), and the unknot (pink)
phase; see the phase diagram in Fig. 2(b). The phase
boundaries are given by m2

1 þm2
2 ¼ 1 and m2 ¼ �m1 − 1.

The knot topology is apparent from the two eigenenergy
strings (blue and red solid lines in insets). For the unlink,
the two strings do not braid, each forming a loop; for the
Hopf link, the two strings braid twice, and the two loops are
linked; for the unknot, the two strings braid once to form
one single loop. We emphasize that all three phases here
exhibit NH skin effect [47–52,54–62] because projecting
the knot onto the complex E plane yields a band structure

(dash lines) with a point gap [73–75]. Previous classifica-
tion framework [63–68] based on line or point gaps
however cannot distinguish these phases or describe their
phase transitions. The classification presented here based
on knots is finer and complete.
Phase transition through exceptional points.—A tran-

sition between two phases characterized by different knots
must occur through the crossing of the strings, i.e., through
band degeneracy points. There are two kinds of band
degeneracies in NH systems, the exceptional point (EP) or
nondefective degeneracy point (NDP). The key difference
is that EPs are defective, where the eigenvectors coalesce,
leaving the Hamiltonian non-diagonalizable, while at an
NDP, the eigenstates remain distinct. For a general 1D NH
band with no symmetry, NDPs are unstable and will split
into several EPs by small perturbations [110]. The proof
of this statement and an example can be found in the

FIG. 2. Phase diagram and phase transitions of H12ðkÞ defined
in Eq. (7). (a) Schematic of knot transitions. Type-I (type-II)
transition occurs by going through one (two) EP. (b) The phase
diagram of H12 with parameters m1 and m2. The blue, pink, and
green regions label the Hopf link (τ21), unknot (τ1), and unlink
phase (τ01), respectively. In each region, a representative band
structure is plotted. (c) and (e) Eigenenergy jEðm1; kÞj along the
cut labeled by I and II, respectively, in (b): an EP is visible at
ð1= ffiffiffi

2
p

; πÞ in (c), while there are two EPs at (1,0) and ð1; πÞ in (e).
(d) and (f) The Wannier centers νn along the cut I and II.
(g) Schematic of a periodic electric circuit that realizes H12. The
unit cell (oval) contains two “sites,” the red and blue nodes,
connected by resistors R, inductors L, and negative impedance
converters C1;2;3; see Supplemental Material [81] for details.
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Supplemental Material [81]. Thus we are led to the
conclusion that a transition between phases of distinct
knots is accompanied by exceptional points.
There are two scenarios for two strings to undergo a

“knot transition” and they are sketched in Fig. 2(a). In a
type-I transition, two strings change from cross to no-cross
(or vice versa) by going through an EP; the braid word
τ�1
i → τ0i and Q also changes. One example is trefoil knot
transforming to Hopf link via τ1 → τ01. A type-II transition
occurs when an overcross becomes an undercross or vice
versa, so the braid word τi → τ−1i . It is usually accompanied
by two EPs, while Q remains the same. For H12ðkÞ, the
transition from the Hopf link to the unknot along the line
m1 ¼ m2 belongs to type I and the EP is located at
ðm1; kÞ ¼ ð1= ffiffiffi

2
p

; πÞ, as shown in Fig. 2(c). The transition
from the Hopf link to the unlink along them2 ¼ 0 line is of
type II, with two EPs located at ðm1; kÞ ¼ ð1; 0Þ and ð1; πÞ
as shown in Fig. 2(d). Note that the Wannier centers
undergo abrupt changes at these transitions, see Figs. 2(d)
and 2(f).
How to design knotty Hamiltonians.—Beyond these

simple knots, it becomes challenging to construct the
tight-binding Hamiltonian HKðkÞ whose bands tie into
certain given knot K. Here we outline a solution to this
problem, which aids the experimental realization and probe
of NH knots. The key is to find a ChP fðλ; kÞ with λ ∈ C
and k ∈ ½0; 2π� whose roots produce the desired eigene-
nergy strings. Our algorithm consists of two steps [81]. In
the first step, fðλ; kÞ is constructed from the data of knot K.
From the braid diagram of K, decompose the permutation σ
into a series of cycles σ ¼ s1s2… with ln the length
of cycle sn. For each cycle, standard trigonometrical
parametrization [81,111] generates two real functions
FnðkÞ, GnðkÞ. The strings in cycle sn are given by
coordinates ½FnðkjnÞ; GnðkjnÞ; k� with kjn ¼ ðkþ 2πjnÞ=ln
and jn ¼ 0;…; ln − 1. Thus the roots of the following ChP,

fðλ; kÞ ¼
Y
sn

Y
jn

½λ − FnðkjnÞ − iGnðkjnÞ�; ð8Þ

yield the desired knot K. The ChP obtained is a power
series of λ, fðλ; kÞ ¼ λN þP

