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Symmetries of three-dimensional periodic scalar fields are described by 230 space groups (SGs).
Symmetries of three-dimensional periodic (pseudo)vector fields, however, are described by the spin-space
groups (SSGs), which were initially used to describe the symmetries of magnetic orders. In SSGs, the real-
space and spin degrees of freedom are unlocked in the sense that an operation could have different spatial
and spin rotations. SSGs give a complete symmetry description of magnetic structures and have natural
applications in the band theory of itinerary electrons in magnetically ordered systems with weak spin-orbit
coupling. Altermagnetism, a concept raised recently that belongs to the symmetry-compensated collinear
magnetic orders but has nonrelativistic spin plitting, is well described by SSGs. Because of the vast number
and complicated group structures, SSGs have not yet been systematically enumerated. In this work, we
exhaust SSGs based on the invariant subgroups of SGs, with spin operations constructed from three-
dimensional (3D) real representations of the quotient groups for the invariant subgroups. For collinear and
coplanar magnetic orders, the spin operations can be reduced into lower-dimensional real representations.
As the number of SSGs is infinite, we consider only SSGs that describe magnetic unit cells up to 12 times
crystal unit cells. We obtain 157 289 noncoplanar, 24 788 coplanar-noncollinear, and 1421 collinear SSGs.
The enumerated SSGs are stored in an online database with a user-friendly interface. We develop an
algorithm to identify SSGs for realistic materials and find SSGs for 1626 magnetic materials. We also
discuss several potential applications of SSGs, including the representation theory, topological states
protected by SSGs, structures of spin textures, and refinement of magnetic neutron diffraction patterns
using SSGs. Our results serve as a solid starting point for further studies of symmetry and topology in
magnetically ordered materials.
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I. INTRODUCTION

Crystallography is a long-lived and vibrant field that
studies the symmetries of crystalline materials. With the
help of group theory, the symmetries of three-dimensional

(3D) crystals are classified into 230 space groups (SGs)
[1,2] when combining the translational symmetries with
32 3D crystallographic point groups (PGs). Theoretically,
SGs describe the symmetries of any 3D periodic scalar
fields, such as the crystal potential field VðrÞ.
Magnetism is another century-old realm, where magnetic

materials are classified according to their various magnetic
orders including ferromagnetic (FM), ferrimagnetic, anti-
ferromagnetic (AFM), spiral magnetic, and even more
complicated orders. In magnetic materials, the magnetic
moments arrange into periodic 3D pseudovector fields in
the spin space on top of the crystals formed by atoms in real
space. The pseudovector field is of even parity under space
inversion P and is odd under the time-reversal symmetry
(TRS) T .
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Historically, by combining TRS with 230 SGs, 1651
(double) Shubnikov magnetic space groups (MSGs) [2–8]
were introduced in order to describe the symmetries
of magnetic materials. Shubnikov MSGs are classified
into four types. The 230 type-II Shubnikov SGs describe
nonmagnetic materials, while the remaining 1421 of type I,
III, and IV describe magnetic ones. In Shubnikov MSGs,
the rotations of the magnetic moments are locked with the
lattice operations. For instance, a C4z symmetry operation
stands for a π=2 rotation of the lattice along the z axis
together with the rotation of the magnetic moments
for the same angle π=2 along the z direction. In later
discussion, we call the actions on the magnetic order as
“spin operations.”
MSGs, although widely used, fail to give a complete

description of the symmetries of the magnetic moment
fields. This is because there also exist symmetry operations
that have unlocked real-space and spin rotations. Such
enlarged groups were introduced as spin-space groups
(SSGs) [9,10], which are the natural generalizations
of Shubnikov MSGs and contain Shubnikov MSGs as a
subset. For instance, a real-space C4z rotation may accom-
pany a C2z spin rotation. In Fig. 1, we illustrate the
difference between SGs, MSGs, and SSGs. In Fig. 1(a),
we show an atomic configuration generated by a C4

rotation, leading to a C4-symmetric crystal field VðrÞ. In
Fig. 1(b), a C4-symmetric magnetic order is added to the
atoms. We use the notation fRskRlg to denote an operation
with space rotation Rl (the space translation part omitted
for simplicity) and spin rotation Rs. The MSG symmetry
fC4kC4g is used to describe the symmetry of the magnetic
moment field MðrÞ in Fig. 1(b). In Fig. 1(c), a different
magnetic order is shown, where the C4-related atoms have

C2-rotated spin orientations, characterized by an SSG
symmetry fC2kC4g, lying out of the scope of MSGs.
This example demonstrates the incompleteness of MSGs in
describing the symmetry of magnetic orders and the
necessity for introducing SSGs.
SGs, Shubnikov MSGs, and SSGs also have important

applications in describing the symmetries of electronic
structures. Nonmagnetic periodic electronic structures char-
acterized by a single-particle Hamiltonian Ĥ ¼ ðp̂2=2mÞ þ
VðrÞ have their crystal potential field VðrÞ respecting certain
spatial symmetries, which form a (single) SG. The spin
degree of freedom can be introduced in the Hamiltonian
when the spin-orbit coupling (SOC) is present; i.e., a third
term ð1=2m2c2Þ∇VðrÞ × p̂ · ŝ is added to the Hamiltonian,
where ŝ is the electron-spin operator. The symmetries of
the (nonmagnetic) spinful Hamiltonians are described by
double SGs together with the TRS, i.e., type-II (double)
MSGs. The SOC term locks the spatial symmetries with the
corresponding spin rotations in double MSGs. Only the
lattice rotations associated with corresponding spin rotations
are symmetries of the Hamiltonian. When the system is
magnetically ordered, an effective “Zeeman term” MðrÞ · ŝ
is generated. The effective Zeeman field may come from
the mean-field decoupling of the electron interaction in the
spin channel, where MðrÞ is the static mean field represent-
ing the magnetization, like in the spin-density-wave state.
Alternatively, this Hamiltonian also describes the motion of
an electron in the background of ordered, static magnetic
moments, like in the Kondo lattice. The classifications of
gapped topological states and unconventional quasiparticles
protected by SGs [11–26] and MSGs [27–46] have been
widely studied.
However, for itinerant electrons coming from light atoms

or low angular momentum orbitals in magnetic materials,
the SOC term is usually negligible or much smaller
compared with the effective Zeeman term. Such systems
are characterized by the single-particle Hamiltonian [47,48]

Ĥ ¼ p̂2

2m
þ VðrÞ þMðrÞ · ŝ: ð1Þ

In these systems, the spin rotations are not necessarily
always locked with lattice rotations due to the absence of
the SOC, and the system may contain pure lattice rotation
symmetries, pure spin rotation symmetries, and general
symmetries with different lattice and spin rotations. Once
the spin and the lattice operations are (partially) unlocked,
the symmetries of the Hamiltonian form SSGs. Hence,
spin-space groups not only describe the symmetries of
magnetic structures, but also apply to electrons in mag-
netically ordered material having weak spin-orbit coupling
and magnon Hamiltonian of spin systems [49] with weak
Dzyaloshinskii-Moriya interactions.
It is worth mentioning that SSG can always be used to

describe the symmetries of the magnetic structure of a

(a) (c)(b)

Space group Magnetic space group Spin-space group

FIG. 1. Illustration ofSGs,MSGs, andSSGs. (a)AC4-symmetric
atomic configuration, generated by the SG operation C4. (b) A
magnetic order generated by the MSG operation fC4kC4g, where
the real-spaceC4 is accompanied by the sameC4 spin rotation. The
notation fRskRlg denotes an operation with space rotation Rl and
spin rotation Rs. (c) A magnetic order generated by the SSG
operation fC2kC4g, where the C4 lattice rotation is accompanied
by a C2 spin rotation. MSGs, in which the spin and lattice rotation
are locked, fail to give a complete symmetry description of this
magnetic order.

YI JIANG et al. PHYS. REV. X 14, 031039 (2024)

031039-2



material, regardless of whether SOC is strong or not in
the material. When SOC is non-negligible, the electronic
structure of the material cannot be described by the SSG,
and only MSG symmetries can be used. Nonetheless, SSG
symmetries could serve as approximate symmetries for
systems where SOC is weak or much smaller compared
with the effective Zeeman term.
In 1977, Litvin tabulated 598 noncoplanar spin-point

groups (SPGs) [50]. Very recently, 252 SPGs for coplanar
and 90 SPGs for collinear magnetic orders have been listed
[48]. A new concept, altermagnetism, has also been raised
recently by the authors in Refs. [51–53], which describes a
special type of collinear symmetry-compensated magnetic
order that has nonrelativistic spin splitting or spin splitting
with negligible SOC [54,55] in the Brillouin zone (BZ),
breaking the Kramers degeneracy. The authors distin-
guished altermagnetic and AFM orders from symmetries
using spin Laue point groups which are unlocked with
the lattice point-group operations [51]. Therefore, alter-
magnetic materials [56–68] are naturally applicable sys-
tems of SSGs. An increasing number of experimental and
theoretical studies on magnetic materials with weak SOC,
among which many adopted the concept of SSGs, have been
performed, including Mn5Si3 [56], RuO2 [57–62], MnTe
[63,64], MnTe2 [69], CoNb3S6 [70,71], and the so-called
“low-Z” antiferromagnetic compounds [72], together with
many new quasiparticle types [47,48,70,71,73,74] being
theoretically predicted, which can be realized only in SSGs.
Despite the wide applications of SSGs, the systematic

enumeration of SSGs is mathematically incomplete as of
today. Compared with spin-point groups, the enumeration
of SSGs has the following difficulties: (i) The number
of symmetry operations in an SSG is infinite due to the
translation group. (ii) The number of SSGs is infinite, as the
size of the magnetic unit cell could be arbitrary times of
the original crystal unit cell, and even incommensurate
magnetic orders exist. (iii) The spin rotations in SSGs could
be noncrystallographic, such as a Cn rotation with arbitrary
integer n. These difficulties hinder the enumeration of
SSGs in the literature.
In this work, we enumerate SSGs systematically in order

to give a complete symmetry description of all magnetic
orders. We first exhaust invariant subgroups of 230 SGs and
then compute the corresponding quotient groups that are
isomorphic to point groups. The SSGs are constructed by
assigning the 3D real representations of point groups as
spin rotations to quotient group operations. 2D and 1D real
representations are also enumerated to construct SSGs for
coplanar and collinear magnetic orders. As the number
of SSGs is infinite, we restrict our enumeration of SSGs
with magnetic unit cells up to 12 times the crystal unit cells.
We find 157 289 noncoplanar SSGs, 24 788 coplanar-
noncollinear SSGs, and 1421 collinear SSGs. Especially
for quotient groups isomorphic to crystallographic point
groups, the size of the magnetic unit cell can be only within

12 times of the crystal unit cell and are, thus, exhausted in
this work, which gives rise to 68 922 (noncoplanar) SSGs.
The enumerated SSGs are stored in an online database [75]
with a user-friendly interface. We also develop an algorithm
to identify SSGs for magnetic materials, apply the algo-
rithm to more than 2000 magnetic materials in Bilbao
crystallographic server [6,76–79], and find the correspond-
ing SSGs for 1626 commensurate magnetic materials
without partial occupation.
The paper is organized as follows. In Sec. II, we give the

formal definition of SSGs and the general framework for
constructing SSGs. In Sec. III, we present the detailed
algorithm for each step in enumerating SSGs. In Sec. IV,
we summarize the enumeration results. In Sec. V, we use
both pedagogical and realistic material examples to discuss
the SSGs of magnetic structures. In Sec. VI, we discuss
potential applications of SSGs. Finally, the paper is con-
cluded in Sec. VII.

II. GENERAL FRAMEWORK

A. Definition of spin-space groups

We start with 230 SGs. An SG G has a 3D translation
group

T ¼ fRn ¼ n1a1 þ n2a2 þ n3a3; ni ∈Zg ð2Þ
as an invariant subgroup, where ai (i ¼ 1, 2, 3) are
three primitive cell bases. G is represented as the coset
decomposition

G ¼ ∪
n

i¼1
fRijτigT; ð3Þ

where Ri ∈Oð3Þ is a point group operation and τi ∈R3 is a
translation, which is zero in symmorphic SGs and fractional
under the bases of T in nonsymmorphic SGs. Denoting the
collection of Ri as P ¼ fRig, which is the point group of G,
then we have the quotient group G=T ≅ P. For symmorphic
SGs, P is a subgroup of G, and G ¼ T⋊P is the semidirect
product of the translation group and the PG. For non-
symmorphic SGs, P is no longer a subgroup of G, and G is
generally a group extension of T by P.
SGs can be used to describe the symmetry of a scalar

field VðrÞ if it is invariant under all lattice operations, where
an SG operation acts on VðrÞ in forms of

fRijτigVðrÞ ¼ VðfRijτig−1rÞ: ð4Þ
However, to describe the complete symmetries of a periodic
3D pseudovector field (the magnetic moment field) MðrÞ,
one needs to define the operations that act on the pseudo-
vector M. A natural generalization is including the spin
operations Ui, which yields the type-I MSG

