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The highly excited super-Tonks-Girardeau (sTG) gas was recently observed to be extremely stable in the
presence of a weak dipolar repulsion. Here we reveal the underlying reason for this mysterious
phenomenon. By exactly solving the trapped small clusters with both contact and dipolar interactions,
we show that the reason lies in the distinct spectral responses between sTG gas and its decaying channel
(bound state) when a weak dipolar interaction is present. Specifically, a tiny dipolar force can produce a
visible energy shift for the localized bound state, but can hardly affect the extended sTG branch. As a result,
the avoided level crossing between two branches is greatly modified in both location and width in the
parameter axis of coupling strength, leading to a more (less) stable sTG gas for a repulsive (attractive)
dipolar force. These results, consistent with experimental observations, are found to robustly apply to both
bosonic and fermionic systems.
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The super-Tonks-Girardeau (sTG) state stays in a highly
excited branch in one dimension (1D) under interparticle
attractions, which hosts an even stronger correlation than
the Tonks-Girardeau (TG) regime with hard-core repul-
sions. Such an intriguing state was first predicted in
identical bosons by quantum Monte Carlo [1] and
Bethe-ansatz methods [2], and subsequently realized in a
quasi-1D ultracold Bose gas as tuning the 1D coupling
strength across resonance [3]. Later, the sTG state of spin-
1=2 fermions was also discovered with Bethe-ansatz
solutions [4] and observed experimentally in trapped small
clusters [5,6]. Recently the fermionic sTG gas has attracted
great interests in exploring the itinerant ferromagnetism
in 1D and various spin chain configurations without
lattice [7–15].
However, the sTG gas is not always stable in practice—

as moving away from resonance, the gas will eventually
collapse to low-lying bound states at intermediate attrac-
tion strength, making it impossible to approach stronger
correlations with higher repulsive energies. Surprisingly,
such instability has recently been rescued in experi-
ment just by adding a weak dipolar repulsion among the
atoms [16]. There, the gaseous repulsive branch was
shown to be extremely stable over the whole sTG regime,
and can even evolve adiabatically for two rounds of
interaction cycles with continuously increasing energies,
realizing the quantum holonomy ever in a physical
system [17]. On the other hand, when switching to a
weak dipolar attraction, the sTG gas was found to be less
stable instead. These observations raise two big puzzles.
First, how could a weak dipolar force, which barely

changes the energy of the sTG gas, influence its stability
so significantly? Second, why does this influence depend
on the sign of dipolar force? Up to date no definitive
answers arise to these puzzles.
In this Letter, we attempt to resolve these puzzles by

exactly solving three trapped atoms (bosons or spin-1=2
fermions) with both contact and dipolar interactions. Such a
three-body system comprises the minimal yet fundamental
model to describe the instability of the sTG branch, as
manifested by its avoided level crossings with many excited
bound states when tuning the coupling strength. Based on
this, we show that the modified stability of the sTG gas
originates from its distinct spectral response to a weak
dipolar interaction, as compared with all bound state
channels it decays into. Specifically, given the form of
dipolar interaction as Vdd ∼ 1=r3 (r is the interparticle
distance), it can accumulate much more interaction energy
for the localized bound states than the extended sTG gas.
As a result, as illustrated in Fig. 1, the avoided level
crossing between the two branches would shift to strong
attraction regime if Vdd is repulsive, leading to a smaller
wave function overlap and thus a narrower width at their
crossing. This enhances the stability of the sTG gas.
Alternatively, when switching to an attractive Vdd, the
interbranch crossing moves to the weak attraction side with
a broader width, giving a less stable sTG gas. These effects,
consistent with experimental observations [16], are univer-
sally applicable to identical bosons and spin-1=2 fermions.
Our results suggest a powerful tool in general to tune the
stability of the target state by artificially manipulating its
decay channels.
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We consider the following Hamiltonian (ℏ ¼ 1):

H ¼
X
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here xi is the 1D coordinate; ω is the harmonic trap
frequency, and the trap length is defined as l ¼ 1=

ffiffiffiffiffiffi
μω

p
(μ ¼ m=2 is the reduced mass); g ¼ −1=ðμaÞ is the contact
coupling with 1D scattering length a; for the dipolar
interaction VddðrÞ, since its short-range part is greatly
modified by higher transverse modes in realistic quasi-1D
geometry [18–20]. Here we take a short-range cutoff
rcð¼ 0.15lÞ and simplify it as D=jrj3 for r > rc and 0
otherwise.
The three-body problem of identical bosons or spin-1=2

fermions can be exactly solved based on (1). To facilitate
later discussions, we shall mainly focus on the fermion
case (↓↑↑) where analytical results are available. Consider
a spin-↓ atom at x1 and two ↑ atoms at x2, x3; we
define r ¼ x2 − x1 and ρ ¼ ð2= ffiffiffi

