
Supporting Information

Restricted Boltzmann Machines Implemented by Spin-Orbit Torque Magnetic

Tunnel Junctions

Xiaohan Li1,3,†, Caihua Wan1,2,†*, Ran Zhang1,†, Mingkun Zhao1, Shilong Xiong1,

Dehao Kong1, Xuming Luo1, Bin He1. Shiqiang Liu1, Jihao Xia1, Guoqiang Yu1,2,

Xiufeng Han1,2,3*

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,

University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing

100190, China

2Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

3Center of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China

†These authors contributed equally to this work.

Corresponding to: xfhan@iphy.ac.cn; wancaihua@iphy.ac.cn

mailto:xfhan@iphy.ac.cn
mailto:wancaihua@iphy.ac.cn

Supplementary note S1. MNIST dataset image recognition.

The MNIST dataset comprises of 70000 hand-written images of digits ranging from

0 to 9. Out of the 70000 images, 60000 are used for training and 10,000 for testing. In

this study, we demonstrated the “0” and “1” image recognition. Firstly, we reduced the

original 28 28 images to 5 5 images using mean pooling. Then, we trained in an × ×

unsupervised way the RBM in Figure 2 which consisted of 25 visible nodes and 2

hidden nodes. We trained the RBM network using 100 images of “0” and “1” within an

epoch and a learning rate of 0.3. After training, the hidden layer was classified into two

categories. Here we used supervised logistic regression to map the two categories to the

corresponding labels, using 40 test images within an epoch. Finally, we used a set of 40

test images that were completely different from the used ones to evaluate the

performance of the trained RBM with the already trained weights W1 and W2. Note that

we have used different images for the RBM training, logistic regression and testing to

avoid overfitting. The specific algorithm used in the experiment is detailed in Figure

S1-S3. We employed SOT-MTJs for all the Gibbs sampling tasks here and then

retrieved sampling outcomes to a computer for matrix multiplications.

Figure S1. Utilized RBM networks for unsupervised training to obtain weights (W1).

Figure S2. Using logistic regression for supervised training to obtain weights (W2).

Figure S3. Test the weights (W1 and W2) obtained from the RBM and logistic
regression training to calculate the recognition accuracy.

Supplementary note S2. Free spoken speech recognition.

The Free-Spoken-Digit-Dataset comprises 3000 audio recordings of the spoken

numbers from 0-9. Initially, we transformed the speech data into spectra by applying

Fast Fourier Transformation (FFT) (see Figure S4). Then, we selected the main

frequency range of human voices (<1 kHz) and performed mean pooling to compress

the selected spectra into 4 4=16 dimensional data (similar with images). Furthermore, ×

we used the 16 pixels as visible nodes for the speech recognition RBM. We trained the

RBM using 25 audio samples with an epoch (learning rate=0.5); 40 audio samples were

used for the subsequent logistic regression. After training and regression, the weight

matrix W2 and W3 were well-determined. Finally, we reserved 40 audio samples for

testing. All the Gibbs sampling operations here were also conducted by SOT-MTJs.

Figure S4. The free spoken digit dataset speech processing process.

Supplementary note S3. Schematic diagram of pooling.

The specific implementation process is detailed in Figure S5. Given that the MNIST

dataset frequently exhibits blank peripheral regions on its four edges, we initially

perform a cropping operation around the 4 peripheral regions. Subsequently, we apply

a pooling operation on the resulting 20×20 region to derive the final 5×5 image.

Figure S5. Schematic diagram of pooling. First, crop the 28×28 image to remove the

surrounding blank area, turn it into a 20×20 image, and then pool it into a 5×5 image.

Supplementary note S4. The simulation and experiment results about recognition

rate, convergence speed.

In Fig.S6a&b, we have incorporated the results of both simulations and experiments

pertaining to speech (a) and image (b) recognition accuracy. The simulation results

represent the average accuracy rate obtained after ten rounds of simulations. These data

illustrate that SOT-MTJ's performance is on par with the simulations or even better

possibly owing to the higher quality of true random numbers. Furthermore, in Fig.R2c,

we present a comparative analysis of the change in the loss function over the process

of iterations, encompassing both the simulation and experimental results of image

recognition. Once again, the close alignment between these two sets of data, indicating

a similar convergence speed, underscores the promise of SOT-MTJs for implementing

neural network training. Additionally, the endurance of SOT-MTJs during this training

process was approximately iterations.4.5 × 103

Figure S6. Simulation and experimental results about speech recognition rate

(a) ,image recognition rate (b) and image recognition convergence speed (c).