N−1
j¼0 ζjðkÞλj, where ζjðkÞ is a

Laurent series of e�ik. In the second step, Hamiltonian HK
is constructed from fðλ; kÞ above: it is a sparse matrix [81]
with the only nonzero elements being

Hiþ1;i
K ¼ 1; i ¼ 1; 2;…; N − 1;

Hi;1
K ¼ −ζN−iðkÞ; i ¼ 1; 2;…; N: ð9Þ

For example, applying this algorithm to braid word τn1
yields the twister Hamiltonian Tn. The NH Hamiltonians
for the figure-8 knot andWhitehead link,H8 andHw shown
in Fig. 1, are similarly obtained. Their explicit expressions
are lengthy and can be found in the Supplemental Material

[81]. In general, more complicated knots require longer-
range couplings in the tight-binding Hamiltonian.
Experimental realization and probe of knots.—The

various proposed knots and their associated NH
Hamiltonians can be realized in platforms such as photonic
lattices or electric circuits [112]. For the former, the
asymmetric coupling between the sites (ring resonators)
can be implemented via auxiliary microring cavities, see
Ref. [81] for details. For the latter, the NH Hamiltonians
can be simulated by the admittance matrix. For example,
the twister Hamiltonian H12 is simulated by the periodic
circuit shown in Fig. 2(g). It consists of resistors R,
inductors L, and negative impedance converters Ci that
provide intra- and interunit cell couplings, for details see
Ref. [81]. Measurement of the admittance spectrum
[60,62,113] yields fEjðkÞg, which provides a direct probe
of the knotted band structures and the EPs.
An alternative probe of knots is through the eigenstates.

As an example, consider the two-band system H12ðkÞ
where the eigenstates can be accessed via Bloch state
tomography [114–118]. Each of the two right eigenstates
jψ1;2ðkÞi corresponds to a point on the Bloch sphere. As k
is varied, their trajectories trace out two curves (in red and
blue) on the Bloch sphere as illustrated in Fig. 3. For the
Hopf-link phase (a), each curve is a closed loop, and they
intersect twice. In the unlink phase (c), we have two closed
loops that remain separated. Both phases have even
permutation parity, Q ¼ 0. In contrast, in the unknot phase
(b), the red curve joins the blue curve to form a single loop,
and Q ¼ π. It is clear from this example that the knot
topology of two eigenenergy strings translates to character-
istic crossing patterns of the eigenvector loops on the Bloch
sphere, which can be distinguished from Bloch state
tomography. The invariant Q can also be read out directly.
We propose an effective way to prepare jψ1;2ðkÞi via

quantum quench. From an (arbitrary) initial state jξ0i at
time t ¼ 0, the system evolves according toH12ðkÞ. Let the
jth eigenenergy EjðkÞ ¼ ϵj − iγj; the state at later time
t is jξðk; tÞi ¼ P

j e
−iϵjte−γjthχjjξ0ijψ ji with ℏ ¼ 1. Thus,

FIG. 3. Signatures of knots after quantum quench. The red and
blue curves are the eigenvectors jψ1;2ðkÞi of H12ðkÞ on the Bloch
sphere. From an initial state jξ0i ¼ ð1; 0ÞT (north pole), the state
evolves with H12ðkÞ and after a long time falls into the solid line
part of the eigenstates. The arrow denotes increasing k from 0 to
2π, and the orange (green) dots represent the k ¼ 0 (k ¼ π) mode.
The parameters are (a) m1 ¼ m2 ¼ 0.5, the Hopf-link phase;
(b)m1 ¼ m2 ¼ 0.9, the unknot phase; and (c) m1 ¼ 1.2,m2 ¼ 0,
the unlink phase.
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after a long time, the time-evolved state will be purified and
fall into the eigenstate with smaller γj. Our numerical
simulation of the quench dynamics verifies that starting
from jξ0i ¼ ð1; 0ÞT (the north pole), long-time evolution
will bring the state to the solid curves in Fig. 3 (the dashed
curves are reached by evolution with −H12). While the
k-resolved tomography measurement of the quenched state
does not yield the full band structure, different knots can be
distinguished by their signatures in the eigenvectors as
shown in Fig. 3 [81].
Going beyond conjugacy classes of braid groups, we

have established a knot classification of generic 1D NH
Hamiltonians with separable bands: topologically distinct
NH bands are described by different knots, and their
transitions are through EPs. A simple model is built from
Tn to showcase various knots, and an algorithm is presented
to construct the corresponding tight-binding Hamiltonian
for any given knot. We have demonstrated how these knots
can be experimentally realized and probed. Other physical
consequences of the knotted bands, including the relation
between the NH knots and skin effect, will be left for
further study [81]. An important open problem is to extend
the analysis to higher dimensions and other symmetry
classes, where the interplay of band braiding, eigenstate
topology, and symmetries gives rise to rich unexplored
phenomena, e.g., torsion invariants [77,78].
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