GðIÞ ¼ ⋃
n

i¼1

fUikRijτigT; ð5Þ
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whereUi ¼ detðRiÞRi ∈SOð3Þ is the corresponding proper
rotation matrix of Ri. The group element fUkRjτg acts on
the magnetic moment field MðrÞ as

fUkRjτgMðrÞ ¼ detðRÞRMðfRjτg−1rÞ: ð6Þ
By further including antiunitary TRS T , one can obtain

type-II, -III, and -IV MSGs which have the group structure
GðII;III;IVÞ ¼ Gþm · G, where m ¼ T , g · T , and τ · T in
type-II, -III, and -IV Shubnikov MSGs, respectively, with g
being an SG symmetry with a nontrivial PG part and τ a
fractional translation. As T reverses M, an antiunitary
Shubnikov MSG element fUkRjτgT acts on MðrÞ as

fUkRjτgT MðrÞ ¼ − detðRÞRMðfRjτg−1rÞ: ð7Þ
Here and later, we represent the action of time reversal T on
the magnetic moment M as −1.
As last, when unlocking Ui from detðRiÞRi, we obtain

the spin-space groups, which are noted as

GðSÞ ¼ ∪
n

i¼1
fUikRijτigT; ð8Þ

where Ui ∈Oð3Þ. When detðUiÞ ¼ −1, it is assumed that it
contains TRS T and is antiunitary, i.e.,Ui ∼ detðUiÞUi · T .
Under this assumption, we do not distinguishUi ∈SOð3Þ ×
ZT
2 and Ui ∈Oð3Þ, and the full operation of g reads

g ¼
(
fUkRijτig; if detðUÞ ¼ þ1;

f−UkRijτigT ; if detðUÞ ¼ −1;
ð9Þ

and an SSG operation fUkRjτg acts on MðrÞ as

fUkRjτgMðrÞ ¼ UMðfRjτg−1rÞ: ð10Þ

To understand the group structure of SSG GðSÞ defined
in Eq. (8), it is convenient to introduce four key groups
associated with GðSÞ [10]: (i) the group G formed by the
lattice parts fRjτg; (ii) the group S formed by the spin parts
fUg; (iii) the group H formed by pure-lattice symmetry
operations fEkRjτg∈GðSÞ; (iv) the group S0 formed by
pure-spin symmetry operations fUkEj0g∈GðSÞ, which is
called the “spin-only group.” (If U is an improper rotation
with detU ¼ −1, then rigorously fUkEj0g should be
written as fUkT j0g, since it acts nontrivially on the lattice
wave vector. In this case, we still call fUkT j0g a “spin-
only” operation.) From these definitions, it follows
immediately that (a) both G and H are SGs; (b) H is an
invariant subgroup of G, i.e., H⊲G; and (c) S0 is an
invariant subgroup of S, i.e., S0⊲S. According to the
isomorphism theorem [10] (or Goursat’s lemma [80]), the
following quotient groups are isomorphic:

Q ¼ G=H ≅ S=S0: ð11Þ

For nonmagnetic systems, the spin-only groupS0 ¼ Oð3Þ,
while for nontrivial magnetic orders, the pure-spin sym-
metries inS0 can appear in only two special types ofmagnetic
orders [10].

(i) Collinear magnetic orders, where MðrÞ ¼ ½0; 0;
MzðrÞ� are set along the z direction without loss
of generality.—In this case, the spin-only group

S0 ¼ fCθkEj0g þ fMxCθkEj0g ≅ Oð2Þ; ð12Þ

whereCθ denotes the rotation with an arbitrary angle
θ along the z axis andMx the mirror normal to the x
axis. MxCθ generates all mirrors with mirror planes
passing the z axis. Note that Mx, being improper,
actually denotes the antiunitary operation C2xT .
This spin-only group can also be written as
S0 ¼ SOð2Þ⋊ZMx

2 ≅ Oð2Þ, where SO(2) represents
the continuous group from the Cθ rotation and ZMx

2

is the Z2 group formed by the pure spin rotationMx.
(ii) Coplanar magnetic orders, where MðrÞ ¼ ½MxðrÞ;

MyðrÞ; 0� are set to lie on the z ¼ 0 plane without
loss of generality.—In this case,

S0 ¼ ZMz
2 ¼ fE; fMzkEj0gg; ð13Þ

where Mz denotes the mirror along the z axis.
When an SSG GðSÞ has a nontrivial spin-only group S0, GðSÞ
can always be decomposed into a direct product group by
properly choosing the group element, i.e.,

GðSÞ ¼ GðSÞ0 × S0; ð14Þ

whereGðSÞ0 ¼ GðSÞ=S0 is “spin-only-free” and is still an SSG.
In Supplemental Material Sec. VII [81], we give rigorous
proof for the direct product group structure. For collinear and
coplanar magnetic orders, the spin operations in GðSÞ0 can
form only uniaxial point groups but not polyhedral point
groups including T, Th, Td,O, andOh [48], as the spin-only
group S0 must be an invariant subgroup of GðSÞ.
We remark that one can also define 1651 single

Shubnikov MSGs, where each operation has only a real-
space part (combined with the TRS) but no spin part. Single
Shubnikov MSGs are isomorphic to certain SSGs, as trivial
spin rotations can be assigned to each spatial operation.

B. Construction of spin-space groups

In this work, we first construct SSGs with trivial spin-
only groups S0 ¼ fEg which describe the symmetries of
general magnetic orders. For collinear and coplanar mag-
netic orders, the spin-only group S0 has group structures
shown in Eqs. (12) and (13) with the whole SSG being a
direct product group of Eq. (14), and we construct the spin-
only-free groups GðSÞ0 for them.

YI JIANG et al. PHYS. REV. X 14, 031039 (2024)

031039-4



To construct SSGs, first notice that the pure-lattice
symmetries in an SSG GðSÞ, i.e.,

H ¼ ∪
i
fEkRijτigT; ð15Þ

form an invariant subgroup of GðSÞ. The quotient group
Q ¼ G=H is a finite group and must be isomorphic to a
subgroup of O(3), i.e., a point group. By assuming the spin-
only group S0 is trivial, Q is isomorphic to the group
formed by spin rotations:

Q ¼ GðSÞ=H ≅ fUig: ð16Þ

This relation gives insight into how to construct SSGs,
as shown in the following.
For a given SG G with translation group T and PG P,

assume H⊲G is an invariant subgroup of G, with TH⊲T
and PH⊲P. Denote the translational quotient group as
QT ¼ T=TH and point quotient group QP ¼ P=PH. The
elements of Q ¼ G=H are generated from the set products
ofQT andQP, where the rotations fromQP have to recover
their possible fractional translation parts τ in nonsymmor-
phic G. As QT is an invariant subgroup of Q, the following
short exact sequence holds:

fEg → QT ⟶
i

Q⟶
π

QP → fEg; ð17Þ

where i maps QT to Q and π is surjection of Q onto QP,
which induces an isomorphism

QP ≅ Q=QT ;

namely,Q is a group extension ofQT byQP. IfQP is also a
subgroup of Q (which is not always the case), the group
extension becomes a semidirect product Q ¼ QT⋊QP.
Choose the representatives of the cosets in Gwith respect

to its invariant subgroup H as qα ¼ fRαjtαg, such that
G ¼∪α qαH, where Rα ∈Q is a PG operation and
tα ¼ τα þ Rn is the original translation part τα associated
with Rα plus a possible lattice translation. Assume Q has a

3D real representation D, with representation matrix
DðqαÞ ¼ Uα ∈Oð3Þ. Then, an SSG GðSÞ is constructed by

GðSÞ ¼ ∪
α
fUαkRαjtαgH; ð18Þ

where Uα denotes the rotation in spin space and operations
in H are assigned with trivial spin rotations. The algorithm
is schematically illustrated in Fig. 2.
For magnetic orders with nontrivial spin-only group S0,

the general construction in Eq. (18) is applicable, but the
existence of spin-only groups leads to additional equiv-
alence relations between SSGs, and the construction of
their corresponding SSGs can be simplified.
In the enumeration of SSGs, the involvement of a

nontrivial spin-only group S0 effectively reduces the
dimensionality of the spin space to be considered due to
the imposed equivalence relations. For the three types of
SSGs that have nontrivial S0, i.e., nonmagnetic, collinear,
and coplanar, this dimensionality reduction allows us to
focus solely on 0D, 1D, and 2D representations, respec-
tively. As a result, this refinement in the enumeration
process simplifies the procedure by limiting it to lower-
dimensional representations, thereby reducing the breadth
of groups that necessitate consideration.
For the nonmagnetic case, the spin-only group

S0 ¼ Oð3Þ, and a spin-only-free group GðSÞ0 ¼ GðSÞ=S0

contains only pure-lattice operations as spin operations
can be absorbed into S0 and is, thus, equivalent to one
of the SG G; hence, GðSÞ ¼ G × S0. Thus, there are 230
inequivalent SSGs for nonmagnetic orders, i.e., 230 SGs.
Mathematically, the trivial real representation is used to
construct all spin operations in Eq. (18), i.e., Uα ≡ E.
For collinear magnetic orders withMðrÞ ¼ ½0; 0;MzðrÞ�,

we have S0 ≅ Oð2Þ. There are two possibilities for the
group GðSÞ, namely, GðSÞ ≅ Oð2Þ or GðSÞ ≅ Oð2Þ × ZT

2 ; then,
the quotient group Q ¼ GðSÞ=S0 is Q ≅ C1 ¼ fEg and
Q ≅ Cs ¼ fE;Mzg (in the latter case, Cs has an equivalent
replacement ZT

2 ¼ fE; T g), respectively. A spin-only-free
group GðSÞ0 ¼ GðSÞ=S0 can be constructed from Eq. (18)
where Uα is a 1D real representations of Q, i.e.,

     A space group

Input
Compute translation

quotient group 

Compute point

quotient group

Find an invariant

subgroup H of    ,

with        and    

Identify

quotient group

Construct

spin-space group

OutputStep 1

Step 2

Step 3

Find a 3D real 

representation of Q

Step 4

FIG. 2. Flowchart of the algorithm for constructing spin-space groups. We use fRαjtαg to represent operations in the quotient groupQ,
where the translation part tα ¼ τα þ Rn is the original translation part τα associated with Rα in G plus a possible lattice translation.
For collinear (coplanar) SSGs, 1D (2D) real representations are used.
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DðqαÞ ¼ �1, direct summed with two trivial representa-
tions [such that Uα ∈Oð3Þ]. The SSGs for collinear
magnetic orders can be further classified into three types.
(1) When Q ≅ C1, then GðSÞ0 ¼ G, which gives 230

collinear SSGs. These SSGs describe FM orders
with spin splitting.

(2) When Q ≅ T=TH ≅ Cs (or, equivalently, Q ≅ ZT
2 ),

then GðSÞ0 ¼HþfMzkT j0;0;1gH (or, equivalently,
GðSÞ0 ¼ H þ fT kT j0; 0; 1gH). In this case, one also
has g ¼ fC2ykEj0; 0; 1g∈GðSÞ (or fT kT j0; 0; 1g∈
GðSÞ), which leads to spin degeneracy over the BZ.
These SSGs describe conventional AFM with non-
relativistic spin degeneracy.

(3) When Q ≅ P=PH ≅ Cs (or, equivalently, Q ≅ ZT
2 ),

then GðSÞ0 ¼ H þ fMzkRT jτgH (or, equivalently,
GðSÞ0 ¼ H þ fT kRT jτgH).
(a) If R ¼ P is the real-space inversion, then there

exists a combined spatial inversion and time-
reversal symmetry PT which leads to spin
degeneracy (both nonrelativistic and relativistic)
in the whole BZ. These SSGs also describe
conventional AFM orders.

(b) If R is not the real-space inversion, then there is
no symmetry that can protect spin degeneracy
over the whole BZ. These SSGs describe the
so-called “altermagnetism” [51–53] that differs
from the conventional collinear AFM orders by
the nonrelativistic spin splitting together with
many other differences in transport properties.

For coplanar magnetic orders with MðrÞ ¼ ½MxðrÞ;
MyðrÞ; 0�, S0 ¼ ZMz

2 . The group GðSÞ can be either C2v

(main axis x) or Cnh, Dnh (main axis z), with the quotient
group Q ¼ GðSÞ=S0 isomorphic to Cs (main axis x), Cn,
Cnv (main axis z), respectively. The operations in the
spin-only-free group GðSÞ0 are constructed by a direct
sum of a 2D real representation in the xy plane and one
trivial representation in the z direction.
Using this algorithm, we first compute the invariant

subgroups in 230 SGs and then derive the quotient groups
and their 3D real representations. SSGs are constructed by
assigning the 3D real representation to the quotient group
elements as spin operations. In the following section, we
give more detailed descriptions of each step.

III. DETAILED ALGORITHM

Before diving into the details of the enumeration of
SSGs, it is instructive to consider how to enumerate 230
SGs. Suppose we have 32 crystallographic point groups
and 14 Bravais lattices, the latter of which give the bases
of translation group T. Then, constructing SGs is a group
extension problem, i.e., an extension of the translation
group T by the PG P.
In practice, the problem can be transformed into solving

a set of linear equations. For a given PG P and translation

group T, suppose the SG G constructed from them has
elements g ¼ fpjτpg, where p∈P and τp are the trans-
lational part to be solved. The following two equations
must be satisfied for G to form a group:

pT ¼ T ∀ p∈P;

τp1p2
¼ τp1

þ p1τp2
mod T ∀ p1; p2 ∈P: ð19Þ

The first equation means T is invariant under all p∈P,
which is equivalent to requiring all p∈P are integer O(3)
matrices in the primitive bases. The second equation is
nothing but the group multiplication rule in G. By iterating
over 32 point groups and their compatible Bravais lattices,
these equations can be solved to give all possible SGs.
However, the resultant number of SGs is larger than 230,

as many of them are equivalent. To obtain inequivalent
SGs, one has to define the equivalent relation between
SGs. Two SGs G1 and G2 are equivalent if there exists a
coordinate transformation W ¼ fAjtg, where A∈SLð3;ZÞ
and t∈R3, such that

G1 ¼ WG2W−1: ð20Þ

Notice that the length of the primitive cell bases in T and
the angles between them are inessential in defining equiv-
alent SGs. In the literature [1], there are 230 (crystallo-
graphic) space-group types if requiring A∈SLð3;ZÞ and
219 affine space-group types if A∈GLð3;ZÞ.