Supplementary note S5. XOR gate inverted logic.

The RBM network to implement the inverted XOR logic is shown in Figure S7. The

input (AB) and output (C) of an XOR logic gate are all locate at the visible layer. This

RBM is trained to memorize (in the network weights) the 4 modes that accord with the

truth table of an XOR gate. To enhance the recognition ability of the RBM, we have

tripled the logic nodes as (AAABBBCCC) for the visible layer. The RBM has

additional four hidden nodes for storing latent information. We stochastically

constructed a training dataset of 76 “samples” where, for example, “AAA” represents

“1” only if at least two in the three A are “1”. Otherwise, “AAA” represents “0”. In this

case, we can introduce stochastics into the RBM, extend its phase space and enhance

its robustness. We trained the RBM network with a batch of 76 samples for 500 epochs

with a learning rate of 0.02. Here the network training is completed on a computer.

After training, we used SOT-MTJs as Gibbs samplers in the experiment to conduct both

derivation and inference operations for the XOR RBM.

Figure S7. The RBM network for an XOR gate inverted logic.

Figure S8. The phase space of the well-trained XOR gate when its output is 0.

Supplementary note S6. Integer factorization.

We define the decomposition of integer N into A and B.

N AB

𝐴 = ∑
𝑖

2𝑖𝑎𝑖

𝐵 = ∑
𝑖

2𝑖𝑏𝑖

Construct an error function:
 (S1)𝐸 = (𝐴𝐵 ― 𝑁)2 +1

The purpose of having a constant 1 in E is only to zero lg(E) when E is at its minimum

as conveniently shown in Figure 4f.

The structure of the RBM network is depicted in Figure S9. The weights of the RBM,

W, can be determined by comparing the generalized expression of 𝐸 = ∑
𝑖𝑗𝑎𝑖𝑊𝑖𝑗𝑏𝑗

with the above concrete energy equation (S1). The integer factorization is achieved

when E equals 1 or lg(E) equals 0. It is noteworthy that only individual and 𝑎𝑖 𝑏𝑖

terms, represented by blue nodes in the figure, are independently sampled during the

sampling process. Sampling of the other coupling terms, such as or terms, 𝑎𝑖𝑎𝑗 𝑏𝑖𝑏𝑗

represented by the green nodes in the figure, is unnecessary as they have been already

predetermined. Here the sampling process is finished by SOT-MTJs.

Figure S9. The RBM network that implements integer factorization.

Supplementary note S7. Image and speech recognition based on deep belief

network.

We have developed a deep belief network (DBN) to recognize handwritten digits and

speeches from 0 to 9 (Figure S10). The DBN comprises three RBMs and one layer of

softmax. The hidden layer of the previous RBM serves as the visible layer of the

subsequent RBM, and the last hidden layer is connected to the labelling layer encoded

by one-hot. The function of first three RBMs is to reduce dimensionality.

For image recognition, the DBN is composed of three RBMs with sizes of 784-500,

500-200, and 200-50, trained on 60000 samples. The test set consisted of 10000 images,

and we achieved an accuracy of 99.3% (Figure S11).

Figure S10. Structure of the DBN consisting of stacked RBMs.

Figure S11. Percent distribution of the ten different output digits each input digit is

classified into.

For speech recognition, we transformed speech data into spectra through fast Fourier

transform (FFT), selecting the frequency of human voice (<1 kHz), and obtaining 10 ×

10 images through mean pooling. The remaining process is the same as that for image

recognition. Since we only had 3000 data points in total, we used the same data for

training and testing. Ultimately, we achieved an accuracy of 83.2% (Figure S12).

Figure S12. Percent distribution of the ten different output digits each input digit is

classified into.

Supplementary note S8. Crossmodal training from images to speeches.

