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High-order topological phases of matter refer to the systems of n-dimensional bulk with the topology of
m-th order, exhibiting (n −m)-dimensional boundary modes and can be characterized by topological
pumping. Here, we experimentally demonstrate two types of second-order topological pumps, forming four
0-dimensional corner localized states on a 4 × 4 square lattice array of 16 superconducting qubits. The
initial ground state of the system at half-filling, as a product of four identical entangled 4-qubit states, is
prepared using an adiabatic scheme. During the pumping procedure, we adiabatically modulate the
superlattice Bose-Hubbard Hamiltonian by precisely controlling both the hopping strengths and on-site
potentials. At the half pumping period, the system evolves to a corner-localized state in a quadrupole
configuration. The robustness of the second-order topological pump is also investigated by introducing
different on-site disorder. Our Letter studies the topological properties of high-order topological phases
from the dynamical transport picture using superconducting qubits, which would inspire further research
on high-order topological phases.
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Introduction—High-order symmetry-protected topologi-
cal (HOSPT) phases of matter derive from the electric
dipole insulators to the multipole insulators in a modern
formulation of Berry phase in band structures [1,2].
The bulk-boundary correspondence for the quadrupole
insulators establishes a connection between a two-
dimensional bulk in a second-order topological phase
and zero-dimensional topological-protected corner-local-
ized states [3]. Recent literature reported the experiments
on the HOSPT phases by observing the topologically
nontrivial corner states on platforms such as photons
[4–9], phonons [10–12], electric circuits [13,14], and
metamaterial of microwave resonators [15–17]. However,
to demonstrate quantized charge transport of the HOSPT
phases remains very elusive. Recently, Ref. [18] shows that

a topological pump, e.g., the Thouless pump [19–33], can
also provide a dynamical characterization of HOSPT
phases, which depends on the topology of the pump cycle.
Corner states appear during topological pumping on a 2D
superlattice Bose-Hubbard model with staggered hopping
strengths. A tuple of four Chern numbers is defined to
measure quantized charge transport for the C4-symmetric
HOSPT phases [18].
Here, we experimentally demonstrate diagonal and non-

diagonal HOSPT pumps on a 4 × 4 square lattice array of
superconducting qubits. The initial ground state of the
Hamiltonian at half-filling, separable as a product of four
4-qubit entangled states, is prepared using an adiabatic
scheme. During the pumping process, we tune the frequen-
cies of the couplers, connecting nearby qubits, to dynami-
cally manipulate the hopping strengths. Together with the
dynamical control of the qubits frequencies, we simulate
the time-dependent Hamiltonian, enabling the implemen-
tation of a cyclic pump. During the first half pumping
procedure, the system evolves from the topologically trivial
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regime to the topologically nontrivial regime. At the half
pumping period for both diagonal and nondiagonal pumps,
the systems evolve to two different types of topological
corner states, respectively. We experimentally observe the
average amount of charge transport during the diagonal and
nondiagonal pumps, which agree well with the anticipated
fractional charge distributions [18]. We also experimentally
investigate the diagonal HOSPT pump with on-site poten-
tial disorder. Our results open up the avenue for studying
HOSPT pumps on various quantum-simulating platforms.
Setup and model—On our processor, a flip-chip tech-

nique is employed to integrate 62 superconducting qubits,
arranged in a 2D square lattice, and to incorporate tunable
couplers as lattice bonds [34], see Fig. 1(a). In our
experiments, a subset of 16 qubits configured in a 4 × 4
square lattice is selected, see Fig. 1(b). The system can be
described as the Bose-Hubbard model [35–37] with neg-
ative on-site nonlinear interactions with an average value of
−260 MHz, which is much larger than the hopping
strength. Thus, the system can be effectively described
with hard-core bosons, which does not alter the results of
our study [18,38]. The Hamiltonian under open boundary
conditions (OBC) reads

