
Deep Variational Free Energy Approach to Dense Hydrogen

Hao Xie ,1,2 Zi-Hang Li ,1,2 Han Wang ,3,* Linfeng Zhang,4,5,† and Lei Wang1,6,‡
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

3Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics,
Fenghao East Road 2, Beijing 100094, China

4DP Technology, Beijing 100080, China
5AI for Science Institute, Beijing 100080, China

6Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 19 December 2022; revised 1 August 2023; accepted 14 August 2023; published 22 September 2023)

We developed a deep generative model-based variational free energy approach to the equations of state
of dense hydrogen. We employ a normalizing flow network to model the proton Boltzmann distribution and
a fermionic neural network to model the electron wave function at given proton positions. By jointly
optimizing the two neural networks we reached a comparable variational free energy to the previous
coupled electron-ion Monte Carlo calculation. The predicted equation of state of dense hydrogen under
planetary conditions is denser than the findings of ab initio molecular dynamics calculation and empirical
chemical model. Moreover, direct access to the entropy and free energy of dense hydrogen opens new
opportunities in planetary modeling and high-pressure physics research.
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Hydrogen is the most abundant element in the visible
universe. It is also the first and simplest element in the
periodic table, consisting of only a proton and an electron.
Despite its simplicity, high-pressure dense hydrogen exhib-
its rich physical phenomena [1] such as metallization [2]
and high-temperature superconductivity [3]. A thorough
understanding of these phenomena is of fundamental
importance to a broad range of disciplines, including
planetary physics [4] and nuclear fusion [5]. For these
reasons, accurate prediction of the equations of state and
phase diagram of dense hydrogen has been a touchstone for
computational methods.
Dense hydrogen is a quantum many-body system con-

sisting of coupled protons and electrons. The Fermi
temperatures of proton and electron are well separated
due to their large mass difference. Therefore, for a wide
temperature range that falls in between these two scales,
one can safely treat protons as classical particles and
assume the electrons stay in their instantaneous ground
state with fixed proton positions. Solving the electronic
Hamiltonian provides an effective potential for the protons.
However, since the energy scale of electrons is much higher
than that of protons, even a tiny error in the electronic
calculation could significantly affect the predicted proton
configurations. Standard ab initio molecular dynamics
(MD) [6] solves the electronic structure problem using
density functional theory calculations, whose reliability
depends on the specific choice of density functionals [7].
Using machine-learned potential energy surfaces can push

such MD simulations to much larger system sizes and
longer times [8,9]. However, such an approach at most
reflects the accuracy of the underlying electronic structure
model that generates the training data, and the reliability
issue still persists [10–14].
A more reliable method to solve the many-electron

ground state problem is quantum Monte Carlo [15]. In
the context of dense hydrogen, one can sample the proton
configurations according to stochastic estimates of the
energy or force acting on the protons, as were previously
done in the coupled electron-ion Monte Carlo (CEIMC)
[16] method and Langevin MD [17], respectively.
However, these nested Monte Carlo approaches have
two unsatisfactory drawbacks. First, the statistical noises
in the estimated energy or force hamper an unbiased
sampling of the protons, similar to the case of Bayesian
inference with noisy log-likelihood functions [18]. There
have been three remedies in the literature: (a) the noisy
Monte Carlo approach [19] assumes the noises are suffi-
ciently small and treats the acceptance rate using the von
Neumann-Ulam method; (b) the penalty method [20]
assumes that the noisy energy estimates follow the
Gaussian distribution and reduces the acceptance rate with
an empirically estimated variance; (c) the stochastic gra-
dient Langevin dynamics [17,21,22] relies on sufficiently
small integration steps with noisy forces to sample from the
correct Boltzmann distribution. In all cases, statistical
uncertainties in the energy functions deteriorate the sam-
pling efficiency and may even introduce bias to the results.
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These downsides have partially reduced the reliability
advantage of employing more sophisticated quantum
Monte Carlo solver for dense hydrogen. For example,
suppose one has obtained different results with different
flavors of quantum Monte Carlo methods or initial proton
configurations, it is rather difficult to tell which results to
trust. Second, the nested nature of the approach makes the
computation very demanding: one has to make the inner
electronic calculation fully converge to ensure correct
sampling of the Born-Oppenheimer potential energy sur-
face of protons. Such a stringent requirement makes it
rather tedious to ensure convergence of the method [23,24]
or limits one to manually crafted variational wave functions
with a few or even no variational parameters [25,26].
In light of these difficulties faced by the nested