Besides of the crossmodal learning from auditory to visual data in experiment (Figure

3 of the main text), we also simulated crossmodal learning from visual to auditory data,

demonstrating the effectiveness in crossmodal perception of our merged RBM method

as illustrated in Figure S13. Here because generation of auditory data needs much more

numbers of visible nodes than the recognition purpose, the number of our SOT-MTJs

is far from enough, which limits us in simulation only. To this end, we utilized a similar

network architecture as depicted in Figure 2d. For image training, we employed a

dataset of 100 images, each with a size of 28×28 pixels (784 visible nodes) and 2 hidden

nodes. The training set was trained for 1 epoch with a learning rate of 0.3. For speech

recognition, we used a dataset of 13 audio samples, with 2040 visible nodes

(considering only frequencies below 4 kHz) and 2 hidden nodes, trained for 100000

epochs with a learning rate of 0.3. The above two RBMs were interconnected as

depicted in Figure 2d. Initially, the input image was trained to derive the corresponding

labels, which were then converted into the hidden layer values in the RBM speech

recognition. The visible layer was then sampled many times using the stored

information in the hidden nodes to reconstruct the speech spectrum (10 times sampled,

and the mean value of each pixel calculated). The reconstructed speech spectrum was

then transformed back into a time-domain signal using the inverse FFT. The resulting

audio files are provided as a supporting material, demonstrating clear identification

between the “pronounced” "zero" and "one". Our approach exhibits a powerful solution

for achieving crossmodal perception and creating associative ability for AI.

Figure S13. Multimodal training from images (left) to the auditory spectra (middle)

and finally to the reconstructed speeches (right).

Supplementary note S9. The verification of the Boltzmann Distribution and

forward derivation results of the XOR Gate.

We sampled the hidden layers of the trained inverted XOR logic gate network and

calculated the output probability of the hidden nodes. The input for each visible was

kept constant. A total of 10000 samples were collected, and the results showed that the

output state indeed well satisfied the Boltzmann distribution (Figure S14), with the

occurrence probability (P) exhibiting a negative exponential relationship with the

system energy (E).

Figure S14. The dependence of output probability P on E for the hidden nodes when

the same visible nodes are input.

We then performed backward inference experimentally (Figure 4d) and forward

derivation both in experiment and simulation (Figure S15) using the well-trained XOR

logic gate. By fixing input AB, we checked accuracy of output C similar to the approach

used in Figure 4d. We conducted the forward derivation test in experiment for several

times for each A ⊕ BC combination and 10000 times in simulation. The high

accuracy of the XOR gate is obtained in Figure S16.

Figure S15. Accuracy of the forward derivation conducted by the trained XOR logic

gate.

Supplementary note S10. The energy consumption evaluation.

Regarding the energy consumption per random number, low barrier and high barrier

MTJs have different evaluation formula. E=IVτ. I and V are the applied STT (SOT)

current and the driving voltage for the low-barrier STT-MTJs (high barrier SOT-MTJs),

respectively. V=IR with R being the tunneling resistance of the STT-MTJ (channel

resistance of the write line of SOT-MTJ) for the low barrier STT-MTJs (high barrier

SOT-MTJs). Most importantly, τ is the writing pulse time for the SOT-MTJs while τ is

at least the relaxation time τ0 of short-time memory of STT-MTJs. To reduce self-

correlation between neighboring random numbers for the low-barrier STT-MTJs, τ

should be much longer than τ0, for instance, 3τ0. For the low-barrier STT-MTJs1, τ0 =1-

100 ms, I50/50 = 5-10 A, RP = 7-11 k and RAP = 12-19 k , so the E is about 0.18-190 𝜇 Ω Ω

nJ/bit; for the high-barrier SOT-MTJs in this work, τ=50 ns, V = 1.2 V, Rwrite_line = 8 k

. The calculated E is thus about 18 pJ. Because of the much shorter τ for high barrier Ω

SOT-MTJs, their energy consumption is not necessarily higher than that of low-barrier

STT-MTJs. Worth noting, τ0 of low barrier STT-MTJs can be as short as 8~10 ns in the

experimental work,2 which may further reduce energy consumption to the level of 1 fJ;

τ of writing pulse of SOT-MTJs can be as short as 300 ps and the energy consumption

may be further reduced to the level of 0.1-1 pJ. 3

Supplementary note S11. Details of the experiment.