ĤOBC¼−
XD−1

x¼−D

XD
y¼−D

f½JðxÞâ†x;yâxþ1;yþH:c:�þx↔yg; ð1Þ

where â†x;y (âx;y) denotes the hard-core bosonic creation
(annihilation) operator. The subscript ðx; yÞ denotes the
coordinate of the qubit, with x and y both varying from
−1.5 to 1.5 and D ¼ 1.5, see Fig. 1(d). Here, JðξÞ, with
ξ∈ fx; yg, denotes the staggered hopping strength at
the bond between nearby qubits along the x or y axis,
as JðξÞ ¼ J0 − J for ξ∈ f−1.5; 0.5g, and JðξÞ ¼ J for
ξ∈ f−0.5; 1.5g, with J∈ ½0; J0�.
In our experiments, we demonstrate two types of HOSPT

pumps that transport charge diagonally and nondiagonally,
respectively, whose Hamiltonians read

Ĥdiag ¼ ĤOBC þ h
XD

x;y¼−D
ð−1Þxþyâ†x;yâx;y; ð2Þ

Ĥnondiag ¼ ĤOBC − h
XD

x;y¼−D
ð−1ÞxþDâ†x;yâx;y: ð3Þ

Here, J and h vary periodically with the time t as
J ¼ J0 cos λðtÞ, h ¼ h0 sin λðtÞ, with λðtÞ ¼ π − 2πt=T0,
with T0 being the pumping period. We choose the period
as T0 ¼ 500 ns that is much shorter than the average
qubits decoherence times T1 ¼ 17.5 μs and T2 ¼ 2.7 μs,
see Supplemental Material [39]. We choose J0=2π ¼ 3,
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FIG. 1. Quantum processor and experimental scheme. (a) Photograph of the superconducting processor that is fabricated using the flip-
chip technique. (b) Qubits array. The processor is integrated with 62 qubits and 105 couplers, forming a square lattice. A subset of 4 × 4
qubits and 24 couplers are used in our experiments. (c) Pumping trajectory. Parameters of the hopping strength J and the on-site potential h
are dynamically modulated following a closed loop for a full pumping period. (d) Lattice configuration and experimental sequences. For
each 4-qubit unit cell (down-right 4 × 4 block as an example), the initial ground state of the system is prepared by first exciting the diagonal
two qubits to states j1i and then applying adiabatic controls of the frequencies of both qubits and couplers. During the pumping procedure,
the system Hamiltonians evolve slowly by tuning the hopping strengths and the on-site potentials between and on qubits, respectively.
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h0=2π ¼ 10, J00=2π ¼ 3, and h00=2π ¼ 3.5 MHz for the
diagonal and nondiagonal pumps, respectively.
The system has a C4 symmetry with staggered hopping

strengths. For the diagonal pump, staggered on-site poten-
tials, �h, are applied on qubits with the same negative
(positive) sign in a diagonal (off-diagonal) direction of the
lattice [Fig. 3(a)]. Similarly, for the nondiagonal pump,
staggered on-site potentials, �h, are applied on qubits
along the x direction of the lattice, see Fig. 4(a). Both cases
break the C4 symmetry except h ¼ 0. In our experiments,
we prepare the initial state as the same ground state of the
Hamiltonians Ĥdiag and Ĥnondiag in Eqs. (2),(3) at t ¼ 0 ns.
As the Hamiltonians evolve, with J and h varying slowly
along the closed trajectory as shown in Fig. 1(c), the system
evolves adiabatically to topologically nontrivial phases,
manifesting corner localized states at half period t ¼ T0=2,
see Fig. 1(d).
Initial ground state preparation—The initial state, as

the ground state of the superlattice Hamiltonians at half-
filling when t ¼ 0 ns, is topologically trivial. Moreover, the
4 × 4 lattice consists of four independent 2 × 2 unit cells,
see Fig. 2(a). Thus, the initial ground state can be written
as a product of four identical 4-qubit entangled states
jΨinii ¼ jψ tgti⊗4 with