Monte Carlo approaches [16,17], we introduce a deep
generative model-based variational free energy approach
for the dense hydrogen problem. We will minimize the
variational free energy with respect to a trial density
matrix [27]

F ¼ kBTTrðρ ln ρÞ þ TrðρHÞ; ð1Þ

with the two terms being entropy and energy, respectively;
kB is the Boltzmann constant and T is the temperature.
Although free energy minimization is a fundamental
principle in quantum statistical mechanics, its practical
application is inhibited by the intractable computational
cost of entropy term [28]. Recent advances in deep
generative models [30] have removed this roadblock.
Variational free energy calculations based on deep gen-
erative models have been applied to a wide range of
problems, including the Ising models [31–34], lattice field
theories [35–37], atomic solids [38,39], quantum dots [40],
and uniform electron gases [41]. Because of the intrinsic
difficulties of alternative quantumMonte Carlo approaches,
the deep generative model-based variational free energy
methods have the potential to become an indispensable tool
for many-fermion problems at finite temperature, such as
Refs. [40,41] and the hydrogen problem considered here.
We represent the density matrix ρ using two neural

networks as shown in Fig. 1, one for the proton Boltzmann
distribution and one for the electron wave function.
Variational free energy calculation of Eq. (1) then amounts
to solving a stochastic optimization problem [42]. In such a
formulation, the statistical noises in the estimated energy
will not be as catastrophic as in the Monte Carlo sampling
[16,17]. In this respect, the present approach trades the
shortcomings of nested Monte Carlo approaches [16,17]
with a variational bias. However, by making use of deep
neural network ansatzes one can largely overcome this
issue by progressively lowering the variational free energy.
With further systematic improvements of variational ansatz
and optimization scheme, we anticipate one will reach a

reliable description for the whole phase diagram of dense
hydrogen with the variational free energy approach [43].
Consider N protons and N electrons in a periodic cubic

box of volume L3. The system is unpolarized so there are
N=2 spin-up and spin-down electrons, respectively. The
density of the system is specified by the dimensionless
parameter rs ¼ ð3=4πNÞ1=3L=a0, where a0 is the Bohr
radius. In the atomic units, the Hamiltonian of the hydrogen
system reads

H ¼
X
i

−∇2
i

2
þ
X
i<j

1

jri − rjj
þ
X
I<J

1

jsI − sJj
−
X
i;I

1

jri − sIj
;

ð2Þ

where S ¼ fsIg and R ¼ frig denote the proton and
electron coordinates, respectively. Note here we have
omitted the proton kinetic energy term, whose effect is
considered separately in the Supplemental Material [43].
The variational density matrix of dense hydrogen

under consideration is diagonal with respect to the
proton degrees of freedom, and can be written as
ρ ¼ R

dSpðSÞjS;ψSihS;ψSj. pðSÞ is a normalized proba-
bility density for the proton coordinates, and jS;ψSi≡
jSi ⊗ jψSi is a basis of the whole system’s Hilbert space,
where jψSi is the electronic ground state at fixed pro-
ton configuration S. The variational free energy F ¼R
dSpðSÞ½kBT lnpðSÞ þ hψSjHjψSi� then consists of the

entropy of the proton Boltzmann distribution and the
electronic expected energy weighted over the proton
configurations.
We parametrize the proton Boltzmann distribution pðSÞ

using a normalizing flow network. Normalizing flow is a
class of deep generative model that represents high-dimen-
sional probability density using change-of-variables trans-
formations [44]. Specifically, assuming ζ is a set of
independent and uniformly distributed “collective” coor-
dinates, we use a neural network to implement a learnable
bijective mapping between ζ and the original proton