1. Real measurement setups of four probe measurement system for SOT-MTJs

Figure S16. Real measurement setup of our four-probe measurement system.

Our probe system is provided by East Changing Technologies as shown in Fig.S16. The

measurement system is sketched in Fig. 3(c) in our prior work.4 We have employed a

pulse generator (Agilent 81104A) to drive MTJ switching for sampling. We have

utilized Keithley 2400 SourceMeter and Keithley 2182 Nanovoltmeter to accurately

measure the resistance of an MTJ by the four-terminal method. Worth noting, in order

to minimize the risk of MTJ breakdown by large pulse voltages during the sampling

operations, we have also used a power splitter and a -6dB attenuator (half in magnitude)

to balance the voltage vertically imposed on the tunnel barrier to nearly zero. Two bias

tees have been used to isolate the pulse (Agilent) and DC (Keithley) measurement parts.

We have adopted this mature method in SOT-MTJ studies.4, 5

Figure S17. A schematic to show the workflow of the RBM training and test system

Because of nonvolatility of the SOT-MTJ, the sampling result is in-situ stored in the

resistive state of the MTJ. Thus, we are given enough time to read the sampled state of

the MTJ. Retrieved data are return to the LabVIEW program for analysis, caching and

subsequent callings. The workflow is shown in Fig. S17. A PC is used to store RBM

network parameters, executing the trivial matrix operations for neuron networks and

control the LabVIEW program to interact with hardware. The RBM is programmed in

Python. Once upon receiving commands from the PC (mainly the voltage amplitude

information), the LabVIEW program activates the pulse generator to switch the MTJ

device using the designated voltage amplitude for stochastic sampling. Then the MTJ

test system controlled by the LabVIEW reads the resistance state of the MTJ and further

returns this resistance information back to the PC. The resistance information is used to

update the subsequent sampling voltage of RBM nodes according to the formula

Ij=bj+∑iwijvi or Ii=ai+∑jwijhj by the PC. Worth stressing, here only the multiply-

accumulate operation that is trivial for any neuron networks and rescaling operations

on input has been computed in PC; no sigmoid function computation and pseudo-

random-number is involved in PC. Once new sampling voltages are updated, a new

iteration of workflow begins as before. Also worth noting, this workflow enables us to

apply one nonvolatile MTJ to denote many RBM nodes in the time-division way since

the PC can also be used to store resistance states of RBM nodes conveniently. Another

reason why we have to adopt only one MTJ in the time-division way is that our probe

system can only support one MTJ to work at the same time. Even in this case, we think,

it cannot be denied that our experiment has shown the viable and matching substitution

of the lengthy sampling process in software by the simple switching process of SOT-

MTJ in hardware.

Fig.S17 illustrates our comprehensive testing methodology encompassing image

recognition, speech recognition, and multimodal tasks. Our procedure employs Python

to implement the restricted Boltzmann machine (RBM). If the whole workflow is

realized in software, during the Gibbs sampling process, the sigmoid function shall be

calculated utilizing the classical algorithm, which necessitates intricate calculations

involving exponentials and divisions and such libraries as NumPy are utilized for

generating pseudo-random numbers. These pseudo-random numbers (r) distribute

equally within [0, 1]. We have to further adopt the accept-reject sampling method

(accept as r≥P and otherwise reject) to translate the [0, 1] uniform distribution into the

0 or 1 binary Bernoulli style. This is the reason why this sampling process in software

is lengthy and inefficient.

In our approach, the SOT-MTJ is employed to simplify this process. The operations

that still need PC to execute are limited to the multiply-accumulate and rescaling the

RBM's summation output. The result is then transformed to the updated voltage for

sampling the MTJ. The signals from the Python program are interfaced with the

LabVIEW signal via the 'autolv' software package (as attached in the

“Image_and_speech_recognition_tasks.txt” and “crossmodal_task.txt” file). This

interface allows for command from Python to LabVIEW and reading resistance data

back from LabVIEW. The LabVIEW program is tasked to handle measurement

instruments such as the pulse generator, the DC nanovoltmeter and the sourcemeter.