A. Subgroups of space groups

Assume an SG G with PG P and translational group T
has a subgroup H with sub-PG PH and subtranslational
group TH. Define the t index It ¼ jP=PHj and k index
Ik ¼ jT=THj, which denote the number of elements in the
point and translation quotient group, respectively. Remark
that, although both T and TH are infinite Abelian groups,
their quotient group is a finite group when the translation
basis in T and TH are commensurate, determined by the
transformation between their translation basis, i.e., original
unit cell basis given by T and the supercell basis given by
TH. In the literature [1], subgroups with It ≥ 2 and Ik ¼ 1
are called the translationengleiche subgroup (t subgroup),
and subgroups with It ¼ 1 and Ik ≥ 2 are called the
klassengleiche subgroup (k subgroup) [82].
We then consider how to enumerate subgroups of SGs.

When Ik ≥ 2, i.e., the translational bases of the subgroup
are enlarged and form a supercell, the subgroup is more
complicated, because an integer translation in G may
become a fractional translation in H, which means the
subgroup of a symmorphic SG could be a nonsymmor-
phic SG.
Denote the elements of H as fp̃jτ̃p̃ þ t̃g, where t̃∈TH is

a lattice translation and τ̃p̃ is the fractional translation
associated with p̃ in G, written in the bases of TH. Symbols
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with a tilde always represent operations inH. The fractional
translation inH can be expressed as τ̃p̃ ¼ τp̃ þ tp̃, where τp̃
is the fractional translation associated with p̃ in T and tp̃ a
lattice translation in T. The following equations must be
satisfied for H to form a subgroup of G:

p̃TH ¼ TH;

τp̃1
þ p̃1τp̃2

− τp̃1p̃2
¼ wðp̃1; p̃2Þ mod TH; ð21Þ

∀ p̃; p̃1; p̃2 ∈PH, where wðp1;p2Þ¼ τp1p2
−τp1

−p1τp2
.

The first equation requires the translation group to be
invariant under PH, and the second equation is the
multiplication rule that the translation part of each
element must satisfy in the subgroup. The second equation
can be reformulated as a modular linear equation M · v ¼
w mod TH, where v has the dimension 3NH and M has
dimension 3NHNH × 3NH, with NH being the number of
elements in PH. The Smith normal form can be adopted to
solve the modular equation, the details of which can be
found in Supplemental Material Sec. I [81].
In practice, we first find all possible PH and TH of given

It and Ik and then solve Eq. (21) to obtain all possible
subgroups. TH is generated by a supercell matrix S ¼
ðs1; s2; s3Þ∈GLð3;ZÞ with det ¼ Ik, where si denotes a
primitive basis, which consists of the integer combination
coefficients of the primitive bases of T.

B. Invariant subgroups of space groups

For an invariant subgroup H◃G, the invariant condition,
i.e., gHg−1 ¼ H, ∀ g∈G, must be satisfied apart from
Eq. (21). This leads to the following equations:

pTH ¼ TH;

p̃t − t ¼ 0 mod TH;

ptp̃ − tpp̃p−1 ¼ wðp; p̃Þ − wðpp̃p−1; pÞ mod TH; ð22Þ

∀ p̃∈PH; p∈P; t∈T, where wðp; p̃Þ is defined similarly
as in Eq. (21).
In practice, the second equation in Eq. (22) can be

transformed into another modular linear equation M0 · v ¼
w0 mod TH, where v has dimension 3NH and M0 has
dimension 3NGNH × 3NH, with NG and NH being the
number of elements in P and PH, respectively. Each
subgroup is checked using Eq. (22) to determine if it is
an invariant subgroup. In this way, we obtain all invariant
subgroups of SGs within a given supercell range.

C. Quotient groups

Given an invariant subgroup H of G, the quotient group
Q ¼ G=H can be computed by first computing the trans-
lation quotient group QT ¼ T=TH and point quotient
group QP ¼ P=PH.

The translation quotient group QT is a finite Abelian
group of the structure Zn1 × Zn2 × Zn3 , where n1n2n3 ¼ Ik
is the supercell k index. The point quotient group QP is
obtained from the coset representatives of PH in P. The
whole quotient group Q is a finite group, with elements
being the set product of QT and QP, where the rotations
fromQP have to recover their possible fractional translation
parts τ in nonsymmorphic G. The group structure of Q is
determined by both G and H, which is the group extension
of QT by QP.
We compute the multiplication table of Q and then

identify the isomorphic abstract group. An algorithm to
obtain isomorphism between finite groups is given in
Supplemental Material Sec. II [81].

D. 3D real representations of the quotient group

The 3D real (unitary) representations of the quotient
group can be used to construct SSGs. This is because the
spin operations belong to O(3), and the representation
matrix of a 3D real representation can always be trans-
formed into a O(3) matrix. A finite group with 3D real
(unitary faithful) representations must be isomorphic
to a PG. Thus, we consider the quotient groups that are
isomorphic to point groups, either crystallographic or
noncrystallographic.
Point groups are classified into the following abstract

point groups that are not isomorphic to each other:
Cnðn∈ZÞ, Cnhðn∈ 2ZÞ, Dnðn∈Z; n ≥ 3Þ, Dnhðn∈ 2ZÞ,
T, O, I, Th, Oh, and Ih. The equivalent relations between
point groups are summarized in Supplemental Material
Sec. III [81]. The irreducible representations (IRREPs) of
32 crystallographic point groups are tabulated in Ref. [83],
and IRREPs of noncrystallographic point groups can be
found in Mathematica [84].
IRREPs of a finite group G can be classified into three

types, i.e., real, pseudoreal, and complex [2]. 3D real
representations are constructed from IRREPs of each
abstract PG, which have three possible constructions:

(i) from three 1D IRREPs, if all three 1D IRREPs are
real or one of them is real and the other two are
complex and conjugated;

(ii) from a 1D and a 2D real IRREP;
(iii) directly from a 3D real IRREP.

Moreover, we require that the 3D real representations are
faithful, i.e., only the identity element in the PG has the
identity representation matrix. This is because, otherwise,
the corresponding SSG can also be constructed using a
larger invariant subgroup, extended by the elements with
the identity representation matrix.

E. Equivalent SSGs

To obtain the correct number of inequivalent SSGs,
equivalent relation between SSGs must be defined.
There are three levels of equivalence, i.e., equivalent
supercells (translation subgroups), equivalent (invariant)
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subgroups, and equivalent 3D real representations of the
quotient groups.
Before moving on to the formal definition, we first give

an example to gain some insights into the problem of
equivalence. Consider SG 16 P222, which has C2x, C2y,
and C2z rotations. For a system with P222 symmetry, there
is some arbitrariness in choosing three coordinate axes. For
example, one can permute the x, y, z axis to the y, z, x axis
or change the x and y axis to y and −x axis, respectively.
These two coordinate transformations can be represented
by C3;111 and C4z. Using them as two generators, a
transformation group of point group O can be generated.
As three axes are equivalent under C3;111, one can choose
C2y rotation to form a subgroup P2y, and the other two
subgroups P2x and P2z are equivalent to P2y. Also, a
n-fold supercell along any axis is equivalent. This example
shows the importance of finding the transformations that
leave the SG invariant, which can be described by the
automorphism group of the SG.
For a given SG G, its automorphism group, which is the

set of coordinate transformations that leave G invariant, i.e.,
AutoðGÞ ¼ fW ¼ fAjtgjA∈SLð3;ZÞ; t∈R3g such that

WGW−1 ¼ G: ð23Þ

Here, A∈SLð3;ZÞ is a recombination of three coordinate
bases that must have detðAÞ ¼ 1 such that the volume and
chirality of the unit cell are unchanged. t∈R3 is a shift of
the origin point, which can take an infinite number of
values for a given A. Notice that the ordering of operations
in G under W may change, but their matrix forms must
remain unchanged. The automorphism groups of SGs
are summarized in Supplemental Material Sec. IV [81].
We remark that, for the triclinic and monoclinic crystal
systems, the number of automorphisms with different
rotation parts is infinite, while the number for other crystal
systems is finite.
The equivalence between supercells is defined as fol-

lows. For two supercells S1 and S2 of an SG G, where Si is a
3 × 3 matrix with each column being a basis vector of the
supercell, they are equivalent if there exists an automor-
phism W ¼ fAjtg of G and an elementary column trans-
formation C with detðCÞ ¼ 1, such that

S1 ¼ AS2C: ð24Þ

C serves as a recombination of bases which is necessary.
After obtaining inequivalent supercells, we then define

equivalent (invariant) subgroups under a given supercell.
Two subgroups H1 and H2 of a given supercell S of SG G
are equivalent if there exists an automorphism W ¼ fAjtg
of G such that

WH1W−1 ¼ H2; ASC ¼ S; ð25Þ

where C is an elementary column transformation with
detðCÞ ¼ 1 and the second equation means that the super-
cell S is invariant under the automorphism or, equivalently,
the automorphism A−1 is an integer matrix in the supercell,
i.e., C ¼ S−1A−1S∈SLð3;ZÞ.
For a given invariant subgroup H with supercell TH of

SG G, consider two 3D real representations D1 and D2

of the quotient group Q. We use the notation ðQjDÞ to
explicitly show the mapping from Q to D. ðQjD1Þ and
ðQjD2Þ are equivalent if there exists an automorphism
W ¼ fAjtg of G, such thatH together with TH are invariant
under W, i.e., WHW−1 ¼ H, WTHC ¼ TH (C is an
elementary column transformation), and

ðWQW−1jD1Þ ≅ ðQjD2Þ; ð26Þ

where W acts only on the quotient group operations and
≅ means the transformed representation ðWQW−1jD1Þ is
equivalent to ðQjD2Þ, which does not require their repre-
sentation matrix to be the same, but only their characters to
be the same.
Based on the aforementioned equivalent relations, we

are able to find all inequivalent invariant subgroups and
3D real representations of the quotient group. The SSGs
constructed from them are, thus, all inequivalent. We
leave more technical details to Supplemental Material
Sec. V [81].

IV. RESULTS

A. Summary of enumeration results

Using the algorithm introduced in Sec. III, we obtain a
vast number of SSGs. There are

(i) 331 661 subgroups with k index Ik ≤ 12 and 2443
subgroups with Ik ¼ 1 (i.e., without a supercell).

(ii) 27 197 invariant subgroups with k index Ik ≤ 12 and
1708 invariant subgroups with Ik ¼ 1.

(iii) 10 439 quotient groups isomorphic to crystallo-
graphic point groups and 68 922 SSGs constructed
by their 3D real representations.

(iv) 7994 quotient groups isomorphic to noncrystallo-
graphic point groups with maximal operation rank
less equal than 24 and 88 367 SSGs constructed
from them.

(v) The total number of inequivalent SSGs with Ik ¼ 1
is 8505.

(vi) The total number of inequivalent noncoplanar SSGs
is 157 289.

(vii) The number of inequivalent collinear SSGs is 1421,
and the number of coplanar-noncollinear SSGs is
24 788.

We use the following serial number to label (non-
coplanar) SSGs:

NSG:Ik:It:N3Drep; ð27Þ
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whereNSG is the SG number, Ik ¼ jTG=THj is the supercell
k index, It ¼ jPG=PHj is the t index, andN3Drep denotes the
Nth 3D representation of given Ik and It. For collinear
and coplanar SSGs, we add extra :L and :P to the SSG
label, i.e., NSG:Ik:It:N1Drep:L for collinear SSGs and
NSG:Ik:It:N2Drep:P for coplanar SSGs.
In order to exhibit the vast number of SSGs, we develop

a user-friendly online database [75], enabling easy search-
ing of SSGs based on given information. On the search
page, one can specify the desired SSG in the format
NSG:Ik:It:Nrepð:L or :PÞ or the first three numbers
NSG:Ik:It which will retrieve all eligible SSGs. A side
bar allows users to narrow down the search by selecting the
space group number, SSG types, and equivalent quotient
group label and specifying the range of Ik and It. On the
Web site of each SSG, we give SSG operations in Q, the
pure-lattice operations in H, and other basic information
about the SSG.
In the following, we compare our results with the

literature and summarize some general rules for the con-
struction of SSGs.

B. Comparison with SPGs and MSGs

Litvin enumerated 598 SPGs in 1977 [50]. SPGs are
constructed using PGs, which do not have translational
symmetries. The automorphism group of a PG P is defined
as AutoðPÞ ¼ fAjA∈SLð3;RÞg, which does not require A
to be an integer matrix. For example, a π=4 rotation along
the z axis is an automorphism of PG D4ð422Þ but not an
automorphism of SG P422.
For 32 symmorphic SGs that correspond to 32 PGs, we

find 736 SSGs without considering supercells by restricting
Ik ¼ 1. Compared with 598 SPGs, there are six SGs, i.e.,
P422, P4mm, P4=mmm, P622, P6mm, and P6=mmm,
that have extra SSGs, which all result from the difference
in the definition of automorphism groups of SG and PG.
For 1651 Shubnikov MSGs, 230 type-II nonmagnetic

SGs have time-reversal symmetry, which can be con-
structed using 230 SGs with spin-only groups S0 ¼ Oð3Þ.
230 type-I single Shubnikov MSGs can be constructed

from 230 SGs by considering Ik ¼ 1, H ¼ G, and Q ¼ 1;
i.e., all symmetries have no spin rotation part. If we
consider Ik ¼ 1 and H ¼ P1, then Q ¼ PG. In this case,
if G contains no symmetry with det ¼ −1, then the
corresponding SSG is isomorphic to the corresponding
type-I double Shubnikov MSGs. On the other hand, if G
contains symmetries with det ¼ −1, then the SSG is
isomorphic to certain type-III double Shubnikov MSGs.
674 type-III single Shubnikov MSGs can be constructed

from 230 SGs by considering all index-2 invariant sub-
groups of SGs with It ¼ 2 and Ik ¼ 1. In this case, the
quotient group Q ¼ G=H ≅ Ci. The inversion symmetry
assigned to the quotient group is equivalent to the TRS,
and, thus, GðSÞ ≅ H þ g · T H.

