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Quartet superfluid (QSF) is a distinct type of fermion superfluidity that exhibits high-order correlation
beyond the conventional BCS pairing paradigm. In this Letter, we report the emergent QSF in 2D mass-
imbalanced Fermi mixtures with two-body contact interactions. This is facilitated by the formation of a
quartet bound state in vacuum that consists of a light atom and three heavy fermions. For an optimized
heavy-light number ratio 3∶1, we identify QSF as the ground state in a considerable parameter regime of
mass imbalance and 2D coupling strength. Its unique high-order correlation can be manifested in the
momentum-space crystallization of a pairing field and density distribution of heavy fermions. Our results
can be readily detected in Fermi-Fermi mixtures nowadays realized in cold atoms laboratories, and
meanwhile shed light on exotic superfluidity in a broad context of mass-imbalanced fermion mixtures.

DOI: 10.1103/PhysRevLett.131.193401

A basic idea to achieve the superfluidity of fermions is to
bind an even number of fermions into a composite boson
and then let bosons condense. A classic example is the
Bardeen-Cooper-Schrieffer (BCS) superfluid in terms of
the condensation of Cooper pairs [1], which reflects the
two-body correlation among spin-1=2 fermions and has
achieved great success not only in solid states but also in
cold atoms [2,3] and nuclear matters [4,5]. Going beyond
the BCS framework, a fascinating yet challenging direction
is to engineer superfluids with higher-order correlations.
Along this direction, a leading case is the quartet superfluid
(QSF), a distinct type of fermion superfluidity based on the
condensation of four-fermion clusters. Previous studies
have revealed QSF in spin-3=2 fermions [6], nuclei with
α-particle condensation [7–11], biexciton condensates [12],
and various systems hosting charge-4e superconductivity
[13–23]. However, stringent conditions are required therein
such as multicomponents, multibody interactions, or pair
fluctuations under particular symmetries, which make the
experimental exploration of QSF rather rare and difficult in
practice.
Recently, mass-imbalanced Fermi mixtures realized in

ultracold gases, such as 40K-6Li [24–26], 161Dy-40K [27,28],
and 53Cr-6Li [29–31], offer a much easier platform for
achieving QSF. The predominant few-body correlation in
these systems can be inferred from the formation of
universal few-body clusters that consist of a light atom
and several heavy fermions. Each cluster bound state
requires the heavy-light mass ratio beyond certain critical
value [32–40] but still small enough to avoid any
Efimovian binding [34,41,42]. These clusters are therefore
believed to be elastically stable under collision. Physically,
their formation is due to a long-range heavy-heavy attrac-
tion mediated by the light atom, which competes with a

repulsive centrifugal barrier in p-wave channel [32,43]. As
such, the critical mass ratio to support a tetramer bound
state (a quartet) is found to be quite high in 3D [33,34], but
is sufficiently low in 2D [37] so as to be accessible by all
Fermi mixtures listed above. This quartet formation has
been shown to fundamentally change the destiny of Fermi
polaron compared to equal mass case, when increasing the
attraction between light impurity and heavy majorities [44].
Then the ultimate question is how would the quartet affect
the many-body property of heavy-light mixtures? In par-
ticular, can QSF emerge as a ground state? If so, this will be
the simplest fermion system so far to support QSF, i.e.,
with only two components and under two-body contact
interactions. Such a system would be much more conven-
ient to manipulate experimentally.
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FIG. 1. Schematics for different phases in heavy(red)-light
(blue) fermion mixtures with number ratio 3∶1. When increasing
the attraction strength jUj, the system undergoes a sequence of
phase transitions from the normal mixture (a) to mixed pairing
superfluid and normal state (b), mixed trimer liquid and normal
state (c), and finally to quartet superfluid (d).
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In this Letter, we unveil the emergent QSF in 2D mass-
imbalanced Fermi mixtures. A variational ansatz is con-
structed to describe QSF with optimal heavy-light number
ratio 3∶1, which well incorporates the essential four-body
correlations in a many-body setting. In contrast to previous
studies of mass-imbalanced fermions that focused on
pairing superfluids [45–52], our Letter demonstrates that
QSF is always the ground state under sufficient mass
imbalance and heavy-light attraction strength. This sug-
gests a sequence of phase transitions, namely, from a
normal Fermi mixture to eventually a QSF, when increasing
the heavy-light attractions (see Fig. 1). We have mapped
out a phase diagram for QSF and other competing states as
tuning the 2D coupling strength and mass imbalance
(Fig. 2). Furthermore, we show that the unique high-order
correlation of QSF manifests itself in the momentum-space
crystallization of a pairing field and density distribution of
heavy fermions (Fig. 3). The QSF, which emerges in
the seemingly simple framework of mass-imbalanced
two-component fermions, represents a qualitatively new
kind of high-order superfluidity in strongly correlated
fermionic matter. Our results can be readily probed in a
number of Fermi mixtures realized in ultracold atoms, and
meanwhile shed light on exotic superfluidity in a broad
context of fermion systems with mass imbalance, such as
the semiconducting transition metal dichalcogenides.
We start from the following Hamiltonian (ℏ ¼ 1):