2. The training and testing process of RBM and the corresponding programs.

As shown in Fig.S18, we summarize our overall strategy to adopt SOT-MTJ as a

sampler for RBM training and testing before stepping into details. The whole process

includes two parts, the data preparation part and the neural network training process

part. In the 1st part, we have to characterize the P-V relation of the SOT-MTJ according

to its P-V relation and obtain its sigmoid-fitting parameters A and B. These parameters

will be used in the 2nd part to rescale inputs of RBM nodes to accord them with the

feature of the SOT-MTJ. Another task in the 1st part is the pretreatment of the image

and speech dataset. By this pretreatment, we can reduce dimensions of the image and

speech data without remarkably influencing their final recognition rates. After the 1st

preparation part, we get down to the RBM training and testing.

First, we use the RBM architecture with N visible nodes and M hidden nodes. In both

visible and hidden layers is there one constant node to encode bias information as usual.

All the edge weights between visible and hidden layers are initialized to zero without

exception (Step 3). Then we adopt the famous CD (contrastive divergence) algorithm6

and the pretreated dataset to train the network as well as to adjust the weights. The CD

algorithm contains no special mathematics but only three rounds of the Gibbs sampling

processes. In the first round of the Gibbs sampling process, we feed the prepared dataset

v0 into the visible layer (for example an image) and sample the values h0 of the hidden

layer accordingly. In the second round, we rebuild (sample the values v1 of) the visible

layer according to the already sampled values h0 of the hidden layer. In the last round,

we resample the values h1 of the hidden layer again according to the rebuilt visible layer

v1. The difference Δij=vi0hj0-vi1hj1 is used to update the corresponding weight wij via

wij,new = wij,old + αΔij. The parameter α as the learning rate is chosen as 0.3 here. The

training process is iterated as above until convergence or maximum iteration number is

reached. Basically, the CD algorithm compares the difference between the modeled and

rebuilt dataset and uses this difference to update its network parameters to minimize

their difference. After convergence, the rebuilt data should be similar to the original

training data, which is the principle how a RBM learns knowledges. In Step 5

(recognition and generation), we fix the image nodes in the visible layer and conduct

the Gibbs sampling back and forth until convergence to obtain stochastically stable

label nodes also in the visible layer for recognition. Instead, for generation, we fix the

label nodes in the visible layer and conduct the Gibbs sampling back and forth to obtain

stochastically stable image nodes for generation. This working principle is widely

accepted for RBMs.

As shown in Fig.S18, in Step 4 (training) and Step 5 (Recognition and Generation) of

the 2nd part, plenty of the Gibbs sampling operations are needed. In our experiment, the

sampling operations in these two steps are all conducted by the probabilistic switching

events of the SOT-MTJ devices without any involvement of the sigmoid-function

calculation and the usage of any pseudo-random-numbers. This point can also be

proven by our released program as shown below. Therefore, we confidently argue our

work is essentially experimental.

Figure. S18 The overall strategy to implement RBMs by SOT-MTJ. Here the SOT-

MTJ acts as the Gibbs sampler for RBMs to avoid computing the complex sigmoid

function and also avoid any usage of pseudo-random-numbers.

Below is a detailed introduction to the entire process using the image recognition

application as an example.

2.1 Pooling images.

The specific implementation process is detailed in Fig.S5. Given that pictures in the

MNIST dataset frequently exhibit blank peripheral regions on their four edges, we

initially perform a cropping operation around their 4 peripheral regions. Subsequently,

we apply a pooling operation on the resulting 20×20 region to derive the final 5×5

image. The average pooling is used in our experiment. First, we calculate the average

value of an area (4 grids) as the average intensity value of the new grid, and then

perform a binarization operation on it. In this case, the dimension of an image is reduced

from 400 to 25 and much less nodes are needed in the visible layer of the RBM for the

image recognition.

2.2 RBM networks

The program to train the image recognition RBM is shown below. The three green

parts correspond to the three rounds of the Gibbs sampling operations in hardware as

mentioned above. The detailed program is attached in an independent file.