517 type-IV single Shubnikov MSGs can be constructed
from 230 SGs by considering all Ik ¼ 2, It ¼ 1 invariant
subgroups, which have the quotient group Q ¼ G=H ≅ Ci.
The inversion symmetry is assigned to one translation,
and GðSÞ ≅ H þ τ · T H. The resultant number of SSGs is
exactly the same number of the type-IV Shubnikov MSGs
under OG setting for each SG.

C. General rules for constructing quotient groups

Despite the vast number of SSGs, many of them have
quotient group structures that can be exhausted for arbitrary
supercell indexes Ik. In the following, we list several
examples of such constructions of quotient groups, and a
more detailed discussion can be found in Supplemental
Material Sec. VI [81].
When the quotient groupQ ≅ Cn, the invariant subgroup

H must satisfy P=PH ≅ Zp, T=TH ≅ Zq, where pq ¼ n
and p and q are not necessarily mutually prime. For
example, for G ¼ P41, PH ¼ 1, and T=TH ≅ Z6, with
the supercell along the z direction, the quotient group
Q ≅ C24 is generated by fC4zj0; 0; 14 þ 1g, which has
rank 24.
WhenQ ≅ Cnh, the invariant subgroupH could have the

structure P=PH ≅ C2, T=TH ≅ Zn, where n∈Z, n ≥ 2,
and C2 must commute with the generator of T=TH.
For example, for G ¼ P2, PH ¼ 1, P=PH ¼ C2, and
T=TH ≅ Zn, with the rotation and supercell both along
the y direction, the quotient group Q ≅ Cnh is generated by
fC2yj0g and fEj0; 1; 0g.
WhenQ ≅ Dn, the invariant subgroupH could also have

the structure P=PH ≅ C2, T=TH ≅ Zn, where n ≥ 3,
but C2 must not commute with the generator of T=TH.
For example, for G ¼ P1̄, PH ¼ 1, P=PH ¼ Ci, and
T=TH ≅ Zn, with the supercell along the z direction, the
quotient group Q ≅ Dn is generated by fEj0; 0; 1g and
fPj0g, which do not commute with each other.

D. Quotient groups isomorphic
to crystallographic point groups

We claim that we exhaust all SSGs that have spin parts
isomorphic to crystallographic point groups, with reasons
given below.
The translation quotient group QT is a finite Abelian

group. For abstract point groups, only the following are
Abelian: Cn≅Zn, Cnhðn=mÞ≅Zn×Z2, and D2hðmmmÞ ≅
Z2 × Z2 × Z2. This can be seen from the fact that a Cn
rotation with n > 2 does not commute with rotations
along other axes. Among these abstract point groups, only
Cn (n ¼ 1, 2, 3, 4, 6), Cnh (n ¼ 2, 4, 6), and D2h are
crystallographic point groups.
As a result, to exhaust all quotient groups that are

isomorphic to crystallographic point groups, we need only
to consider the supercell of k index Ik ∈ f1; 2; 3; 4; 6; 8; 12g.
Their isomorphisms are tabulated in Table I. Supercells
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with other k indexes have translation quotient groups that are
not isomorphic to any crystallographic point groups and so
are the whole quotient groups. This is because the translation
quotient group is an invariant subgroup of the whole quotient
group, and the whole quotient group cannot be isomorphic
to a crystallographic PG if it has a subgroup that is not
isomorphic to any crystallographic point groups. This means
that, by considering all invariant subgroups of SGs with
Ik ≤ 12, we are able to find all SSGs with spin part
isomorphic to crystallographic point groups.

E. SSGs for incommensurate magnetic orders

Our approach also applies to constructing the SSGs for
incommensurate magnetic structures. For example, con-
sider the simplest incommensurate spiral magnetic struc-
ture along the z direction. In this case, the translational
quotient group T=TH is isomorphic to the noncrystallo-
graphic point group Cn with n going to infinity (i.e.,
T=TH ≅ Z). The corresponding SSG is generated by the
operation fC2παkEja3g; i.e., the z-directional lattice trans-
lation a3 is accompanied by an incommensurate spin
rotation C2πα, where α is an irrational number. We can
approximate α as a rational number, i.e., α ≈ ðm=nÞ, which
leads to jT=Tj ≈ Zn. n will go to infinity when α is
approximated more accurately.
An interesting question arises concerning why noncrys-

tallographic operations could appear in periodic systems.
The key lies in understanding that the noncrystallographic
rotations are confined only to the spin part in SSGs. These
rotations do not influence the r or k but exclusively act on the
magnetic moments MðrÞ or spinor Bloch states ψσðkÞ. This
distinction allows for the incorporation of noncrystallo-
graphic symmetries within the periodic framework of SSGs.
We also discuss briefly the relation of SSGs with

superspace groups [85,86]. Superspace groups are conven-
tionally employed in the realm of incommensurate
crystallography and are generalized later to magnetic
systems [87]. In superspace groups, a basic (periodic)
structure is described by an SG or an MSG, together with
a modulation function AμR defined on atom μ in unit cell R,
which characterizes the atomic displacements (e.g., charge

density waves), the magnetic moments (e.g., spin density
waves), fractional occupancy of atoms, or other possible
local physical quantities. The modulation function AμRðx4Þ
has a variable x4 ¼ q · ðrμ þ RÞ with q being the propa-
gation vector, either commensurate or incommensurate.
x4 is introduced as a higher dimension besides the three-
dimensional real space and describes the aperiodicity of the
system. Multiple propagation vectors are also supported in
superspace groups.
Compared with (magnetic) superspace groups, SSGs are

more powerful in describing complicated magnetic struc-
tures, where symmetries with unlocked spin and real-space
rotations are allowed. This type of symmetry is uniquely
described in SSGs. It is worth mentioning that SSGs
inherently restrict to a single principal axis around which
noncrystallographic spin rotations occur. Multiple principal
axes of the noncrystallographic spin operations are not
allowed in SSGs. This is because the noncrystallographic
spin rotations are generated by the translation quotient
group T=TH¼Zn1 ×Zn2 ×Zn3 , which is an Abelian group.
Thus, the noncrystallographic spin operations assigned to
the elements in T=TH must also commute, which means
they share the same principal axis. For example, consider
two SSG operations g1 ¼ fCmxkEj100g and g2 ¼
fCnykEj010g, with m, n > 2. A system with g1;2 is
enforced to be nonmagnetic because g1g2 ≠ g2g1, which
will generate a nontrivial spin-only group that enforces
zero magnetization.
However, a single principal axis in the spin part does not

necessarily indicate a single propagation vector in SSGs.
An extra propagation vector could be given by the twofold
spin operations perpendicular to the principal axis.
For example, a SSG generated by fCnzkEj0; 0; 1g and
fMzkEj0; 1; 0g (n > 6 is even) has propagation vector
Q1 ¼ ½0; 0; ð1=nÞ�; Q2 ¼ ð0; 1

2
; 0Þ. Note that if n is odd,

Cnh is isomorphic to C2n, and a single propagation vector
describes the corresponding magnetic order.
When the magnetic order is generated by two spin

rotations along the same axis in two real-space directions,
e.g., fCmzkEj1; 0; 0g and fCnzkEj0; 1; 0g, they are
described by a single propagation vector. This is because
(i) when m and n are coprime, one can adopt a single
generator with spin rotation fCmn;zkEja; b; 0g, together
with a pure translation fEkEjm; n; 0g, where an − bm ¼ 1
such that the unit cell volume is maintained; (ii) when m
and n are not coprime but have a greatest common divider
w, one can still find a new generator fCmn

w ;z
kEja; b; 0g

together with fEkEjðm=wÞ;ðn=wÞ;0g, where an−bm¼w
(i.e., the Bézout identity), such that the unit cell volume is
maintained. However, we remark that if there are multiple
propagation vectors along the same direction, the magnetic
moments, in general, cannot have the same magnitude.
SSGs cannot describe this type of magnetic structure,
because the spin rotations in SSG are O(3) matrices that
maintain the length of magnetic moments.

TABLE I. Translation quotient groups that are isomorphic to
crystallographic point groups.

k index Translation quotient group Isomorphic PG

1 Z1 C1ð1Þ
2 Z2 C2ð2Þ
3 Z3 C3ð3Þ
4 Z4 C4ð4Þ
4 Z2 × Z2 C2hð2=mÞ
6 Z6 C6ð6Þ
8 Z4 × Z2 C4hð4=mÞ
8 Z2 × Z2 × Z2 D2hðmmmÞ
12 Z6 × Z2 C6hð6=mÞ
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For incommensurate magnetic structures, they can be
approximated by commensurate magnetic structures, and
the discussion above still applies. Thus, we conclude that
SSGs can effectively describe incommensurate magnetic
structures using noncrystallographic spin operations, which
have only a single principal axis resulting from the group
structure of the noncrystallographic point groups. In this
case, multiple propagation vectors are still allowed.
Both SSGs and superspace groups have their unique

strengths and are useful in the realm of crystallography and
magnetism. It is also possible to integrate SSGs in the
superspace group formalism by replacing MSGs with SSGs
for the basic periodic structure.

V. SSGS OF MAGNETIC STRUCTURES

In this section, we give several pedagogical examples to
show the construction of SSGs.

A. Pedagogical examples

First, for each symmorphic SG, a special type of SSG
can be constructed using invariant subgroupsH with It ¼ 1
and Ik¼n, i.e., P=PH¼1, T=TH ¼ Zn, and, thus,Q ≅ Zn.
Assume the n-fold supercell is along the z axis. Then, the
SSG is generated by an n-fold operation:

fCnkEj001g; ð28Þ

where E is the identity operation. This operation means a
lattice translation in the z axis is accompanied by a Cn
rotation in spin space, which can be used to describe the
spiral magnetism. In Fig. 3(a), we show a possible spiral
magnetic phase generated by fC4kEj001g.
Next, we show that different 3D real representations

can construct different SSGs. As an example, consider
SG 10 P2=m and a trivial invariant subgroup H with
PH ¼ 1;TH ¼ T. The quotient group Q ≅ C2h has four
real IRREPs Γ�

1 and Γ�
2 , as shown in Table II. These

IRREPs can be combined to form ten 3D real representa-
tions, as shown in Table III. Note that the ordering of the
three 1D IRREPs in a 3D real representation is inessential,
as it changes only the main axis of the equivalent PG, which
corresponds to the main axis in spin space and can be
chosen arbitrarily. These ten 3D real representations give
ten inequivalent SSGs. For example, the SSG formed by
Γ−
2 ⊕ Γ−

1 ⊕ Γ−
2 has elements

fEkEj0g; fC2ykC2yj0g; fPkPj0g; fMykMyj0g; ð29Þ

which is nothing but the double SG P2=m, with the real-
space part and spin-space part being locked. The SSG
formed by Γ−

1 ⊕ Γþ
2 ⊕ Γ−

2 has elements

fEkEj0g; fC2xkC2yj0g; fC2ykPj0g; fC2zkMyj0g; ð30Þ

which is an SSG with real-space and spin-space parts
unlocked.
As the third example, we exemplify the equivalent

relation in SSGs. Consider SG 16 P222 and the trivial
invariant subgroup as in the previous example, i.e.,
Q ≅ C2h. The ten 3D real representations, however, cannot
form ten SSGs, because only three of them are inequivalent,
i.e., Γ−

1 ⊕ Γþ
2 ⊕ Γ−

2 ≅ D2, Γþ
1 ⊕ Γ−

1 ⊕ Γþ
2 ≅ C2v, and

Γ−
1 ⊕ Γ−

1 ⊕ Γþ
2 ≅ C2h. This is because the three C2 rota-

tions in P222 are equivalent, and the 3D real representa-
tions equivalent to the same PG are, thus, equivalent.
Lastly, we present a sophisticated example to demon-

strate the construction of collinear, coplanar, and general
noncoplanar SSGs from a single SG. Consider SG 83
P4=m, which can be generated using PG operations C4z
and Mz together with the three lattice translations.
A generic atomic configuration of P4=m is shown in
Fig. 3(b), which has eight atoms in the unit cell. We first

(a)

(b) (c) (d)

FIG. 3. Examples of magnetic orders and their spin-space
groups. (a) A schematic show of spiral magnetic phase, where
a lattice translation along the z axis is associated with a C4z
rotation in spin space, i.e., fC4zkEj001g. (b)–(d) Three possible
magnetic orders generated from the same space group P4=m,
where (b) is a coplanar order, (c) a collinear order, and (d) a
general noncoplanar order, yielding SSGs 83.1.4.1.P, 83.2.1.1.L,
and 83.2.4.1, respectively. In (d), we use blue arrows to denote
three generators of the corresponding SSG 83.2.4.1, which
includes a pure lattice operation fEkMzj000g, a spin-lattice
locked operation fC4zkC4zj000g, and a spin-lattice unlocked
operation fMzkEj001g.

TABLE II. IRREPs of point group C2h.