H ¼
X
k

�
ϵlkl

†
klk þ ϵhkh

†
khk
�þ g

S

X
q;k;k0

l†q−kh
†
khk0 lq−k0 : ð1Þ

Here h†k and l†k respectively create a heavy and a light
fermion at momentum k with energy ϵh;lk ¼ k2=ð2mh;lÞ,
and their mass ratio is η≡mh=mlð> 1Þ; the 2D bare
coupling g is renormalized through 1=g ¼ −1=S

P
k 1=

ðϵlk þ ϵhk þ E2bÞ, where S is the system area and E2b ¼
ð2mra2Þ−1 is the two-body binding energy given by scatte-
ring length a and reduced mass mr ¼ mlmh=ðml þmhÞ. In
this Letter, we consider the most favorable heavy-light
number ratio for QSF, i.e., Nh∶ Nl ¼ 3∶1. Accordingly we
introduce a momentum unit as kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πNQ=S
p

, with
NQ ¼ Nl ¼ Nh=3 the number of quartets.
For a microscopic description of QSF, we utilize the

exact wave function of a zero-momentum quartet (tetramer
bound state) in vacuum that is created by

Q† ¼
X

k1k2k3

ϕk1k2k3
l†−k1−k2−k3

h†k1
h†k2

h†k3
: ð2Þ

Treating the quartet as a composite boson and recalling the
intrinsic relation between fermion superfluidity and Bose
condensation, we write down a quartet-condensed coherent
state, eλQ

†
, to describe the QSF state of fermions, which can

be further simplified as

ΨQSF ¼
Y

hk1k2k3i
ð1þ ψk1k2k3

l†−k1−k2−k3
h†k1

h†k2
h†k3

Þj0i: ð3Þ

Here the variational coefficients ψk1k2k3
are antisymmetric

with respect to the exchange ki ↔ kj (i ≠ j), and hi
denotes that we avoid any double counting of k triples
fk1k2k3g.
Different from the well-known BCS ansatz

[∼
Q

kð1þ ψkl
†
−kh

†
kÞ] where only one k index is used to

characterize each Cooper pair, the QSF wave function (3)
displays a much higher degree of freedom given three
momenta (i.e., a k triple) in each bracket to label a quartet.
This implies a higher degree of complexity in treating the
many-body problem, especially when considering the Pauli
effect and the nonuniqueness of fermion occupation from
multibrackets. In this Letter, as the first attempt to include
quartet correlation in tackling the fermion superfluid prob-
lem, we shall neglect the contribution from these complex-
ities. It can be proved that their induced corrections are of the
order∼ψ2, which can bewell controlled as long as allψ ≪ 1
(valid especially in the strong coupling regime) [53].
Under the above treatment, we can expand the thermo-

dynamic potential Ω≡ hH − μNQiQSF as a function of ψ ,
with μ introduced as the quartet chemical potential:

Ω ¼
X

hk1k2k3i

jψk1k2k3
j2

1þ jψk1k2k3
j2 Ek1k2k3

þ
X

hk1k2k3i

ψ�
k1k2k3

1þ jψk1k2k3
j2 ðΔk2k3

− Δk1k3
þ Δk1k2

Þ;

here Ek1k2k3
¼ ϵl−k1−k2−k3

þ ϵhk1
þ ϵhk2

þ ϵhk3
− μ, and the

auxiliary function Δk2k3
is defined as

Δk2k3
¼ g

S

X
k1

ψk1k2k3

1þ jψk1k2k3
j2 : ð4Þ

Minimizing Ω via ∂Ω=∂ψ�
k1k2k3

¼ 0, we obtain

ψk1k2k3

¼
Ek1k2k3

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k1k2k3

þ 4ðΔk2k3
−Δk1k3

þΔk1k2
Þ2

q
2ðΔk2k3

−Δk1k3
þΔk1k2

Þ : ð5Þ

Further utilizing (4) we arrive at the self-consistent equa-
tion for fΔkk0 g:

−
S
g
Δk2k3

¼
X
k1

Δk2k3
− Δk1k3

þ Δk1k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k1k2k3

þ 4ðΔk2k3
− Δk1k3

þ Δk1k2
Þ2

q :

ð6Þ

The number equation NQ ¼ −∂Ω=∂μ is written as
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2NQ

¼
X

hk1k2k3i

 
1−

Ek1k2k3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k1k2k3

þ 4ðΔk2k3
−Δk1k3

þΔk1k2
Þ2

q
!
:

ð7Þ

Physically, Δk2k3
in Eq. (4) can be viewed as the pairing

field of QSF, since it is obtained by contracting the internal
degree of one heavy-light pair in the quartet while leaving
the two additional heavy fermions free at k2, k3. This is
dramatically different from the pairing field in usual BCS
theory which is a constant rather than k dependent. In fact,
the right sides of Eqs. (5)–(7) suggest a superposed pairing
field, Δ̃k1k2k3

≡ Δk2k3
− Δk1k3

þ Δk1k2
, to uniquely iden-

tify a quartet in k-space. In the strong coupling limit with
deep quartet binding, we have jΔ̃k1k2k3

j ≪ jμj and there-
fore Eq. (6) well reproduces the exact equation for a quartet
bound state in vacuum [34,36,37]. This guarantees the
picture of quartet condensation in this limit with μ → EQ,
where EQ is the binding energy of a vacuum quartet.
We have numerically solved Eqs. (6) and (7) to obtain μ

and fΔkk0g for given interaction strength lnðkFaÞ and mass
ratio η. The total energy E≡ hHiQSF can then be computed
straightforwardly. Note that in Eq. (7), the summation on k
triples brings another relevant parameter S=a2 to the
problem, which is taken as 100 throughout the Letter.
We have checked that different S=a2 will not qualitatively
change our results [53].
In Figs. 2(a1) and 2(a2), we take the Dy-K and K-Li

mixtures as two experimentally relevant examples and plot
their corresponding energy per quartet (E=NQ) and chemi-
cal potential (μ) as functions of lnðkFaÞ. As expected, in the
strong coupling limit lnðkFaÞ → −∞, both E=NQ and μ
approach EQ (dashed horizontal lines). When moving to
weaker couplings, both quantities increase up to a critical
coupling strength where μ ∼ −E2b, see circles in Figs. 2(a1)
and 2(a2), beyond which Eqs. (6) and (7) fail to produce a
convergent solution. Before reaching this point, however,
the solutions can become unphysical due to the violation of
Pauli principle, i.e., the k-space number of heavy fermions
exceeds beyond 1 (Nh

k > 1), as bounded by triangles in
Fig. 2(a2). Such violation can be attributed to the neglect of
Pauli effect in treating ΨQSF [53], which results in a quick
accumulation of Nh

k beyond 1 as the system departs from
the strong coupling regime. In the following, we shall only
take the physical solutions of QSF with all Nh

k < 1, i.e., for
lnðkFaÞ ranging from −∞ to the circles in Fig. 2(a1) and to
the triangles in Fig. 2(a2).
We have compared the energy of QSF with all other

competing states including a normal mixture, various
pairing superfluids studied for mass-imbalanced fermions
[45–52], a trimer liquid proposed in 3D [54], as well as a
pentamer liquid [53]. Finally a phase diagram is mapped

out in ½lnðkFaÞ; η� plane for a fixed number ratio
Nh=Nl ¼ 3; see Fig. 2(b). The relevant phases appearing
on the diagram are QSF (yellow area), mixed trimer liquid
and normal state (“TLþ N,” gray), states involving pairing
superfluids (green), and the normal mixture (“N,” white).
The pairing superfluids include the Fulde-Ferrell-Larkin-
Ovchinnikov superfluid (“FFLO”) and two phase-sepa-
rated states [between BCS and FFLO (“BCSþ FFLO”)
and between BCS and normal (“BCSþ N”)]. For TLþ N,
we have approximated it as two homogeneous Fermi seas
of trimers and of excess heavy atoms, each comprising Nl
particles. In justifying this, we require the trimer on top of a
heavy Fermi sea to be a true bound state (Et < 0), with
energy lower than that of the corresponding atom-dimer
threshold (Et < Ed þ Eh