3
p Þðx3 − ðx1 þ x2Þ=2Þ to

describe the relative motions, respectively, within a ↓-↑
dimer and between the dimer and the rest fermion. Another

set of relative coordinates frþ; ρþg can be accordingly
defined by exchanging x2 ↔ x3. We then expand the
three-body ansatz in the center-of-mass (c.m.) frame as
Ψðr; ρÞ ¼ P

mn cmnϕmðrÞϕnðρÞ, where ϕm and ϕn are
single particle eigenstates along r and ρ with eigenenergies
ϵk ¼ ðkþ 1=2Þω (k ¼ m, n). Utilizing the Schrödinger
equation HΨðr; ρÞ ¼ EΨðr; ρÞ and ensuring the fermion
antisymmetryΨðr; ρÞ ¼ −Ψðrþ; ρþÞ, we obtain the follow-
ing equation for fcmng [21]:
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with Amn;j¼
R
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3
p

r=2 − ρ=2). Both E and fcmng can
be solved from the matrix equation (2). Similarly, the
exact solutions of three identical bosons can also be
obtained [21].
The trapped three-body system comprises the minimal

yet fundamental model to describe the instability of the
sTG gas. To see this, let us start from three fermions
without dipolar interaction (D ¼ 0). Their spectrum has
been studied previously [7,8,10,22,23], and here we shall
focus on the avoided level crossing of the sTG branch
with a sequence of excited bound states, as labeled by
n ¼ 1; 2; 3… in Fig. 2(a) from weak to strong coupling
regime. Near 1=g → 0−, these bound states are essentially
composed of a tight ↑↓ dimer plus a free ↑ atom at excited
levels, as described by the atom-dimer wave function,

ψ ðmÞ
ad ¼ ΦdðrÞϕmðρÞ − ðx2 ↔ x3Þ; ð3Þ

with energy

EðmÞ
ad ¼ Ed þ ϵm: ð4Þ

HereΦd is the dimer wave function with energy Ed, and ϕm
is the free fermion state with energy ϵm. On the other hand,
for the repulsive sTG branch near resonance, one can treat
1=g as a small parameter and construct an effective spin-
chain model H ¼ 1=g

P
i Jiðsisiþ1 − 1=4Þ [11–15]. Here

for three atoms the spin-exchange amplitude Ji ≡ J is site
independent. This gives the wave function and energy of
the sTG gas as

ΨsTG ¼ Ψ0 −
1

g
Ψ1; ð5Þ

FIG. 1. Illustration for the modified stability of the sTG gas by
dipolar interaction Vdd. Red dashed line marks the energy level of
the sTG gas, which can become unstable due to the hybridization
with an excited bound state (EBS, dotted line) at their avoided
level crossing. In the presence of a weak Vdd, the sTG gas is
hardly affected in energy while the EBS spectrum can be shifted
visibly due to its localized wave function and large response to
Vddð∼1=r3Þ. For a repulsive Vddð> 0Þ, the EBS energy is up-
shifted and the avoided crossing moves to 1=g → 0− with a
narrower width, giving rise to a more stable sTG gas with weaker
hybridization with EBS. In comparison, an attractive Vddð<0Þ
leads to a down-shifted EBS level and thus the avoided crossing
moves to 1=g → −∞ with a broader width (stronger hybridiza-
tion), giving a less stable sTG gas.
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EsTG ¼ E0 −
3J
2g

; ð6Þ

where Ψ0 is the fermionalized wave function in the hard-
core limit with total energy E0, and Ψ1 is from the first
order correction when a ↑-↓ pair comes close together [21].
For later comparisons, we have transformed Eqs. (5)
and (6) into the c.m. frame [21]. Figure 2(b) shows that
Eqs. (3) and (5) can indeed well approximate the two
branches far from their level crossings.
Importantly, Eqs. (3) and (5) suggest qualitatively differ-

ent real-space distributions between sTG and atom-dimer
states. To be concrete, all atom-dimer states have a
dominant weight when one ↑-↓ pair comes close to each
other, i.e., r → 0 or rþ ¼ ðrþ ffiffiffi