IRREP E C2 P M

Γþ
1

1 1 1 1
Γ−
1 1 1 −1 −1

Γþ
2

1 −1 1 −1
Γ−
2 1 −1 −1 1
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consider a coplanar magnetic order as shown in Fig. 3(b),
which has a pure spin reflection symmetry fMzkEj0g owned
by all coplanar orders. The magnetic moments of the four
atoms on the same layer have C4z-related directions, result-
ing in a spin-lattice locked operation fC4zkC4zj0g. The
atoms in two layers, however, share the same magnetic
configuration, yielding a pure lattice symmetry fEkMzj0g.
Thus, the coplanar SSG for this magnetic order is identified
as SSG 83.1.4.1.P in our database.
We then consider a collinear magnetic order in Fig. 3(c),

which has a twofold supercell along the z axis. The
magnetic moments in two unit cells have reversed direc-
tions, leading to the fMzkEj001g operation and the pure
lattice operation fEkMzj0g. The spin-lattice locked oper-
ation fC4zkC4zj0g still exists, but, as the collinear order has
spin-only operation fCθkEj0g (θ being an arbitrary angle),
the C4z spin rotation can be omitted and leads to the pure
lattice operation fEkC4zj0g. The invariant subgroup H
formed by pure lattice operations is, thus, identified as
P4=m with a twofold supercell, leading to the collinear
SSG 83.2.1.1.L.
As last, we consider a general noncoplanar order in

Fig. 3(d), where we mark three generators of the SSG:

fEkMzj0g; fC4zkC4zj0g; fMzkEj001g: ð31Þ

The generators of the translation group T are modified to
fEj100g, fEj010g, and fEj002g. The corresponding SSG
is identified as 83.2.4.1, which has the invariant subgroup
H of pure lattice operations Pm with a twofold supercell
along z. We emphasize that the SSG symmetries of this
noncoplanar magnetic order are beyond MSGs. Within
MSG, only the spin-lattice locked generator fC4zkC4zj0g
remains, while the pure-lattice operation fEkMzj0g and the
spin-lattice unlocked operation fMzkEj001g lie out of the
scope of MSGs.

B. Realistic magnetic materials

In this work, we also develop an algorithm that can
identify SSGs for realistic materials, with details given
in Supplemental Material Sec. VIII [81]. We apply the
algorithm to more than 2000 magnetic materials in
the Bilbao crystallographic server [6,76–79] and find the
corresponding SSGs for all 1626 commensurate magnetic
materials without partial occupation, with results summa-
rized in Supplemental Material Sec. VIII [81]. Before
starting, we remark on the usage of SSG on magnetic
materials: (i) SSGs serve as a fine-grained tool to describe
symmetry and refine magnetic structures. (ii) SSGs
describe the electronic structures of magnetic materials
when SOC is negligible or weak compared to the spin
splitting induced by the effective Zeeman term.
In the following, we present four examples of realistic

materials with collinear, coplanar, and noncoplanar mag-
netism. We identify their corresponding SSGs and MSGs
and show that SSGs have richer symmetries than MSGs.
Figure 4(a) depicts the collinear magnetic structure

of RuO2, a recently proposed typical altermagnetic
material [57–62]. We take it as an example to demonstrate
how to determine the SSG of collinear antiferromagnetic
materials. RuO2 has SG 136 P42=mnm symmetry when
magnetic moments are ignored. The pure lattice symmetry
group H can be identified by considering the spin-up and

TABLE III. 3D real representations of point group C2h, where
the first column gives ten 3D real representations, the second to
fifth columns give the representation matrix of each operation in
C2h, and the last column gives the equivalent PG of the 3D real
representation.

3D real rep E C2 P M Eqv PG

Γ−
1 ⊕ Γþ

2 ⊕ Γ−
2

E C2x C2y C2z D2

Γþ
1 ⊕ Γ−

1 ⊕ Γþ
2

E Mz My C2x C2v

Γþ
1 ⊕ Γ−

1 ⊕ Γ−
2

E Mz C2x My C2v

Γþ
1 ⊕ Γþ

2 ⊕ Γ−
2

E C2x Mz My C2v

Γ−
1 ⊕ Γ−

1 ⊕ Γþ
2

E Mz C2z P C2h

Γ−
1 ⊕ Γ−

1 ⊕ Γ−
2 E Mz P C2z C2h

Γ−
1 ⊕ Γþ

2 ⊕ Γþ
2

E C2x Mx P C2h

Γ−
2 ⊕ Γ−

1 ⊕ Γ−
2 E C2y P My C2h

Γþ
2 ⊕ Γþ

2 ⊕ Γ−
2

E P Mz C2z C2h

Γþ
2 ⊕ Γ−

2 ⊕ Γ−
2

E P C2x Mx C2h

FIG. 4. Realistic material examples of SSGs. (a) RuO2 features
a tetragonal lattice and a collinear antiferromagnetic order.
(b) Mn3X (X ¼ Rh, Ir, and Pt) exhibits a face-centered cubic
(fcc) crystal structure with a coplanar magnetic order where all
magnetic moments reside on the (111) plane (highlighted in
green). A, B, and C are used to label three Mn atoms located on
the same plane. (c) Mn3Y (Y ¼ Ga, Ge, and Sn) has a hexagonal
lattice where Mn atoms form two kagome layers and develop a
coplanar magnetic order. (d) A deformed noncoplanar magnetic
structure of (c), where the magnetic moments of Mn are rotated in
the xy plane and acquire a z-directional component of equal
magnitude.
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spin-down atoms as different types of atoms, which is
Pmmm in RuO2. The quotient group is then computed as
C4 with the generator g ¼ fM001k4001j 12 ; 12 ; 12g. The collin-
ear spin-only group S0 defined in Eq. (12) is also present.
The SSG is, thus, determined as 136.1.2.6.L in our
database. The MSG of RuO2 is 136.499 P402=mnm0,
which forms a subgroup of the SSG. For example,
f4001k4001j 12 ; 12 ; 12g · T ∼ f4001 · Pk4001j 12 ; 12 ; 12g in MSG
can be obtained by combining g with the pure-spin
operation f4−1001kEj0g.
Figures 4(b) and 4(c) display the coplanar magnetic

structures of Mn3X (X ¼ Rh, Ir, and Pt) and Mn3Y
(Y ¼ Ga, Ge, and Sn), respectively, which have been
reported to exhibit strong anisotropic anomalous Hall
effects and spin Hall effects [88,89]. In the following,
we determine their corresponding SSGs separately.
As shown in Fig. 4(b), Mn3X (X ¼ Rh, Ir, and Pt) has a

face-centered cubic (fcc) crystal structure with three
inequivalent face-centered Mn atoms having different
magnetic orientations but all residing on the same (111)
plane. The SG without considering magnetic moments is
SG 221 Pm3̄m. The pure lattice symmetry group H is
determined to be Pmmm. The quotient group is, thus,
isomorphic to C3v, but the spin rotations are not straight-
forward to obtain. To clarify each SSG operation, we label
three Mn atoms by A, B, and C in Fig. 4(b) and show the
permutation of Mn atoms by the real-space rotations in
Table IV. The spin rotations can then be determined by
comparing the orientations of magnetic moments. For
example, the real-space 2110 acts on Mn atoms as

2110rA ¼ rA; 2110rB ¼ rC; 2110rC ¼ rB: ð32Þ

The accompanied spin operation should also switch the
magnetic moments at B and C while leaving A unchanged,
which is identified as M11̄0 with the mirror plane
perpendicular to the line connecting B and C. The SSG
operation f3111k3111g can be identified similarly. The SSG

is then determined as 221.1.6.1.P in the database, with all
SG 221 operations maintained by assigning proper spin
rotations. The MSG of Mn3X is 166.101R3̄m0, with the
main C3 axis along (111). Two generators of SG 221 are
broken in this MSG, i.e., 4100 and M100, with the former
having an unlocked spin rotation, i.e., fM011̄k4100g, and the
latter being a pure lattice symmetry, i.e., fEkM100g, in
SSG 221.1.6.1.P.
In Fig. 4(c), we show the structure of Mn3Y (Y ¼ Ga,

Ge, and Sn), which has a hexagonal lattice with Mn atoms
forming two kagome sublayers stacked along the c axis.
The magnetic moments of Mn atoms are oriented in the
(1, 1, 0), ð−1; 0; 0Þ, and ð0;−1; 0Þ directions, respectively,
written under a1, a2, a3 axes. The SG of this structure
is SG 194 P63=mmc, and the pure lattice group is P21=m,
generated by the inversion P and fMzjða3=2Þg. The
quotient group is isomorphic to the previous example, i.e.,
C3v, but has different operations, with generators f3−001k3þ001g
and f2010kM010g (or, equivalently, fM210kM010g). It isworth
mentioning that, for the former generator, its real-space
operation is a 2

3
π rotation while the spin operation is a

− 2
3
π rotation, which is not allowed inMSG. The SSG is then

identified as 194.1.6.1.P in our database, with a coplanar
spin-only group given in Eq. (13). The MSG of this material
is 63.463Cmc0m0, generated by fEkPg, f2010kkM010g,
and f2001kM001jða3=2Þg · T ∼ fM001kM001jða3=2Þg. This
MSGcan be seen a subgroup of SSG 194.1.6.1.P bybreaking
f3−001k3þ001g and the coplanar spin-only group. Remark that
there exist two entries of Mn3Sn on the Bilbao crystallo-
graphic server [6,79], which come from the same Ref. [90]
and differ by an overallC4z spin rotation. These twomagnetic
structures share the same SSG but with different conventions
of spin rotations.
At last, we introduce a noncoplanar magnetic structure of

Mn3Y (Y ¼ Ga, Ge, and Sn) depicted in Fig. 4(d), which
can be obtained by imposing a hydrostatic pressure up to
5 GPa to the coplanar magnetic structure in Fig. 4(c)
according to Ref. [91]. The magnetic moments of Mn
atoms are along ð1;−1; mzÞ, ð1; 2; mzÞ, and ð−2;−1; mzÞ
directions. The specific value of the z component mz (≠ 0)
is inessential, as it does not affect the SSG. To demonstrate
how to obtain the SSG of this novel magnetic structure, we
divide the transition from coplanar to noncoplanar order
into two stages. In the first stage, the coplanar magnetic
moments in Fig. 4(c) are rotated by π=2 in the z direction
in spin space, which leaves the SSG (i.e., 194.1.6.1.P)
unchanged, as the spin and real space are unlocked. We
remark that in SSGs the axes of the spin space can be
chosen arbitrarily, while in MSG they cannot. In the second
stage, the magnetic moments obtain a z component of equal
magnitude, leading to a noncoplanar order that breaks the
coplanar spin-only group symmetries. The SSG is then
identified as 194.1.6.1, with generators of the quotient
group being f3þ001k3−001g and fM210kM010g (note that
f2010kM010g is broken). This noncoplanar SSG has the

TABLE IV. Elements of the quotient group of 221.1.6.1.P, i.e.,
symmetries of the magnetic structure in Fig. 4(b). The first
column is the real-space operations, the second to fourth columns
the permutation of positions A ð1

2
; 1
2
; 1Þ, B ð1; 1

2
; 1
2
Þ, and C ð1

2
; 1; 1

2
Þ

under these operations, and the last column the corresponding
spin operations.

Real-space operation A B C Spin operation

E A B C E
3111 B C A 3111
3−1111 C A B 3−1111
2110 A C B M11̄0

4100 C B A M011̄

4010 B A C M101̄
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same number of operations as the coplanar SSG
194.1.6.1.P by breaking the coplanar spin-only group,
while the spin rotations undergo a spin-space coordinate
transformation of π=2 rotation in the z direction. The MSG
of this noncoplanar structure is 12.62C20=m0, with gen-
erators being inversion and fM100k2100g. It can be seen that
this MSG contains a significantly smaller number of
operations compared with the SSG 194.1.6.1.
We remark that, in these four examples, all SG oper-

ations (obtained by ignoring magnetic moments) are
maintained in the SSGs by assigning proper spin rotations,
and the first number in the label of the identified SSG (i.e.,
NSG in NSG:Ik:It:N3Drep) is the same as the SG. However,
this does not necessarily hold for all magnetic structures.
For example, consider a material with randomly generated
magnetic moments. Then, no proper spin rotation could be
assigned to SG operations, and, thus, the SSG has only the
identity operation.

VI. APPLICATIONS OF SSGS

In this section, we discuss potential applications of
SSGs. It contains four main parts: (i) the representation
theory in SSGs with band representations of Mn3Sn as a
concrete example; (ii) topological states protected by
SSG symmetries; (iii) spin texture structures under
SSGs; and (iv) refining neutron scattering patterns using
SSG symmetries.

A. Representation theory in SSGs

The representation theory of SGs and MSGs has been
pivotal in advancing the study of materials, including the
topological quantum chemistry [18,39] and symmetry-
based indicators [25,44,92] for diagnosing topological
crystalline phases. The introduction of SSGs signifi-
cantly expands the symmetry landscape, potentially
unveiling a richer array of physical phenomena in
magnetic materials, particularly those characterized
by weak SOC. In Ref. [47], the authors (including
several authors of the current manuscript) study the
corepresentation of noncoplanar SSGs with supercell k
index Ik ¼ 2, where the little cogroup is P × ZT

2 , with P
being one of 32 crystallographic point groups and
ZT
2 ¼ fE; T g. A 12-fold fermion and 13 Dirac nodal

line nexus are discovered which are topological band
nodes that can be realized only in SSGs. In Ref. [93],
the representation theory in SSG is studied using the
complete sets of commuting operators.
In the following, we give a brief introduction to the

representation theory in SSGs, with a more thorough
investigation left to future work. We use Mn3Sn as an
example and compute the IRREPs for its electronic bands.
We show the superiority of SSGs over MSGs by correctly
capturing the multiple high-dimensional degeneracy in the
band structure of Mn3Sn.