FIG. 1. A sketch of computational graph for the dense hydro-
gen problem. The model consists of a normalizing flow [Eq. (3)]
for the proton Boltzmann distribution and a geminal neural
network [Eq. (4)] for the electron wave function with fixed proton
positions. We jointly optimize the two neural networks to
minimize the variational free energy [Eq. (1)].
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coordinates S. The resulting probability density for protons
then reads

pðSÞ ¼ 1

L3N

���� det
�
∂ζ
∂S

�����: ð3Þ

Note this expression is normalized, which facilitates a
straightforward and easy computation of the entropy term
in the variational free energy objective [Eq. (1)]. We
construct the bijective transformation between ζ and S
as a residual network using the fermionic neural network
layers [45]. Since each layer is permutation equivariant,
Eq. (3) is invariant to the permutation of proton coordinates
[46]. Moreover, the construction also ensures translational
invariance and periodicity of the probability density [43].
We compute the transformation Jacobian in Eq. (3) using
forward-mode automatic differentiation [47].
Next, we design a neural network for the electronic

ground-state trial wave function ψSðRÞ ∝ hRjψSi at fixed
proton positions. We concatenate the proton and electron
coordinates together and feed them into a fermionic layer
[45] that accounts for the periodic boundary conditions and
translational invariance [41,48–51]. The layer outputs
f S ∈RN×M and f↑; f↓ ∈RN=2×M, which are features that
transform equivariantly under permutation of protons or
electrons of the same spin. Using these equivariant features,
we construct an unnormalized Jastrow-geminal-type wave
function [43]

ψSðRÞ ¼ eJ detðG∘DÞ; ð4Þ

where J ¼ P
i;μ aμf

S
iμ serves as a Jastrow factor, and

∘ denotes an element-wise product between two N=2 ×
N=2 geminal matrices. Gij ¼

P
μν χ

↑
iμWμνχ

↓
jν depends on a

learnable real-valued matrix W, and χ↑, χ↓ ∈RN=2×M are
simply another set of features that are connected with f↑, f↓

via a linear map. On the other hand, Dij ¼
P

k λke
ik·ðz↑i −z↓j Þ

is formed by usual plane-wave orbitals with backflow
coordinates z↑ and z↓. λk are learnable positive parameters
representing the occupation number for the momenta k ¼
2πn=L (n∈Z3). We use a large number of k points in the
summation so that the wave function can easily capture
oscillatory features.
Note the feature size M relevant to the matrix G plays

essentially the same role as the number of plane-wave
orbitals in such a geminal-type wave function ansatz. When
M > N=2, a single geminal determinant would correspond
to a summation of combinatorially large ð M

N=2Þ number of
determinants according to the Cauchy-Binet formula. From
this point of view, the fermionic neural network [45]
construction of the features χ↑, χ↓ further boosts the
expressibility of the ansatz compared to the well-known
geminal states with Jastrow factors [52]. One can verify that
besides being antisymmetric under permutation of

electrons of the same spin to account for their fermionic
nature, the wave function [Eq. (4)] is also permutation
invariant with respect to the proton coordinates. Note
the architecture design here is more lightweight than
Refs. [53,54] regarding the goal of respecting the permu-
tation symmetry of nuclei.
By parametrizing the hydrogen density matrix using two

neural networks, the variational free energy calculation of
Eq. (1) reduces to the following stochastic optimization
problem:

min
ϕ;θ

E
S∼pðSÞ

�
kBT lnpðSÞ þ E

R∼jψSðRÞj2

�
HψSðRÞ
ψSðRÞ

��
; ð5Þ

where ϕ, θ are variational parameters of the proton
Boltzmann distribution [Eq. (3)] and the electronic
ground-state wave function [Eq. (4)], respectively. We
employ the Markov chain Monte Carlo algorithm to draw
proton and electron coordinate samples from the two
models in an ancestral manner. As for optimization, we
have used a generalized stochastic reconfiguration method
[52] for density matrices, similar to the one employed in
[41]. Note, however, that some subtle yet important
modifications have to be made, which originate from the
fact that the electron wave function ansatz [Eq. (4)] adopted
in this Letter is unnormalized [43]. Since the proton
Boltzmann distribution and electron wave function are
optimized in a joint manner, one does not need to wait for
an expensive inner optimization loop to fully converge
before moving the protons. At a conceptual level, jointly
moving the nuclear and electronic degrees of freedom is
akin to the Car-Parrinello molecular dynamics [6], yet in a
principled variational optimization framework.
We employ twist-averaged boundary conditions [55] to