We trained in an unsupervised way the RBM in Figure 2 which consisted of 25 visible

nodes and 2 hidden nodes. We trained the RBM network using 100 images of “0” and

“1” within an epoch and a learning rate α of 0.3. After training, the hidden layer was

classified into two categories. Here we used supervised logistic regression7 to map the

two categories to the corresponding labels, using 40 test images within an epoch. In

logistic regression, the dependent variable is categorical and represents the outcome of

interest, typically encoded as 0 or 1. The model works by fitting a logistic curve to the

data, which maps the input variables to the probability of the event occurring. This

curve is defined by a linear combination of the input variables, each weighted by a

coefficient. The coefficients are estimated using maximum likelihood estimation, and

the model makes predictions by applying a threshold to the predicted probabilities.

Finally, we used a set of 40 test images that were completely different from the used

ones to evaluate the performance of the trained RBM with the already trained weights

W1 and W2. Note that we have used different images for the RBM training, logistic

regression and testing to avoid overfitting. The specific algorithm used in the

experiment is detailed in Figure S1-S3. We employed SOT-MTJs to experimentally

conduct all the Gibbs sampling tasks here and then retrieved sampling outcomes to a

computer for other trivial operations for neuron networks such as matrix multiplications.

2.3 Detailed core source code

Below displayed are some core codes:

Figure S19. This program to calculate the pulse voltage DOES NOT use the sigmoid

function. The only budget is division and addition as shown by “volt = x/B -A”. Finally,

the voltage value is delivered to the LabVIEW program as shown by the sentence “y,

R= cal_lab(volt, R_m, volt_init)”, and the resistance value of the SOT-MTJ after

sampling is returned and recorded.

The “lab_volt” function in Fig.S19 initiates its process by employing parameters from

the sigmoid function which are fitted to the calibrated P-V curve from the MTJ. It then

calculates a voltage value by summing elements within a matrix and applying a

rescaling operation from x to volt. This voltage is subsequently sent to the pulse

generator, Agilent 81104A, through the “cal_lab” function.

After sourcing a pulse voltage to the writing line of the SOT-MTJ by Agilent 81104A,

the resistance of the MTJ after sampling is read by Keithley 2400 SourceMeter and

Keithley 2182 Nanovoltmeter. The obtained resistance is then conveyed to the variable

'R'. The resistance value 'R' is used to record the MTJ state-high or low allowing the

conversion into a binary signal 1 or 0.

Especially, the particular line of code, “volt = x/B - A”, reveals that our voltage values

are not derived by computing the sigmoid function. Instead, they are directly rescaled

on the basis of the matrix summation result 'x' considering the characteristics (A and B)

of a real SOT-MTJ device. This approach represents the replacement of the sampling

process in software by a real SOT-MTJ switching process in hardware, effectively

reducing the need for some complex computations and avoid the calling and usage of

any pseudo-random-numbers. The following is the code of the “cal_lab” section.

Figure S20. Using autolv to implement programs that call LabVIEW. Firstly, use the

reset pulse to reset the MTJ to its initial RP state. Then give a pulse of 50 ns with a

certain voltage amplitude to the SOT-MTJ device and check whether the MTJ has been

switched to its RAP state or still remained on the RP state. If SOT-MTJ switching is

achieved, output 1; otherwise, output 0.

The primary objective of the function “cal_lab” in Fig.S20 is to configure the LabVIEW

program using Python's 'autolv' software package, which includes setting voltage values

and other parameters. In a reset-failure event, the system is programmed to persistently

attempt resetting until the reset is successful. Once a successful reset is achieved, the

system will use the input voltage to drive switching of the SOT-MTJ and compare the

resistance result of the MTJ after sampling with the median resistance value and output

a binary signal accordingly.

Within the code, the 'vi.run()' function plays a critical role. It transfers the voltage value

from the Python script to the LabVIEW and executes the LabVIEW program. The

outcome is a sampled binary random number according to the desired probability

distribution. This process marks the second part of hardware acceleration, bypassing

the need for Python-generated or other software-based pseudo-random numbers.

Instead, it directly utilizes a single voltage pulse imposed on the write channel of the

MTJ to produce genuine binary random numbers with proper probability distribution

for the Gibbs sampling.