1. Projective representations in SSGs

We first provide a brief introduction to the projective
corepresentation theory in SSGs. We restrict ourselves to
the spinful representations for electron systems for the little
groups in the BZ. The spinless representations can also be
constructed similarly.
To begin with, denote the representation of an SSG

operation as DðgÞ if g is unitary and DðgÞκ if antiunitary,
where DðgÞ is the representation matrix and κ the complex
conjugation operator that satisfies κ2 ¼ 1 and κu ¼ u�κ for
any matrix u. Define the multiplicity relationship of the
representation matrices as

Dðg1ÞDðg2Þsðg1Þ ¼ ωðg1; g2ÞDðg3Þ; ð33Þ

where Dðg2Þsðg1Þ indicates Dðg2Þ when g1 is unitary and
Dðg2Þ� when g1 is antiunitary. The factor ωðg1; g2Þ is a
complex number with unit modulus, and the collection of
ωðg1 ∈G; g2 ∈GÞ constitutes the factor system of the
group, which should follow the equation

ωðg1; g2Þωðg1g2; g3Þ ¼ ωðg2; g3Þsðg1Þωðg1; g2g3Þ: ð34Þ

We consider the factor system of an SSG at a high-
symmetry point k in the BZ of an SSG, which is
constructed by two parts: the SU(2) factor from spin
rotations and the non-symmorphic translation factor. The
SU(2) factor ω1 originates from the two-to-one homomor-
phic relationship between SU(2) and SO(3) matrices and
can take only the values of 1 or −1. The nonsymmorphic
translation factor ω2, however, is nontrivial only at the non-
Γ momentum of the BZ in nonsymmorphic SSGs. For two
group elements g1 ¼ fU1kR1jτ1g and g2 ¼ fU2kR2jτ2g,
their translation factor is chosen as

ω2ðg1; g2Þ ¼ e−iK1·τ2 ; K1 ¼ sðg1Þðg−11 k − kÞ; ð35Þ

where sðg1Þ ¼ 1 or −1 when g1 is unitary or antiunitary,
respectively. It can be proven that the factor system,
composed of these two parts, satisfies the combination
relations required for projective representations. In the
representation theory of SSGs, fixing the choice of this
factor system can avoid the arbitrariness of the overall
phase in the representation.
Based on the method, we construct the factor system

for the little group of SSG at all high-symmetry points.
The factor system is crucial for the representation of
groups. We remark that, although an SSG is isomorphic
to an MSG [94] when governed by the same multiplication
relations and antiunitary parts, they do not share the same
factor system. Thus, the IRREPs in SSGs are, in general,
different from those in MSGs. This subtlety can be
exemplified by the difference between the single- and
double-group representations of an SG, where the double
group has nontrivial spin factor systems.
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With the multiplication relations and factor systems
of SSGs derived, the IRREPs can then be constructed.
In particular, we first consider the regular antiunitary
projective corepresentations. Regular representations are,
in general, reducible. It can be proven that such regular
representations always encompass all IRREPs. Moreover,
there are mathematical methods for reducing group repre-
sentations, including the use of complete sets of commuting
operators [93,95] and Hamiltonian methods [96]. By
following the Hamiltonian method, we construct all the
irreducible representations of the little groups at all high-
symmetry points for SSGs, which we leave to future work.

2. Band structure and IRREPs of Mn3Sn

We use Mn3Sn as an example to show the application
of IRREPs of SSGs in the electronic band structures. We
consider the coplanar-ordered Mn3Sn. Its band structure
with and without SOC is shown in Fig. 5(a). SOC has only
minor effects on the bands of Mn3Sn, confirming its weak
SOC nature and justifying the usage of SSGs.
In Fig. 5(b), we show the enlarged bands near Ef along

Γ − A − L. We first use MSG to compute the IRREPs.
The coplanar-ordered Mn3Sn has MSG 63.463Cmc0m0,
which is generated by fEkPg, f2010kM010g, and
f2001kM001jðc=2Þg · T . At Γ, MSG 63.463 has only 1D
(double) IRREPs, which cannot explain the 2D degener-
acies at Γ. We use SYMTOPO [97] to identify the characters
of unitary operations of these bands, with results summa-
rized in Supplemental Material Sec. VIII [81].
Next, we consider SSG 194.1.6.1.P of coplanar Mn3Sn.

This SSG has a unitary generator f3−001k3þ001g and a pure
lattice operation fEk2001jðz=2Þg besides the three gener-
ators in MSG Cmc0m0. Utilizing the method described in
the previous section for constructing antiunitary projective

representations, we obtain all the irreducible representa-
tions of this group. At the Γ point, 194.1.6.1.P has 12
inequivalent IRREPs, including eight one-dimensional and
four two-dimensional IRREPs. The character table is
presented in Supplemental Material Sec. VIII [81]. With
the character table of the SSG, we can successfully label
each group of bands using the group’s irreducible repre-
sentations as shown in Table V. We add an “S” prefix to the
labels of these IRREPs to distinguish them from the
IRREPs of the MSG.
At the boundaries of BZ, nonsymmorphic operations

could lead to higher degeneracies. As can be seen in
Fig. 5(b), the bands at the A point exhibit both twofold and
fourfold degeneracies. The MSG Cmc0m0 has only IRREPs
of up to 2D at A, thus failing to explain the 4D degeneracy.
This necessitates the introduction of SSG. Compared with
the little group at Γ, the little group at A has the same group
elements but possesses inequivalent factor systems. The
character table of IRREP at A is listed in Table VI, showing
the existence of one 2D and two 4D IRREPs. This gives a
satisfying match to the density-functional theory band
structure. Along the A − L path, the SSG has only 2D
irreducible representations, which is also consistent with
the behavior of the bands along this path in Fig. 5(b).
Moreover, along the Γ − A path, two threefold degen-

eracies are observed, protected by the symmetries of the
SSG. While the MSG has only 1D representations along
this path, SSG has four 1D and two 2D representations.
Therefore, these two threefold degeneracies, resulting from

47

48-49

50-51

52
53-54
55-56

47-48

49-52

53-56

47-48

49-50

51-52

53-54

55-56

(a) (b)

FIG. 5. Band structure and degeneracy of Mn3Sn. (a) Band
structure of Mn3Sn near the Fermi level Ef, where the red lines
represent the bands with SOC and the black lines represent the
bands without SOC. SOC has only minor effects on the band
structure of Mn3Sn. (b) Enlarged band structure near Ef of
Mn3Sn along the Γ − A − L path for bands 47–56. Twofold
degeneracies (red dots) at Γ and fourfold degeneracies (blue dots)
at A are observed. There are also 3D crossing points (green dots)
along the Γ − A path. These high-dimensional degenerate points
can be captured only by the representation theory of SSGs (see
Tables V and VI) but cannot by MSG.

TABLE V. The band representations of Mn3Sn at Γ using
IRREPs of SSG 194.1.6.1.P. Operators g1¼fEkPg, g2¼
f2010kM010g, g3 ¼ f3−001k3þ001g, and g4 ¼ fEk2001j z2g are gen-
erators of SSG. The 2D degenerate points cannot be captured by
IRREPs of the MSG.

Bands E g1 g2 g3 g4 IRREPs

47 1 1 i −1 −1 SΓ̄3

48þ 49 2 −2 0 1 2 SΓ̄11

50þ 51 2 2 0 1 −2 SΓ̄10

52 1 −1 i −1 1 SΓ̄6

53þ 54 2 −2 0 1 2 SΓ̄11

55þ 56 2 2 0 1 2 SΓ̄12

TABLE VI. Character table of SSG 194.1.6.1.P at the A point.
In the band structure of Mn3Sn shown in Fig. 5(b), bands 47 and
48 have 2D SĀ1 IRREP, while bands 49–52 and 53–56 share 4D
SĀ3 IRREP.

IRREPs E fEkPg f2010kM010g f3−001k3þ001g fEk2001j z2g
SĀ1 2 0 2i −2 0
SĀ2 2 0 −2i −2 0
SĀ3 4 0 0 2 0
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the crossing of doubly degenerate bands with nondegen-
erate bands, are uniquely captured by the SSG.
We remark that the MSG of a specific material is always

a subgroup of its SSG; thus, the IRREPs of the SSG can be
decomposed into IRREPs of the MSG, either reducible or
irreducible. For instance, the SΓ̄11 IRREP in the SSG is
reduced to Γ̄5; Γ̄6 in the MSG. With the IRREPs of MSG,
the 2D, 3D, and 4D degeneracies in Mn3Sn can be
explained only as accidental (except for the 2D IRREPs
at A). Only with SSG can we faithfully identify the high-
dimensional degeneracies in the band structures of mag-
netic materials with weak SOC.

B. Example of topological states protected by SSG

In this section, we propose two new gapped topological
states protected by SSG symmetries. We explicitly con-
struct the IRREPs in these two SSGs and identify the
topological surface states protected by the bulk topological
states. We show that the nontrivial spin rotations in SSGs
have important consequences in the IRREPs and topology.
Before starting, we discuss briefly some key aspects of

the real-space recipe [25,26,44,98] in SSGs, which could
be used to construct the complete topological classifica-
tions. The real-space recipe converts the problem of
topological classification (i.e., exhausting all inequivalent
topological states for a given symmetry group) into a
“LEGO” puzzle, where one uses lower-dimensional topo-
logical building blocks to construct (gapped) 3D topologi-
cal states. The lower-dimensional building blocks have
gapless edge states, which need to be combined properly so
that the resultant 3D states are gapped (i.e., the no open-
edge condition). The obtained 3D states are subject to the
so-called “bubble equivalence,” a process that removes
equivalent states. A simplified case in the real-space recipe
is the layer construction [25], where the 3D topological
states are built from 2D infinitely large layers. Generic 3D
topological states are formed by small pieces of finite
lower-dimensional states.
We then discuss some unique properties of the real-space

recipe in SSGs and compare those in MSGs. First, unlike
MSGs where only 2D Chern or mirror Chern insulators can
be used as the lower-dimensional building blocks, SSGs
could also host 2D topological insulators [48,94] protected
by effective TRS symmetry T M ¼ fEkMj0g · T , with
T 2

M ¼ −1, where M is a mirror reflection along a certain
direction. Second, there exists effective TRS on 1D lines
in SSG, which could protect helical edge modes.
These effective TRS include T M ¼ fEkMj0g · T and
T C2

¼ fEkC2j0g · T , which all square to −1. Third, there
exist two types of mirror symmetries in SSG, i.e., the pure
mirror without spin rotation fEkMj0g, which has eigen-
value �1, and the mirror with spin rotation fUMkMj0g
(whereUM ¼ M · P is a C2 rotation), which has eigenvalue
�i. We leave a complete real-space construction of
topological states in SSGs for further work.

In the following, we consider two simple but novel
examples of gapped topological states in SSGs. We start
with a detailed discussion of the IRREPs of the SSG, which
can be derived from the IRREPs of a corresponding MSG
through a folding and shifting process of the BZ. The
topological states in the SSG are then constructed using the
real-space recipe.

1. SSG 1.4.1.2

We first consider SSG 1.4.1.2 with generator
g ¼ fC4kEj0; 0; 14g · T , where the translation is written
under magnetic unit cell bases [i.e., (0, 0, 1) is a lattice
translation]. We drive the (spinful) IRREPs in this SSG and
then build a Z2 topological state protected by the anti-
unitary operation g, similar to the antiferromagnetic topo-
logical insulator [99,100].
IRREPs.—Based on the algorithm introduced in

Sec. VI A, we obtain the IRREPs at eight time-reversal-
invariant momenta (TRIMs), with results summarizing in
Table VII. There is only one 2D IRREP for TRIMs on
the kz ¼ 0 plane, while one 1D and one 2D IRREP for
TRIMs on the kz ¼ π plane. These IRREPs can be under-
stood from the IRREPs of MSG 1.3 PS1 with generator
gM ¼ fEkEj0; 0; 1

2
g · T . The unit cell of SSG 1.4.1.2 can be

seen as a doubled one of MSG 1.3. In MSG 1.3, there are
2D IRREPs (i.e., Kramers’ pairs) on kz ¼ 0 TRIMs and 1D
IRREPs on kz ¼ π TRIMs. In the following, we show that
the IRREPs of SSG 1.4.1.2 can be obtained from the
IRREPs of MSG 1.3 through a folding process of the BZ,
together with a subtle shifting of BZ in the kz direction
resulting from the nontrivial spin rotation.
Define h ¼ fC2kEj0; 0; 12g which has a representation

matrix satisfying DðhÞ ¼ −Dðg2Þ, where the minus sign
comes from T 2 ¼ −1. This unitary operation h can serve as
a new translation group generator, as h commutes with g
and all other translations. Denote the BZ defined from h as
mBZ. In the mBZ, the TRIMs on the kz ¼ 0 plane have
Dðg2Þ ¼ −1 which give a Kramers’ pair, while on the
kz ¼ π planeDðg2Þ ¼ þ1 and gives only 1D IRREPs. This
is the same result as in MSG 1.3.

TABLE VII. The summary of IRREPs at TRIMs in SSG 1.4.1.2
and SSG 1.4.1.3. In the table, “Dirac point”means the 2D IRREP
forms a Dirac crossing point, while “nodal line” means the 2D
IRREP is part of a nodal line in the BZ. In SSG 1.4.1.3, the kz is
omitted in the coordinate of TRIMs.

SSG 1.4.1.2 kz ¼ 0 TRIMs kz ¼ π TRIMs

IRREP One 2D One 1D,
(Nodal line) One 2D (Dirac point)

SSG 1.4.1.3 (0,0) ðπ; πÞ ð0; πÞ; ðπ; 0Þ
IRREP Two 1D Two 2D One 2D

(Dirac point) (Nodal line)
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Then, we turn to the real BZ of the SSG defined by
fEkEj0; 0; 1g. The SSG BZ is the folded version of the
mBZ. Notice that Dðh2Þ ¼ −DðfEkEj0; 0; 1gÞ, where the
minus sign comes from the spin rotation as U2

C2
¼ −1 [UR

denotes the corresponding SU(2) spin rotation of R]. We
consider TRIMs on kz ¼ 0 and π planes separately.