reduce the finite size effects, in particular those originating
from the single-particle momentum shell structure. This
amounts to adding some twist angle q∈ ½−π=L; π=L�3 to
the momenta k in the plane-wave geminal matrix D of
Eq. (4). To further improve the accuracy of electronic
calculations, we have also introduced some other explicit
twist dependence in the wave function ansatz [43].
As a first application of the deep variational free energy

approach, we focus on dense hydrogen at planetary con-
ditions, where it is an ionized liquid of protons and
electrons. Equations of state of dense hydrogen under such
a condition can be used to construct models for giant
planets’ interiors [4]. For these applications, it is also
crucial to compute the entropy so that one can follow the
adiabatic curve from the planet’s surface to its interior [56].
However, standard Monte Carlo methods do not have direct
access to the entropy. Reference [57] employed the
coupling-constant integration method based on CEIMC
calculations to obtain the free energy and entropy of dense
hydrogen at rs ¼ 1.25 and T ¼ 6000 K. This result was
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then used as the anchor point to obtain the full equations of
state of dense atomic hydrogen.
We carry out deep variational free energy calculation at

the same point (rs ¼ 1.25, T ¼ 6000 K) so it is possible to
benchmark with Ref. [57]. We choose the system size
N ¼ 54 and perform the twist average over a 4 × 4 × 4
Monkhorst-Pack mesh as in [57], expecting a similar
amount of finite size errors as detailed in the Supple-
mental Material [43]. We initialize parameters in the neural
networks [Eqs. (3) and (4)] such that the protons are
uniformly distributed and the electrons start from an
itinerant plane-wave state. Figure 2 shows the variational
free energy converges to a slightly higher value than that
reported in [57]. We note, however, that the reference data
may be nonvariational due to the nature of coupling-
constant integration. The insets of Fig. 2 show the pro-
ton-proton radial distribution functions develop a structure
as the optimization proceeds. Similar to Ref. [57], we
have found that the proton-proton correlation functions
show very little size effect at the considered density and
temperature [43].
Figure 3 shows the energy, entropy (per atom), and

pressure of the very same system as Fig. 2. Notice the
entropy decreases upon training, since the protons will
develop a more informative distribution than the initially
uniform one. The converged values for the energy (entropy)
are slightly higher (lower) than the estimates of Ref. [57],
respectively, even after accounting for the finite size
corrections [43]. The pressure is computed using the virial
theorem as ð2K þ VÞ=ð3L3Þ [58], where K and V are
the total kinetic and potential energy of the system,
respectively.
After accounting for the finite size correction [43], our

estimated pressure 529(4) GPa is slightly smaller than the

CEIMC prediction 553(1) GPa [57]. Nevertheless, both
values are smaller than ab initio MD calculation with local
density approximation, which is even further away from the
Saumon–Chabrier–van Horn (SCvH) equations of state
based on a chemical model as a mixture of hydrogen
molecules, atoms, protons, and electrons [59]. Predicting
an even denser equation of state than the SCvH chemical
model is in line with previous quantum Monte Carlo
calculations [57,60]. Combined with the ability to directly
access entropy, the deep variational free energy approach
developed in this Letter can be a valuable tool for planetary
modeling.
The fact that we have reached higher internal energy