F). This leads to the phase boun-
daries between TLþ N and other pairing superfluids in
Fig. 2(b), and we have confirmed that within the gray area
TLþ N is indeed more energetically favorable than all

QSF

TL+N

BCS+N
BCS+
FFLO

FFLO

N

(a1) (a2)

(b)

FIG. 2. Emergence of quartet superfluid in 2D heavy-light
fermion mixtures with number ratio 3∶1. (a1),(a2) Energy per
quartet E=NQ and chemical potential μ of the quartet superfluid
as functions of coupling strength lnðkFaÞ for mass ratio η ¼
161=40 (a1) and 40=6 (a2). Here the energy unit is the two-body
binding energy E2b, and the horizontal dashed line shows the
quartet binding energy in vacuum [37]. The circles denote the
termination of self-consistent solutions from Eqs. (6) and (7).
The triangles in (a2) mark the location when the Pauli principle
starts to be violated, and thus the solutions from triangles to
circles are unphysical. (b) Phase diagram in ½lnðkFaÞ; η� para-
meter plane. The phases (from left to right) are the quartet
superfluid (“QSF,” yellow area), mixed trimer liquid and normal
state (“TLþ N,” gray), states involving pairing superfluids
(“BCSþ N,” “BCSþ FFLO,” “FFLO,” green area), and the
normal state (“N,” white). The QSF boundaries with circles or
triangles are in accordance with notations in (a1),(a2).
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other available states. Similarly, we have also considered a
pentamer liquid in coexistence with a light Fermi sea,
and found that such state always has a higher energy than
QSF and thus is not relevant (see more details in the
Supplemental Material [53]).
Importantly, Fig. 2(b) shows that QSF represents the

ground state in a considerably broad parameter region with
lnðkFaÞ ≲ 0 and η > ηQ ∼ 3.4 (ηQ is the critical mass ratio
to support a 2D quartet in vacuum [37]). Moreover, it tells
us that under sufficient ηð> ηQÞ, the system undergoes a
sequence of phase transitions as increasing the heavy-light
attractions, i.e., from a normal mixture at weak coupling to
states involving pairing superfluid or trimer liquid, and
finally ending up at QSF at strong coupling (see also
Fig. 1). We remark here that the occurrence of these
transitions is physically robust, because QSF cannot
adiabatically connect to a normal Fermi sea as interactions
are reduced. This can be clearly seen from its wave function
(3), which involves a fundamental restructuring of heavy-
light distributions in k space and thus cannot reproduce
two uncorrelated Fermi seas by sending ψ to ∞. It is very
different from the BCS ansatz [1], which in a weak
coupling limit is just a slight modification of a normal
Fermi sea. Therefore the BCS ansatz can well describe a
smooth BCS-BEC crossover for balanced spin-1=2 fer-
mions, but here a sequence of transitions are produced for
mass- or spin-imbalanced systems. Such difference is
intrinsically due to the high-order correlation hidden in
QSF, as revealed below.
Different from all other phases in Fig. 2(b), QSF exhibits

unique high-order correlation in k space. Such correlation
originates from the internal structure of quartet wave
function ψk1k2k3

, as shown in Fig. 3(a), which has the
largest weight if the k triple ðk1k2k3Þ forms a regular
triangle. This is consistent with the crystalline structure of a
quartet in vacuum [37]. Physically, the triangular structure
emerges because it is highly symmetric and thus provides
the largest phase space for three fermions scattering within
a quartet unit. Similar triangular distribution also appears in
the pairing field Δk0k, as shown in Fig. 3(b), when fixing
k0 at the largest jψ j (red point). Interestingly, Δk0k ∼ k
exhibits a chiral distribution, i.e., its sign switches depend-
ing on whether k moves clockwise or anticlockwise from
k0. This can be attributed to the antisymmetry of Δk0k with
respect to k0 ↔ k, as required by its definition in Eq. (4).
To experimentally detect the above correlation, we

propose measuring the density-density correlation function
of heavy fermions in k space [53]:

Dhðk0;kÞ≡ hnhðk0ÞnhðkÞi − hnhðk0ÞihnhðkÞi: ð8Þ

Here hnhðkÞi is the mean density distribution of heavy
fermions. In Figs. 3(c) and 3(d), we show hnhðkÞi and
Dhðk0;kÞ for a typical QSF state of K-Li mixture. We can
see that hnhðkÞi is peaked at a finite jkj and shows a dip at

k ¼ 0, dramatically different from the distributions of a
normal Fermi sea or a pairing superfluid. Fixing k0 at the
peak of hnhi, Dhðk0;kÞ shows two visible peaks in k
space, which form a regular triangle together with k0. This
visualizes the unique high-order correlation in QSF that is
absent in all other states. For instance, one hasDhðk0;kÞ ¼
0 for normal state and any type of pairing superfluids. In
cold atoms experiment, the mean density and density-
density distributions can be measured, respectively, using
the time of flight technique and atom noise in absorption
images [57–62] or single atom resolved image [63].
At finite low temperatures, the 2D QSF is expected to

survive with quasi-long-range order and a Berezinskii-
Kosterlitz-Thouless(BKT)-type transition can occur at a
critical TBKT. In the strong coupling regime with
deep quartet binding, we estimate TBKT through the
2D quasicondensation of bosons [64] as TBKT=T

Q
F ¼

ln−1½−ξ=ð2πÞ lnð ffiffiffiffiffiffi
4π

p
kFaÞ�, with ξ ¼ 380 and TQ

F ¼ k2F=
½2ðml þ 3mhÞ�. Here we have assumed the quartets inter-
acting via a repulsive potential with range ∼a [65].
For lnðkFaÞ∈ ½−5;−2�, we obtain a slowing varying
TBKT=T

Q
F ¼ 0.18 ∼ 0.26. Given successful measurements

of TBKT in pairing superfluids of spin-1=2 Fermi gases
[66–69], we expect the BKT transition of QSF can also be
explored in mass-imbalanced Fermi mixtures [24–31], for
instance, by measuring the quartet momentum distribution
similar to Ref. [66].
In the future, the present theory could be further

improved by incorporating the Pauli effect while treating

(a) (b)

(c) (d)

FIG. 3. Momentum-space correlation of quartet superfluid.
(a) The largest jψk1k2k3

j with ðk1;k2;k3Þ forming a regular
triangle. Several degenerate triangles are shown, which have the
same value of jψ j. (b) Δk0k (in units of E2b) in k space, with k0

pinned at one momentum for the largest jψ j (red point). (c) Mean
density distribution of heavy fermions, hnhðkÞi (in units of S−1).
(d) Density-density correlation of heavy fermions, Dhðk0;kÞ (in
units of S−2), with k0 pinned at one maximum of hnhi (red point).
In (b)–(d), we take η ¼ 40=6 and lnðkFaÞ ¼ −0.58.
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Eq. (3), which becomes more important when departing
from the strong coupling regime. Moreover, it is interesting
to consider a general number ratio (Nh=Nl ≠ 3), where
QSF may coexist with other states and result in an even
richer phase diagram. In addition, to be more relevant to
ultracold experiments, it is desirable to address the effects
of finite T and finite effective range over the whole
interaction regime in a quasi-2D geometry. For a pure
3D system, QSF is expected to appear at higher η that can
support a quartet in vacuum [33,34]. In this case, the true
long-range order of QSF can extend to finite T, and at deep
bindings the critical Tc approaches the transition temper-
ature for quartet condensation, i.e., Tc=T

Q
F ¼ 0.44.

Finally, it is worth pointing out that the many-body
phenomenon of QSF is deeply rooted in the highly non-
trivial few-body physics, namely, the exact quartet for-
mation of heavy-light fermions in vacuum. Based on this,
we expect similar high-order superfluids to exist in a broad
class of fermion systems with imbalanced (effective)
masses. For instance, in a spin-orbit coupled atomic gas
[70] the lower helicity branch can possess a large effective
mass [71], which may serve as the heavy component to
interact with other (light) fermion species. Another prom-
ising system is the monolayer transition metal dichalco-
genides with charged excitons (trions) [72–74], where the
mass-imbalanced mixture can consist of trions and elec-
trons (or holes). Indeed, recent theories have revealed the
existence of few-body clusters therein [75,76]. For poten-
tially exotic superfluids in these systems, our Letter
suggests the few-to-many perspective as always a reliable
route to approach them.
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