(i) For TRIMs with kz ¼ π, we have Dðh2Þ ¼ þ1, as
eikz ¼ −1 when kz ¼ π. In the mBZ, all the TRIMs
on kz ¼ 0; π planes satisfy Dðh2Þ ¼ þ1 and are
mapped to the kz ¼ π TRIMs in the SSG BZ. Thus,
the 1D and 2D IRREPs coexist for the kz ¼ π
TRIMs. They are characterized by DðhÞ ¼ þ1
(for 2D IRREP) and DðhÞ ¼ −1 (for 1D IRREP),
respectively. The eigenvalue of h separates the states
on the kz ¼ π plane into two independent sectors.
The 2D IRREP sector could protect Z2 topological
flow [101,102] and give rise to the surface Dirac
cone, while the 1D IRREP sector is an “audience”
that does not hybridize with the states having the
2D IRREP.

(ii) For TRIMs with kz ¼ 0, we have Dðh2Þ ¼ −1 and,
thus, DðhÞ ¼ �i. This corresponds to the kz ¼
�ðπ=2Þ planes in the mBZ, which host only 1D
IRREPs. After folding into the SSG BZ, 2D IRREPs
are formed at TRIMs with kz ¼ 0, as kz ¼ �ðπ=2Þ
planes are related by g. Moreover, these 2D IRREPs
on the kz ¼ 0 TRIMs in the SSG BZ must be part of
a nodal line, as a result of folding from mBZ.

The Dirac cone and nodal lines in the SSG BZ can also
be verified from the k · p theory. For the 2D IRREPs on
TRIMs with kz ¼ 0 (denote as D2D

kz¼0) and kz ¼ π (denote

as D2D
kz¼0), their representation matrix can be chosen as

D2D
kz¼0ðgÞ¼

�
0 1

−i 0

�
; D2D

kz¼πðgÞ¼
�

0 1

−1 0

�
: ð36Þ

The k · p effective Hamiltonians constructed from these
representation have the following form.

(i) For a TRIM on the kz ¼ 0 plane, the k · p Hamil-
tonian has the form ða1δk1 þ a2δk2 þ a3δk3Þσz,
where δk ¼ k − k0 is the deviation from TRIM k0
and ai¼1;2;3 are free parameters. A nodal line is
given by a1δk1 þ a2δk2 þ a3δk3 ¼ 0 that passes the
TRIM.

(ii) For a TRIM on the kz ¼ π plane, the k · p Hamil-
tonian has nine independent terms, i.e., all combi-
nations between δki¼1;2;3 and σi¼x;y;z. Thus, linear
Dirac crossings are allowed.

We also briefly mention the IRREPs in spinless systems,
e.g., magnon bands. For spinless IRREPs in the mBZ, 2D
Kramers pairs appear on the kz ¼ π TRIMs, as T 2 ¼ þ1.
Then, h2 ¼ fEkEj0; 0; 1g in the SSG BZ. Thus, on the
kz ¼ 0 TRIMs, there are both 2D Kramers’ pairs and 1D
IRREPs, while on the kz ¼ π TRIMs there are 2D IRREPs

from folding kz ¼ �ðπ=2Þ in the mBZ. It can be seen that
the IRREPs on kz ¼ 0 and π planes are reversed for spinless
and spinful systems.
Topological states.—This SSG protects a layer construc-

tion (LC) with a Z2 classification, as shown in Fig. 6(a).
This LC (denoted as LCS) consists of Chern layers with
Chern number C ¼ 1 on z ¼ ð2n=4Þ planes and Chern
layers with C ¼ −1 on z ¼ ð2nþ 1=4Þ; n∈Z planes.
Adjacent layers are related by g and, thus, have opposite
Chern number. This state is topological, because the
Chern layers can be deformed but cannot be eliminated
as long as g is maintained. Its doubled state, however,
can be trivialized, as Chern layers with C ¼ �1 can then
be moved together and canceled, leading to the Z2

classification.
LCS can be understood from the layer construction

of MSG 1.3 PS1 (denoted as LCM) with generator
gM ¼ fEkEj0; 0; 1

2
g · T . LCM has two Chern layers with

Chern numberC ¼ �1 on z ¼ 0; 1
2
planes in the unit cell. In

MSG 1.3, TRIMs on the kz ¼ 0 plane host Kramers’ pairs.
For an open boundary along the z direction that preserves
gM, a single Dirac (or, more generally, an odd number) cone
will appear on TRIMs with kz ¼ 0 in the surface BZ, which
can be verified from the 2D IRREPs on kz ¼ 0 TRIMs.
LCS can be seen as the doubled LCM along the z direction.
As LCM holds a single Dirac cone in the surface BZ, LSS
also hosts a single Dirac cone. Doubling of the unit cell
leads to the folding of the BZ in LCM, which maintains the
number of surface Dirac cones.
Remark that similar topological states also exist in

SSGs generated by fC2nkEj0;0;ð1=2nÞg ·T ;n∈Z;n≥1,
which host a single surface Dirac cone.

2. SSG 1.4.1.3

In the second example, we consider SSG 1.4.1.3, with
two antiunitary operations

gxT ¼
�
C2xkEj

1

2
;0;0

�
·T ; gyT ¼

�
C2ykEj0;

1

2
;0

�
·T :

ð37Þ

This SSG also has unitary operations with nontrivial spin
rotations: s1¼fC2zkEj12 ;12 ;0g and s2¼fC2zkEj− 1

2
;1
2
;0g.

IRREPs.—We start from the IRREPs in SSG 1.4.1.3,
with results summarizing in Table VII. The unit cell basis in
the xy plane of SSG 1.4.1.3 can be taken as A1 ¼ ð1; 0Þ;
A2 ¼ ð0; 1Þ. Denote the corresponding momentum in the
SSG BZ as ðk1; k2Þ. We have omitted the z direction for
simplicity. In SSG 1.4.1.3, the representation of operations
satisfies

D½ðgxT Þ2� ¼ DðfEkEj1; 0; 0gÞ ¼ Dðs1ÞDðs−12 Þ;
D½ðgyT Þ2� ¼ DðfEkEj0; 1; 0gÞ ¼ −Dðs1ÞDðs2Þ; ð38Þ
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Dðs21Þ ¼ −DðfEkEj1; 1; 0gÞ;
Dðs22Þ ¼ −DðfEkEj − 1; 1; 0gÞ; ð39Þ

where the minus sign comes from the spin rotation as
U2

C2z
¼ −1. Similar to the previous SSG 1.4.1.2, we take s1

and s2 as the translation group generators and denote the
BZ thus defined as mBZ. The IRREPs of this SSG can also
be built from the mBZ through a folding and shifting
process. A subtle difference here is these two operations do
not commute with gx;yT and will modify the coordinates of
TRIMs and their IRREPs in the mBZ, which we show in
the following.
We first identify the TRIMs in the mBZ. By definition,

TRIMs are the momenta that are invariant under the
antiunitary operation (but not necessarily always have
coordinate ki ¼ 0; π). As

DðgxT ÞDðsi¼1;2ÞDðgxT Þ−1 ¼ −D�ðsi¼1;2Þ; ð40Þ

where the minus sign comes from the spin rotations,
TRIMs must have Dðs1;2Þ ¼ eikm·si ¼ �i (note here si
are treated as the translation group generators, and km is
defined in the mBZ). Thus, TRIMs have coordinate
km ¼ ½�ðπ=2Þ;�ðπ=2Þ� in the mBZ. We then identify
which TRIMs host Kramers’ degeneracy by requiring
D½ðgx;yT Þ2� ¼ −1. Direct computation shows the TRIMs
at �½ðπ=2Þ;−ðπ=2Þ� satisfy. The other two TRIMs have
D½ðgx;yT Þ2� ¼ þ1 and, thus, host only 1D IRREP.
With IRREPs at TRIMs in the mBZ, we then construct

those in the SSG BZ. As shown in Eq. (38), we have

DðA1Þ ¼ Dðs1ÞDðs−12 Þ; DðA2Þ ¼ −Dðs1ÞDðs2Þ: ð41Þ

This relation is used to map the TRIMs between SSG BZ
and the mBZ.

(i) For the (0,0) TRIM, there are two 1D IRREPs. This
is because, at this TRIM, DðA1Þ ¼ DðA2Þ ¼
eiks·Ai ¼ þ1 (ks is defined in the SSG BZ).
Thus, it can be mapped from the �½ðπ=2Þ; ðπ=2Þ�
TRIMs in the mBZ, as DðA1Þ ¼ Dðs1ÞDðs−12 Þ ¼
eikm·s1e−ikm·s2 ¼ 1 when km ¼ �½ðπ=2Þ; ðπ=2Þ�
[DðA2Þ is similar]. Since these two TRIMs in the
mBZ each host one 1D IRREP, they give two 1D
IRREPs at (0,0) in the SSG BZ.

(ii) For the ðπ; πÞ TRIM, there are two 2D IRREPs
that protect Dirac crossings, because at this TRIM,
DðA1Þ ¼ DðA2Þ ¼ −1 and can be mapped from the
�½ðπ=2Þ;−ðπ=2Þ� TRIMs in the mBZ, which host
2D Kramers’ pairs.

(iii) For the ð0; πÞ TRIMs, there is one 2D IRREP
coming from folding. This is because at this TRIM
DðA1Þ ¼ þ1, DðA2Þ ¼ −1 and can be mapped
from the ð0; 0Þ; ðπ; πÞ in the mBZ. In the mBZ,

ð0; 0Þ; ðπ; πÞ are generic points with only 1D trivial
IRREP and are related by gx;yT . The 2D IRREP at
ð0; πÞ in the SSG BZ cannot support Dirac crossings
but must be part of a nodal line due to the folding
of BZ.

(iv) The ðπ; 0Þ TRIM is similar to ð0; πÞ, which host
one 2D IRREP from folding the 1D IRREPs at the
ð0; πÞ; ðπ; 0Þ in the mBZ.

Topological states.—SSG 1.4.1.3 protects a Z2 nonlayer
construction, as shown in Figs. 6(b) and 6(c). This nonlayer
construction is an axion insulator with a vanishing net
Chern number, protected by the antiunitary SSG trans-
lations gx;yT . It can be deformed into a layer construction
as shown in Fig. 6(d). This state is topological, because the
Chern layers can be deformed but cannot be removed when
gx;yT is maintained. Two copies of the states are topologi-
cally trivial as the Chern layers can then be eliminated,
validating the Z2 classification.
We then consider the surface states of this topological

state. Surface Dirac cones could appear on only surface BZ
that supports the partner-switching Z2 topological flow of
the surface Dirac cone [101,102], which normally requires
an even number of TRIMs that can host a Kramers’ pair.
From the IRREPs, the xz or yz surface hosts two TRIMs
with Kramers’ pairs and, thus, can host a single (or odd
number of) surface Dirac cone. The xy surface has only one
TRIM at ðπ; πÞ that hosts a Kramers’ pair. Surprisingly, this
surface can still protect the topological surface Dirac cone,
as the mBZ has two TRIMs with a Kramers’ pair on this
surface and supports the Z2 flow. The folding process will
not change the topological nature of the flow. In the SSG
BZ, the topological Z2 flow starts from a Dirac cone at
ðπ; πÞ and connects to the nodal line [which passes ðπ; 0Þ
and ð0; πÞ] and then goes bask to ðπ; πÞ. This surface state is
unique in SSG, resulting from the modified group structure
given by the spin rotations.

C. Spin textures

The spin texture SðkÞ is defined as the expectation
value of the spin operator on a Bloch state [94], i.e.,

C=1

(a) SSG 1.4.1.2 (b) SSG 1.4.1.3

x

y

z=1/4
z=0

z=2/4
z=3/4

C=1
C=-1

C=-1

z

x

y

(d) (c) 

FIG. 6. (a) A layer construction protected by SSG 1.4.1.2.
(b),(c) A nonlayer construction protected by SSG 1.4.1.3. (b) is
from the top view, where arrows denote the direction of chiral
edge modes when the boundary is open. (c) is from the side view,
in which we show only the four Chern patches inside a unit cell
and omit the patches on the boundary. (d) The layer construction
deformed from the nonlayer construction in (b), which has four
Chern layers in a unit cell with alternating Chern numbers.
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SðkÞ ¼ hψkjσjψki, which is usually defined on the Fermi
surface. Reference [94] gives a detailed discussion on the
properties of the spin textures based on the SSG BZ.
Motivated by Ref. [94], we give a brief discussion on the
symmetry properties of the spin textures in SSGs, focusing
on the dimension of the spin texture constraint by the
SSG operations.
For an SSG operation g ¼ fURkRjτg, the spin texture

SðkÞ transforms as

gSðkÞ ¼ URSðsgR−1kÞ; ð42Þ

where sg¼�1 for detðURÞ¼�1; i.e., when detðURÞ ¼ −1,
g is antiunitary and reverse k. We first consider the effects
of spin-only group S0 on SðkÞ.

(i) For collinear SSGs, the spin rotation fCθkEj0g∈S0

enforces SðkÞ ¼ ½0; 0; SzðkÞ� to be collinear.
When the SSG also has PT or antiunitary trans-
lation T · τ, spin degeneracy is guaranteed over the
whole BZ, which will enforce SðkÞ ¼ 0. Without
these two types of symmetries, spin splitting is
expected and the magnetic order is described as
altermagnetism [51–53] recently, which allows for
nontrivial spin texture.

(ii) For coplanar SSGs, fMzkEj0g∼fC2zkEj0g ·T ∈S0

enforces SðkÞ ¼ MzSð−kÞ, and SðkÞ vanishes on
TRIMs.

(iii) For the nonmagnetic case, S0 ¼ Oð3Þ will enforce
SðkÞ ¼ 0. Remark that, in the presence of SOC, the
O(3) spin-only group is broken and the spin texture
is, in general, nonvanishing.