(K þ V) but lower pressure (∝ 2K þ V) indicates our
calculation obtains lower kinetic energy and higher poten-
tial energy than the CEIMC results of Ref. [57]. It is known
that the accuracy of internal energy is often greater than
pressure, as the latter requires high accuracy both in the
kinetic and potential energies whose errors tend to cancel
out in the internal energy [61]. Likewise, we are thus more
confident about our calculated internal energy than the
pressure because the virial estimator for the pressure omits
Pulay-like corrections due to incomplete optimizations
[62]. We have released our codes and trained models
[63]. By inspecting and further reducing the variational
errors one can verify our findings reported here.
Unlike many previous studies on dense hydrogen

[16,17,57,60,65], our calculation starts from a rather
uninformative point with minimal physical constraints.
In this regard, it is rather satisfying that the present
calculation has yielded compatible equations of state for
such an intensively studied system. In the future, one can
also put prior knowledge such as the empirical or machine-
learned potential [66] into the flow model [Eq. (3)]. One
can use them either to pretrain the flow model or replace the
uniform base distribution. In the latter case, the flow
transformation is intended only to learn a small correction

FIG. 2. Variational free energy per atom versus optimization
epochs of N ¼ 54 hydrogen atoms at rs ¼ 1.25 and T ¼ 6000 K.
The horizontal line shows the free energy obtained by coupling-
constant integration of CEIMC energies [57]. The inset shows the
proton-proton radial distribution functions at several different
optimization epochs.

(a) (b) (c)

FIG. 3. (a) Internal energy per atom, (b) entropy per atom, and
(c) pressure versus the optimization epochs. The system param-
eters are the same as Fig. 2. The horizontal black lines show the
CEIMC results of [57]. The yellow and blue lines show the
ab initio MD and SCvH chemical model [59] predictions,
respectively, also taken from [57].
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and our variational objective function will be the free
energy difference with the base model.
The results of Figs. 2 and 3 run on 32 Nvidia A100 GPUs

for about 200 hours. It will just be a matter of parameter
scan to produce the full equations of state of dense
hydrogen in the atomic phase with direct access to entropy
and free energy data. For higher temperatures, one can take
into account the thermal effect of electrons using the neural
canonical transformation approach [40,41]. Note that
unlike the path integral Monte Carlo methods [67–70]
such an approach will not suffer from the fermion sign
problem. At lower temperatures, intriguing physics such as
quantum liquid and superconducting order may come into
play. To take into account nuclear quantum effects in this
case, we envision one can either generalize the proton
probabilistic model to the path integral representation [71]
or adopt the neural canonical transformation approach
[40,41] for protons. Either way, we anticipate the computa-
tional cost brought by the zero-point motion of protons
does not increase significantly, in contrast to conventional
approaches like path integral MD.
In this Letter, we have directly computed the Jacobian of

the flow transformation in Eq. (3). To scale up to even
larger system sizes, one may employ more efficient
permutation equivariant flow models [38,72–74]. More-
over, one may also consider more scalable optimization
schemes [75] for a larger number of variational parameters.
In the meantime, it may be useful to explore optimization
schemes beyond the score function gradient estimator [76]
for the flow model. For example, one can use the pathwise
gradient estimator to exploit information about the nuclear
force [77,78]. It is unclear whether this alternative choice
will make training of the flow model more efficient. Last
but not least, in conjunction with an alternative opti-
mization approach, one could also explore the possibility
of direct sampling of proton configurations with the
normalizing flow.
It is believed there is a first-order atomic-to-molecular

transition in the phase diagram of hydrogen [1]. Near the
phase transition, there are significant difficulties related to
slow equilibrium time or even lack of ergodicity in the
Monte Carlo sampling of multimodal probability distribu-
tions [24]. This difficulty does not magically disappear in
the variational free energy approach as they will show
up as metastable states in the optimization landscape.
Fortunately, the variational nature of our approach provides
a clear guidance to judge and improve the qualities of
various calculations, as one can always choose to believe
the solution with the lowest free energy. We regard this as
the most appealing feature of the present approach over the
previous ones based on nested Monte Carlo sampling
[16,17].
Deep variational free energy optimization presented in

this Letter is a general computational framework. Both
the nuclear probability distribution and the electronic
wave function are open to further extensions. Thus, the

framework holds the promise to be applied to a broad range
of finite-temperature quantum matters beyond dense
hydrogen.
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