3
p

ρÞ=2 → 0, given that
they contain very localized dimer components. In contrast,
the sTG state is dominated by the Ψ0 part which is much
more extended in real space, while it only has a little
weight along the dimer lines (∼Ψ1=g). Such difference is

numerically confirmed in Figs. 2(c1) and 2(c3), where we
have plotted real-space Ψ for different branches and the
results are consistent with theoretical predictions from
Eqs. (3) and (5) shown in Figs. 2(d1) and 2(d3).
The above wave-function analyses are crucial for under-

standing the loss mechanism of the sTG gas. As shown in
Fig. 2(b), at certain gc when the sTG state and one atom-
dimer branch have perfect energy match, they can hybridize
strongly and open an energy gap. Accordingly, an avoided
level crossing is generated near gc, and the resulted
eigenstate inherits all the key features from both branches
[Fig. 2(c2)]. Therefore, when driving the sTG gas to ∼gc, it
tends to develop a visible atom-dimer feature and accu-
mulate great possibilities when ↑-↓ come close together.
This leads to the instability of the sTG gas, since it can
easily undergo an inelastic decay to deep molecules and
cause atom loss. Similar inelastic loss due to couplings to
excited molecular states was also found previously for two
atoms in anharmonic potentials [24–26].

FIG. 2. Hybridization between the sTG branch and excited bound states for three harmonically trapped fermions (↑↑↓) without
dipolar interaction. (a) Spectrum in the center-of-mass frame, with the lowest repulsive branch highlighted in red (the part at 1=g < 0 is
the sTG gas). Indices “n ¼ 1; 2; 3…” mark the locations of the avoided level crossing between sTG and various excited atom-dimer
states from weak to strong couplings. (b) Magnified spectrum near the second avoided crossing (n ¼ 2). The RGB color map is provided
according to the wave function overlap with sTG [Eq. (5), red] and atom-dimer [Eq. (3), blue] states. (c1)–(c3) Contour plots of
normalized Ψðr; ρÞ for three typical coupling strengths as marked in (b). For comparison, (d1),(d3) show theoretical predictions to (c1),
(c3) based on Eqs. (3) and (5). (e1),(e2) show the location 1=gc and energy gap EG for each avoided level crossing. For comparison, the
theoretical prediction to 1=gc by comparing (4) and (6) is shown in (e1), and the wave function overlap between (3) and (5) is shown in
(e2). In all plots we take ω and l as the units of energy (E) and length (r, ρ). The units of g and Ψ are, respectively, ωl and l−1.
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Practically, the loss possibility of the sTG gas depends
on how strongly it couples to the excited bound states,
which can be evaluated by the energy gap EG at each
avoided crossing. Numerically, EG can be extracted as the
minimal energy difference at each avoided crossing, and
accordingly the location gc can also be identified, as shown
in Figs. 2(e1) and 2(e2). We can see that as the crossing
point moves away from resonance (smaller “n”), EG
becomes larger, consistent with a larger wave function

overlap between ψ sTG and ψ ðnÞ
ad [see comparison in

Fig. 2(e2)]. This indicates a less stable sTG gas, since it
has a stronger hybridization with excited bound states in a
broader interaction window and thus can easily transit to
decay channels. Such picture is supported by experimental
observations that the sTG gas eventually collapses
at intermediate gð< 0Þ when moving away from resonance
[3,16].
Given the loss mechanism of the sTG gas as above, now

we are ready to study the effect of dipolar interaction Vdd.
In accordance with Ref. [16], we focus on a weak Vdd with
jDj ≪ ωl3; gl2. We will show below that even a weak Vdd
can dramatically change the stability of the sTG gas, and
the key lies in the distinct spectral responses between
different branches when Vdd is turned on.
Taking a typical g away from any gc, in Fig. 3(a) we plot

the energy shifts ΔE for the sTG gas and its nearest atom-
dimer branch as varying jDj. Clearly, the atom-dimer
energy changes rapidly as jDj increases, while the sTG
energy changes much more slowly. This can be attributed to
very different real-space distributions of the two states.
Namely, the atom-dimer is more localized along r, rþ → 0
and therefore it produces a significant spectral response to
Vdd ∼ ð1=jrj3 þ 1=jrþj3 þ � � �Þ; on the contrary, the sTG
gas is more extended and has little weight near r, rþ → 0,
leading to a negligible energy shift. At smallD, ΔE of each
branch can be well approximated by mean-field shift hVddi,
as shown by dotted lines in Fig. 3(a). This allows us to
analytically determine the shift of the crossing point,
Δð1=gcÞ, by equating (4) and (6) after adding up hVddi
for each branch:

Δð1=gcÞ ¼
hVddiad − hVddisTG
∂Ed=∂ð1=gÞ − 3J=2

: ð7Þ

Equation (7) tells us that the distinct spectral responses,
hVddisTG ≠ hVddiad, directly lead to a finite shift Δð1=gcÞ
of interbranch crossing. Moreover, the sign of Δð1=gcÞ
exactly followsD: a positiveDwill drive the crossing point
towards resonance [Δð1=gcÞ > 0], while a negative D
drives it oppositely [Δð1=gcÞ < 0]. All of these features
are verified numerically in Fig. 3(b), where Eq. (7) provides
a reasonably good fit to the shift Δð1=gcÞ at small jDj.
In addition, we observe that Δð1=gcÞ becomes less pro-
nounced for crossings near resonance. This can be

attributed to the large denominator of Eq. (7) produced
by ∂Ed=∂ð1=gÞ ∝ g3 for deep dimers. Therefore, Vdd can
only visibly affect the level crossings with small n but not
those with large n near resonance.
Given the intimate relation between 1=gc and EG [see

Figs. 2(e1) and 2(e2)], the shift of 1=gc by Vdd inevitably
leads to the change of EG, as plotted in Fig. 3(c). For a
repulsive VddðD > 0Þ, all 1=gc shift toward resonance with
decreasing EG, indicating a more stable sTG gas; while for
an attractive VddðD < 0Þ, 1=gc shifts away from resonance
with increasing EG, indicating a less stable sTG gas. Again,
EG changes most visibly for the outmost crossing
(“n ¼ 1”). Remarkably, all EG become vanishingly small
at a weak D=ðωl3Þ ∼ 0.008, suggesting an extremely sTG
gas in the whole g < 0 regime. We note that if we take the
same D as used in experiment [16], as marked by the
vertical dotted line in Fig. 3(c), the outmost EG (“n ¼ 1”) is
greatly reduced compared to D ¼ 0 case, and all other EG

decrease to < 10−4ω. Besides D, we have also checked the
effect of the dipolar cutoff rc. It is found that a smaller rc
one can generate more energies for the localized atom-
dimer branch [21] and thus the change of 1=gc and EG will
be more dramatic at the same D.
In the above we have shown how a weak repulsive or

attractive Vdd can greatly affect the stability of fermionic

FIG. 3. Response of three fermions to a weak dipolar inter-
action with strength D. (a) Energy shifts of sTG and excited
atom-dimer branches as functions of jDj at given ωl=g ¼ −0.27.
Dotted lines show mean-field shifts hVddi. (b) Locations of three
avoided crossings [as marked by “n ¼ 1, 2, 3” in Fig. 2(a)] as
functions of jDj. Dotted lines show linear fits according to
Eq. (7). (c) Associated energy gap EG of each avoided crossing as
a function of jDj. Dotted vertical line marks the strength of
repulsive D used in experiment [16]. Here the energy ΔE,
coupling g, and dipolar force D are, respectively, in units of
ω, ωl, and ωl3.
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sTG gas, while leaving its energy essentially unchanged.
We have checked that similar physics also hold for three
identical bosons [21], including the distinct energy
responses between sTG gas and excited bound states as
well as the dependence of sTG stability on the sign of Vdd.
Here a crucial difference from the fermion case is that the
bosonic bound states are all cluster ones that no longer
follow the atom-dimer description. Further, for a much
larger bosonic system as in experiment [16], which is
inaccessible by exact numerics, we expect the above loss
mechanism to equally work. In this case, the sTG branch
can also be well identified as the adiabatic extension of TG
gas to the 1=g < 0 side, and as changing 1=g there should
be many more cluster bound states from higher harmonic
levels to (avoided) level cross with it. However, only those
far from resonance are responsible for the instability of the
sTG gas due to their stronger hybridizations in between.
Similar to the few-body case, a weak dipolar force is
expected to shift these bound state spectra visibly due to
their localized nature but can hardly affect the energy of the
sTG branch. Again, this leads to a significant change of
sTG stability that is sensitive to the sign of Vdd (see Fig. 1).
In summary, we have revealed the underlying mecha-

nism for a mysterious phenomenon recently observed in 1D
sTG gas, namely, its greatly enhanced (reduced) stability by
a weak repulsive (or attractive) dipolar interaction. The key
to this phenomenon is the significant spectral response of
excited bound states—the decay channel of sTG gas—to
the dipolar force. Therefore the sTG gas is indirectly
affected due to the interbranch hybridization at their level
crossing, leading to a modification of sTG stability but not
its energy. In this regard, our results suggest a powerful tool
to tune the stability of the target state by manipulating its
decay channel under designed potentials. Such state-selec-
tive manipulation may help one to engineer many more
fascinating long-lived quantum states in a cold atoms
platform in the future.
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