We then consider general SSGs. The following SSG
operations will reduce the dimension of SðkÞ.

(i) When the SSG contains fPkPj0g ∼ PT , SðkÞ is
enforced to be zero.

(ii) When the SSG contains fCnkEjτg, we have SðkÞ ¼
CnSðkÞ and, thus, SðkÞ must be collinear along the
Cn direction.

(iii) When the SSG contains fMkPj0g where M is a
mirror, we have SðkÞ ¼ MSðkÞ and, thus, SðkÞ must
be coplanar on the mirror plane.

We then argue that the noncrystallographic spin rotations
in SSGs will enforce SðkÞ to be collinear to vanishing. For
SSGs with noncrystallographic spin rotations, there always
exist spin rotations Cp (p ≠ 2, 3, 4, 6). We argue that, in
such SSG S, there exists at least one operation with the
form g ¼ fCnkEjτg, i.e., a noncrystallographic spin rota-
tion accompanied by a pure translation. This operation
enforces the collinear spin texture as discussed in the
previous paragraph. We then prove the existence of g.
Suppose the noncrystallographic Cp spin rotation in S has
some real-space rotation R and translation τ part, i.e.,
h ¼ fCpkRjτg. As R can be only crystallographic with
rank m ¼ 1, 2, 3, 4, 6, we have hm ¼ fCm

p kEjτ0g. This
operation has the same form as g, i.e., a noncrystallographic

spin rotation Cm
p with no real-space rotation but only a

translation. The translation part must be nonzero, because,
otherwise, hm belongs to the spin-only group S0, which
contradicts the assumption that the spin-only group and the
spin-only-free group have only a trivial intersection.

D. Refine magnetic neutron diffraction patterns
with SSG

In this section, we consider the application of SSGs to
facilitate the refinement of magnetic orderings from mag-
netic neutron diffraction. We first review the refinement
algorithm based on MSGs in the literature [103,104]
and then extend it to SSGs. We use Mn3Sn as a realistic
example to demonstrate the advantage of SSG in the
refinement by reducing the number of refining parameters.

1. Algorithm of refinement

In the literature, a commonly used software for refining
neutron diffraction is FULLPROF [103], which has a repre-
sentational analysis module “simulated annealing and
representational analysis” (SARAh) [104]. SARAh could
list all possible MSGs and corresponding magnetic struc-
tures for a given nonmagnetic SG and propagation vector.
Our algorithm based on SSG has the same spirit and could
be integrated into their work flow by extending MSGs
to SSGs.
We start with the necessary experimental information

that can be measured before refining magnetic structures:
(i) The nonmagnetic SG G of the material refined based on
x-ray diffraction measurements in the magnetic phase or
neutron diffraction measurement in the paramagnetic phase
if assuming there is no atomic displacement during the
magnetic transition. G gives the symmetries of the crystal
structure by ignoring the magnetic moments. (ii) The
magnetic unit cell (propagation vector) obtained from
new Bragg peaks shown in neutron diffraction patterns
compared with the paramagnetic pattern, which could be
either the same as the nonmagnetic unit cell (propagation
vector q ¼ 0) or an enlarged supercell (propagation vector
q ≠ 0). (iii) The neutron diffraction patterns used for fitting
in the refinement. (iv) The net magnetic moment and its
direction. Zero net magnetic moment indicates the AFM
order. One can also distinguish collinear (together with the
direction of moments), coplanar noncollinear (together
with the plane of moments), and noncoplanar magnetic
configurations by, for example, measuring anisotropic
magnetization, e.g., magnetic susceptibility measurements
on single crystals.
With the aforementioned experimental data, the follow-

ing algorithm can be adopted for refinement based on
MSG [103,104].
(1) List all MSGs M that are compatible with the non-

magnetic SG G and magnetic unit cell (propagation
vector). In the case of multiple propagation vectors,
the magnetic unit cell can also be constructed, where
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different combination coefficients of propagation vec-
tors give different symmetry groups.

(2) For each M, find the Wyckoff positions of the
magnetic atoms and the symmetry-allowed compo-
nents of magnetic moments. The moment could be
(i) free (noncoplanar), parametrized by ðmx;my;mzÞ;
(ii) restricted on a certain plane (coplanar noncol-
linear), for example, on ðmx;my; 0Þ; or (iii) restricted
along a certain direction (collinear), for example,
along ð0; 0; mzÞ. This step can also be done math-
ematically by decomposing the representations
of the little group Gq operations on the magnetic
moments into IRREPs of Gq, and the bases of
these IRREPs give symmetry-independent magnetic
moments [103].

(3) Parametrize the magnetic configuration using the
symmetry-independent magnetic atoms. Assume
there are N such atoms. Then, the number of fitting
parameters is between N and 3N. Fit the parameters
to the neutron data and find the magnetic configu-
ration with minimal error.

(4) If the fitting errors are large, the previous steps are
repeated by considering the subgroups of G and
their corresponding MSGs, as magnetic order could
break the symmetry. Especially when the propaga-
tion vector already breaks some symmetries in G, we
could start from the corresponding subgroup at the
beginning.

The refinement algorithm based on MSGs can be extended
to SSGs straightforwardly. SSGs have the advantage of
richer symmetry operations compared with MSGs and,
thus, could reduce the number of fitting parameters.
To facilitate the usage of SSGs in the refinement, we also

give an algorithm to determine the symmetry-allowed
directions of magnetic moments for a given SSG.
Consider an SSG S and a Wyckoff position with repre-
sentative point s0. The algorithm has the following steps.
(1) First, determine the site symmetry group Gs0 of s0,

which is formed by SSG operations that keep s0
invariant, i.e., Gs0 ¼fg¼fUkRjτg∈Sjgs0¼s0þRg,
where R is a lattice translation. Denote the spin-only
site group as G0

s0 ¼ fUg, where U is the spin
rotations from all operations in Gs0.

(2) We then consider the symmetry-allowed magnetic
moments M0 at s0, which should satisfy
UiM0 ¼ M0; ∀ Ui ∈G0

s0 . In practice, this equation
can be transformed into finding the intersection of
eigenspaces where all Ui have eigenvalues 1 or,
more conveniently, finding the common null space
of ∪i ðUi − 13Þ. This eigenspace is classified into the
following three scenarios.
(a) If the dimension of the space is 0, then M0 ¼ 0.

This means, under SSG S, the Wyckoff cannot
host nonzero magnetic moments. In this case,
when the magnetic atom is at this Wyckoff

position, SSG S should be excluded in the
refinement.

(b) If the dimension of the space is 1, then M0 is
restricted to a specific direction. The magnitude
of the magnetic moment is used as the sole
refinement parameter.

(c) If the dimension of the space is 2, then M0 is
restricted to a plane and is parametrized by two
parameters, i.e., the combination coefficients of
two eigenvectors.

(d) If the dimension of the space is 3, thenM0 is free
and has three parameters.

(3) OnceM0 at s0 is determined, we use other operations
of the SSG to generate the magnetic moments at
other sites si in this Wyckoff position.

With the algorithm above, we can parametrize the magnetic
moments on Wyckoff positions for a given SSG S. These
parameters are used as input for the refinement of the
neutron diffraction pattern.
We remark on one possible issue with SSGs—i.e., the

spin space and real space are decoupled in SSGs, and, thus,
the spin orientations could differ by an overall rotation
without breaking any symmetry. This means the symmetry-
independent moments are, in principle, all free under SSGs.
This problem could be partly overcome as the direction of
moments in collinear orders and the plane of moments in
coplanar orders could be predetermined from experiments.
We also remark that, in our database [75], the spin space
has a fixed orientation; e.g., all collinear SSGs have the spin
axis along the z direction in spin space. The convention
may need to be tailored for realistic materials.

2. Example of Mn3Sn

We take Mn3Sn [90] as an example to exemplify the
advantage of SSG in neutron diffraction refinement.
As shown in Fig. 4(c), Mn3Sn has nonmagnetic SG
194P63=mmc, with magnetic Mn atoms on the kagome
6h Wyckoff position and Sn atoms on the 2c position.
We start from a general consideration of how many SSGs

could support nonzero magnetic moments on the 6h
Wyckoff position from SG 194 without involving enlarged
supercells, i.e., magnetic propagation vector q ¼ ð0; 0; 0Þ.
From our enumeration results, there are eight collinear,
40 (noncollinear) coplanar, and 152 noncoplanar SSGs
constructed from SG 194 with Ik ¼ 1. Despite the large
number of SSGs, only two collinear, two coplanar, and four
noncoplanar SSGs can support nonzero and inequivalent
magnetic moments on the 6h position. The resultant
magnetic structures from these eight SSGs are shown in
Fig. 7, with the detailed directions of magnetic moments on
each site of 6h tabulated in Table VIII. We discuss these
SSGs in more detail.

(i) For the collinear case, SSGs 194.1.1.1.L and
194.1.2.2.L both correspond to FM order in plane
but FM and AFM out of plane, respectively. The
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magnetic configurations are parametrized by only
one parameter mz. Remark that 194.1.2.2.L has
generator fMzkC2zja3=2g ∼ fC2zkC2zja3=2g · T
that connects two Mn layers, which is altermagnetic
with spin-split electronic bands.

(ii) For the coplanar case, SSG 194.1.6.1.P enforces the
same magnetic moments on two Mn layers, while
194.1.12.1.P has opposite directional moments.
These two magnetic configurations are also para-
metrized by only one parameter. The coplanar
configuration described in Fig. 4(c) has SSG
194.1.6.1.P. We remark that, in Ref. [90], the
authors did not consider the magnetic configuration
given by 194.1.12.1.P, which has only a subtle
difference compared with 194.1.6.1.P and might
give a comparable error of refinement.

(iii) For the noncoplanar case, there are four SSGs:
194.1.6.1, 194.1.12.2, 194.1.12.3, and 194.1.12.6,
each parametrized by two parameters. Among them,
SSG 194.1.6.1 has two Mn layers sharing the same

direction of magnetic moments, which describes
the experimental structure of Mn3Sn reported in
Ref. [91]. The other three possible noncoplanar
SSGs give two inequivalent Mn layers.

Note that, among the large number of SSGs given by SG
194 with Ik ¼ 1, many of them allow only magnetic
moments with higher symmetries on Wyckoff position
6h and can be omitted. For example, some noncoplanar
SSGs allow only collinear orders on 6h and, thus, are
equivalent to a collinear SSG. Moreover, the directions of
magnetic moments in each SSG tabulated in Supplemental
Material Sec. IX [81] could change by an overall rotation,
due to the decoupled nature of spin and real spaces in SSGs.
For comparison, we also consider magnetic moments

restricted by the MSG of Mn3Sn in coplanar and non-
coplanar order, i.e., MSG 63.463Cmc0m0 and 12.62C20=m0.
For MSG 63.463, the 6h position splits into two symmetry-
independent Wyckoff positions 8g and 4c, which gives
four parameters. For MSG 12.62, 6h splits into 8j and 4i,
which gives five parameters. These two MSGs have

TABLE VIII. SSGs from SG 194 with Ik ¼ 1 and their symmetry-allowed magnetic moments on the 6hWyckoff position of SG 194.
There are two allowed collinear, two coplanar, and four noncoplanar SSGs. SSGs have the advantage of fewer free parameters in the
magnetic moments compared with MSGs and could facilitate the refinement of magnetic structures from neutron diffraction patterns.
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FIG. 7. The of symmetry-allowed magnetic configurations on the 6h Wyckoff position in eight SSGs induced from SG 194 with
Ik ¼ 1. (a) and (b) are collinear orders. (c) and (d) are coplanar orders. (e)–(h) are noncoplanar orders. With SSGs, these magnetic
configurations could be parametrized by only a few parameters.
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much lower symmetry compared with the SSGs in the same
table, and the 6h Wyckoff position splits into multiple
symmetry-independent Wyckoff positions. Thus, the inde-
pendent components of the magnetic moments are
increased and detrimental for the neutron refinements.

VII. CONCLUSIONS

In this work, we give an invariant subgroup-based
algorithm to enumerate SSGs systematically. We imple-
ment the algorithm and find a vast number of SSGs. With
the enumerated SSGs, the representation theory [96,105],
new types of magnetic topological states, and novel
quasiparticles protected by SSG symmetries can be readily
explored in the future.
In addition to the applications of SSGs discussed in our

work, it is noteworthy that SSGs offer valuable insights into
the transport properties of magnetic materials with weak
SOC. The enhanced symmetry framework provided by
SSGs is instrumental in categorizing potential responses to
various external fields. For instance, SSGs offer a deeper
understanding of the anomalous Hall effect (AHE) in
different magnetic materials. Collinear and coplanar mag-
netic materials have pure-spin operations that can be seen
as effective time-reversal symmetry, which enforces the
AHE to be zero when SOC is negligible [106,107]. With
the inclusion of SOC, the degenerate points protected by
SSG symmetries are lifted and could lead to large AHE. For
noncoplanar magnetic materials, AHE could exist even
without SOC [108], and SSGs can be used to further
classify the symmetry conditions for AHE to exist.
In conclusion, the vast number of SSGs we enumerated

systematically in the work greatly enlarge the symmetries
that could be used for describing magnetic materials
and their band structures and could promote research in
related fields.

Note added. Recently, we became aware of parallel studies
conducted by Song’s group and Liu’s group, which are
documented in their works (see Refs. [93,94], respectively).
These groups have also explored the enumeration and
applications of SSGs, albeit through distinct methodolo-
gies. In Supplemental Material Sec. IX [81], we provide a
comparative analysis of our results with those of Song’s
and Liu’s groups. We also give a brief discussion on how to
effectively map these different notational systems.
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