jψ tgti ¼
1ffiffiffi
8

p
����� 0011

�
þ
���� 1010

�
þ
���� 1100

�
þ
���� 0101

��

þ 1

2

����� 0110
�
þ
���� 1001

��
: ð4Þ

Notably, the initial state satisfies a particle-hole symmetry
at half-filling, resulting in an additional Z2 symmetry in
addition to C4 symmetry.
In our experiments, we employ an adiabatic scheme to

prepare the required 4-qubit entangled state for each unit
cell independently. The procedures for all 4 unit cells are
conducted in parallel, while the couplers connecting differ-
ent unit cells are turned off. For each unit cell, we excite
two qubits located at the off-diagonal sites, using two
π-pulses transforming j0i to j1i, see Fig. 2(a). Then, we
gradually tune the frequencies of these two qubits from
−21 MHz to the resonant frequency 0 MHz, and the
hopping strengths between qubits inside each unit cell
are tuned from 0 to 6 MHz adiabatically, see Fig. 2(a). The
fidelity of the prepared 4-qubit state ρexp of each unit cell,
compared with the target state ρtgt ≡ jψ tgtihψ tgtj, is defined
as Fðρtgt; ρexpÞ ¼ trðρ1=2tgt ρexpρ

1=2
tgt Þ1=2 [46]. The density

matrices of ρexp are obtained by performing quantum
state tomography (QST) measurements at different times
[46,47], which are presented in Fig. 2(b1)–2(b3) and
compared with the target state in Fig. 2(c). The fidelity
versus the preparation time is plotted in Fig. 2(d), and the
optimal fidelity of the prepared state for each unit cell

achieves 94.9% at 200 ns. More details are presented in
Supplemental Material [39].
Diagonal and nondiagonal HOSPT pumping—After the

initial state preparation, we simultaneously tune the on-site
potentials and the hopping strengths along the cyclic
pumping trajectory on the J–h plane, through the Z-control
lines of the qubits and the couplers, respectively. Thus, the
systems undergo approximately adiabatic evolutions.
During the first half pumping period, the systems evolve
from topologically trivial phases to topologically non-
trivial phases, as illustrated in Fig. 1(c). Furthermore, at
the half pumping period t ¼ 250 ns, the corner localized
states appear.
During the full pumping procedure, we measure all 16

qubits in the fj0i; j1ig basis with 6000 single-shot readouts
every 10 ns, and the excitation probabilities of all 16 qubits
P1 for the diagonal second-order topological pump are
plotted in Fig. 3(c) versus the evolution time t and
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FIG. 2. Initial ground state preparation. (a) 16-qubit lattice and
pulse sequences on a 4-qubit unit cell. Two off-diagonal qubits
are excited to j1i with two π pulses. Then, the 4-qubit entangled
state is prepared by adiabatically controlling the frequencies of
both qubits and couplers. (b1)–(b3) 4-qubit density matrices ρexp,
measured by quantum state tomography at different evolution
times. (c) 4-qubit density matrix ρtgt of the reduced target state in
Eq. (4). (d) Fidelity of the evolving 4-qubit state versus the
preparation time, compared with the target state.
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compared with the numerical results. At the half pumping
period t ¼ 250 ns, the corner localized states clearly
appear, see Figs. 3(d) and 4(c) for the diagonal and non-
diagonal pumps, respectively. The experimental results are
compared with numerical simulations using the same
experimental parameters.
Because of the bulk-boundary correspondence, a tuple

of Chern numbers C1;2;3;4 can be introduced under corner-
periodic boundary conditions (CPBCs) [18]. At the half
pumping period, the amount of the transport charge at each
corner Δqi is related to the Chern number as

Δqi ¼ −Ci=2; ð5Þ

which is obtained by measuring the change of the excitation

probability ΔPðiÞ
1 at each corner i∈ f1; 2; 3; 4g. Since

Cdiag1;2;3;4 ¼ ð−1; 1;−1; 1Þ for the diagonal pump and

Cnondiag1;2;3;4 ¼ ð−1;−1; 1; 1Þ for the nondiagonal one, the aver-
age corner transport chargeΔq ¼ P