Pluse_volt_measure_2400_2182_81104_Single_values.vi

The program is shown in the following figure：

Figure S21. LabVIEW core program. The autolv software package developed in

Python enables the control of the LabVIEW core program. This software enables

Agilent 81104A to output the voltage pulse with the amplitude obtained from the

Python processing program to drive the probabilistic switching of the SOT-MTJ.

Subsequently, after physical sampling, the resistance of the MTJ is read by Keithley

2400 and 2182, and the result is sent back to the Python processing program to complete

the Gibbs sampling. Worth mentioning, in the above operation, we do not use any

sigmoid function and do not use any pseudo-random numbers as well.

The following code is the Gibbs sampling part of the RBM algorithm:

Figure S22. The program for sampling visible layer nodes. When “random_ch == 2”,

we use true random numbers generated by SOT-MTJ for the Gibbs sampling, and when

“random_ch == 1”, we use computer-generated pseudo-random-numbers. This set of

program enables us to implement the Gibbs sampling for RBM in hardware or software.

The key component of the system is the ability to generate true random numbers. If the

value of "random_ch" is set to 2, the LabVIEW operation utilizing SOT-MTJ as the

sampler will be selected to generate true random numbers. Alternatively, if it is not 2,

the NumPy package in Python will be activated and be used to generate pseudo-random

numbers for simulation purposes. The former option provides real-time sampling, while

the latter is used for simulation only.

All programs required to reproduce data in this study have been included and annotated

in details in an independent file (Image_and_speech_recognition_tasks.txt and

crossmodal_task.txt). We sincerely welcome other teams to replicate our results. As we

have repeated the results many times, we think it can be reproduced by others following

the same or similar procedure.

In conclusion, we did not only use simulation to realize the image recognition, speech

recognition, or multimodal tasks. Instead, we have conducted real-time testing using

the real SOT-MTJ device for the Gibbs sampling operation. Our experimental results

demonstrate viability, matchiness and stability of SOT-MTJs in hardware acceleration

for RBM neural networks. We are confident these results also provide invaluable

support for future development of hardware accelerators based on SOT-MTJ devices.

Reference

(1) Borders, W. A.; Pervaiz, A. Z.; Fukami, S.; Camsari, K. Y.; Ohno, H.; Datta, S. Integer factorization
using stochastic magnetic tunnel junctions. Nature 2019, 573 (7774), 390-393. DOI: 10.1038/s41586-
019-1557-9.
(2) Hayakawa, K.; Kanai, S.; Funatsu, T.; Igarashi, J.; Jinnai, B.; Borders, W. A.; Ohno, H.; Fukami, S.
Nanosecond Random Telegraph Noise in In-Plane Magnetic Tunnel Junctions. Phys Rev Lett 2021, 126
(11), 117202. DOI: 10.1103/PhysRevLett.126.117202.
(3) Cai, K.; Talmelli, G.; Fan, K.; Van Beek, S.; Kateel, V.; Gupta, M.; Monteiro, M. G.; Chroud, M. B.;
Jayakumar, G.; Trovato, A.; et al. First demonstration of field-free perpendicular SOT-MRAM for
ultrafast and high-density embedded memories. In 2022 International Electron Devices Meeting (IEDM),
2022.
(4) Zhao, M. K.; Zhang, R.; Wan, C. H.; Luo, X. M.; Zhang, Y.; He, W. Q.; Wang, Y. Z.; Yang, W. L.;
Yu, G. Q.; Han, X. F. Type-Y magnetic tunnel junctions with CoFeB doped tungsten as spin current
source. Applied Physics Letters 2022, 120 (18), 182405. DOI: 10.1063/5.0086860.
(5) Li, X. H.; Zhao, M. K.; Zhang, R.; Wan, C. H.; Wang, Y. Z.; Luo, X. M.; Liu, S. Q.; Xia, J. H.; Yu,
G. Q.; Han, X. F. True random number generator based on spin–orbit torque magnetic tunnel junctions.
Applied Physics Letters 2023, 123 (14), 142403. DOI: 10.1063/5.0171768.
(6) Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural computation
2002, 14 (8), 1771-1800.
(7) LaValley, M. P. Logistic regression. Circulation 2008, 117 (18), 2395-2399. DOI:
10.1161/CIRCULATIONAHA.106.682658.