4
i¼1 jΔqij=2 ¼ 1. Here,

we obtain that Δq ¼ 0.964 and 0.555 for the diagonal and
the nondiagonal second-order topological pumps, respec-
tively, which are compared with 0.985 and 0.836 from the
numerical simulation. The experimental results for the
diagonal pump agree well with the theoretical expectations,
and the imperfections may result from the accuracy of the
experimental control on J and h, decoherence, and the
inconformity of the qubits on the processor. Nevertheless,
the non-diagonal HOSPT pump requires a much longer
pumping period to fulfill the adiabatic condition, see
Supplemental Material [39] for more details.
Robustness of HOSPT pumping in the presence of

disorder—Next, we investigate the effects of on-site poten-
tial disorder on diagonal HOSPT pumping. Here, on-site
potential disorder h ¼ h0 sin λðtÞ þ δh, we apply on each
qubit, following a uniform distribution δh∈ ½−W;W�, with
W being the disorder strength. The disorder strengthW=2π
ranges from 0 to 40 MHz, and for each disorder strength,
40 different configurations of the disorder are applied
to obtain the average amount of transport charge Δq.
Figure 5(a) shows the average amount of transport charge
Δq versus the disorder strengthW, which is compared with
numerical simulations using the experimental parameters.
The Δq first decreases slightly, as W=2π increases from
0 MHz, and then decreases intensely, as W=2π ≳ 10 MHz.
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FIG. 3. Diagonal HOSPT pumping. (a) Additional on-site
potentials for diagonal HOSPT pumping. (b) Chern number
tuples for diagonal HOSPT pumping, and each Chern number
C1;2;3;4 is associated with the charge transport current from the off-
diagonal corners to the diagonal corners. (c) Time evolutions of
the measured excitation probabilities P1 for all 16 qubits (blue
circles) during the full pumping period from t ¼ 0 to 500 ns,
which are compared with the numerical simulations (red dotted
curves). (d) Measured excitation probabilities P1 for all 16 qubits
at different evolution times, which are compared with numerical
simulations. At the half pumping period t ¼ 250 ns, four corner
states are observed.
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FIG. 4. Nondiagonal HOSPT pumping. (a) Additional on-site
potentials for nondiagonal HOSPT pumping. (b) Chern number
tuples for nondiagonal HOSPT pumping, and each Chern number
C1;2;3;4 is associated with the charge transport current from the
right-side corners to the left-side corners. (c) Measured excitation
probabilities P1 for all 16 qubits at different evolution times,
compared with numerical simulations. At the half pumping
period t ¼ 250 ns, four corner states are observed.
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When W=2π ≳ 40 MHz, Δq tends to be zero, indicating
that the quantized pump seems to disappear. The effects of
on-site disorder on the corner-localized states can be
observed from the average excitation probabilities P1

of all 16 qubits at the half pumping period t ¼ 250 ns,
which are shown in Figs. 5(b1)–5(b3) for different disorder
strengths. Our experimental results confirm the robust
topological protection of the zero-dimension corner state
in topological pumping and are in good agreement with
numerical simulations [48].
Conclusion and discussion—We have experimentally

demonstrated the diagonal and nondiagonal HOSPT pumps
on a square-lattice array of 16 superconducting qubits, with
accurate dynamical modulations of the hopping strengths
and on-site potentials between and on qubits, respectively.
The HOSPT corner states are observed at the half-pumping
period, of which the robustness is investigated by intro-
ducing on-site disorder. The ground state of the studied
Hamiltonian at half-filling is with a Hilbert space dimen-
sion scaling exponentially with the number of qubits, which
is entangled and has experimental challenges. The time
evolution of the system may involve hard conventional
computation, leading to a quantum computational advan-
tage problem [49]. Another interesting issue is to detect the
non-local quantum correlations, e.g., string order param-
eters [50] and entanglement entropy [51], during the
pumping procedures. Our Letter would inspire further
studies on various HOSPT phases and topological pumps

on different quantum-simulating platforms with a larger
system size [50–52].
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