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Observation of kagome-like bands in two-
dimensional semiconducting Cr8Se12

Sisheng Duan1,2,10, Jing-Yang You1,10, Zhihao Cai3,10, Jian Gou 4,10 , Dong Li3,
Yu Li Huang 5, Xiaojiang Yu 6, Siew Lang Teo 7, Shuo Sun 1,8, YiheWang2,5,
Ming Lin 7 , Chun Zhang 1, Baojie Feng 3 , Andrew T. S. Wee 1 &
Wei Chen 1,2,5,9

The kagome lattice is a versatile platform for investigating correlated elec-
tronic states. However, its realization in two-dimensional (2D) semiconductors
for tunable device applications is still challenging. An alternative strategy to
create kagome-like bands is to realize a coloring-triangle (CT) lattice in semi-
conductors through a distortion of a modified triangular lattice. Here, we
report the observation of low-energy kagome-like bands in a semiconducting
2D transitionmetal chalcogenide—Cr8Se12 with a thickness of 7 atomic layers—
which exhibits a CT lattice and a bandgap of 0.8 eV. The Cr-deficient layer
beneath the topmost Se-full layer is partially occupied with 2/3 occupancy,
yielding a √3 × √3 Cr honeycomb network. Angle-resolved photoemission
spectroscopy measurements and first-principles investigations reveal the
surface kagome-like bands near the valence band maximum, which are
attributed to topmost Se pz orbitals modulated by the honeycomb Cr.

Both lattice geometry and dimension could profoundly shape the
electronic structures of materials. Lattices with unique geometric con-
figurations, including the kagome lattice1,2, Lieb lattice3,4, etc, exhibit
correlated electronic excitations characterized by quenched kinetic
energy of carriers in the flat band. Notably, diverse correlated phases,
such as the giant anomalous Hall effect5–7, quantum spin liquid8–11,
charge density wave12–15, and unconventional superconductivity16–18,
have been observed in bulk kagome metals. Nonetheless, introducing
these lattice-borne correlated excitations to 2D semiconductors,
essential for device applications due to enhanced Coulomb interaction
and versatile carrier concentration tunability, remains challenging.

The kagome lattice, comprised of corner-sharing triangles
(Fig. 1a), represents a prototypical model for generating flat bands or

van Hove singularities (VHSs). However, experimental confirmation of
kagomebands in 2Dmaterials has been limited due to the instability of
kagome configuration in two dimensions. Thus, alternatives such as
the distorted kagome lattice (Fig. 1b) and the coloring-triangle (CT)
lattice (Fig. 1c) have been proposed19,20 to exhibit a relatively rigid
lattice and preserve the kagome bands. Both ways arise from rotating
two sets of corner-sharing triangles within the kagome lattice. The CT
lattice involves three types of hopping parameters, where t1 and t1’ are
ideally identical, and t2 is zero. Its Hamiltonian is unitarily equivalent to
that of the kagome lattice. Consequently, the band structures of theCT
latticealsodisplay aVHS,flat band andDirac cone20,21, asdemonstrated
in Fig. 1d. Evenwith slightly increased nonvanishing t2, the key features
remain, except when t2 becomes comparable to or exceeds t1 (t1’),
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leading to noticeable deviations from the archetypal kagome bands.
The breaking of mirror symmetry (t1 ≠ t1’) as shown in Fig. 1e only
makes the Dirac cone massive, while the VHS and flat band persist in
the band structures.

Various material platforms have been proposed theoretically to
achieve the CT lattice, such as Au patterned Ca2N

20, monolayer
B2S3

22, Cu-dicyanobenzene23, etc. However, none of these proposals
have been materialized yet. Some experimental efforts have been
paid to investigating the CT lattice in monolayer MoTe2 and bulk 1T-
TaS2

24,25. Nonetheless, the complexity arises in these materials as
each superlattice site consists of an atomic cluster containing several
atoms, leading to intricate electronic structures. Hence, the devel-
opment of 2D materials with atoms arranged on a CT lattice remains
limited.

Herein, we report the molecular beam epitaxy (MBE) synthesis of
semiconducting 2D Cr8Se12 with 7-atomic-layer thickness. Structural
characterization shows that the atom-based CT lattice can be obtained
by forming two atomic adlayers (Se-Cr) on the previously reported 5-
atomic-layer Cr2Se3. Based on the scanning tunneling spectroscopy
(STS) and angle-resolved photoemission spectroscopy (ARPES) inves-
tigations, a bandgap of about 0.80 eV and a VHS close to the VBM
(Supplementary Fig. 10) are observed. The first-principles analysis
reveals that the kagome-like bands residing in the CT lattice originate
from the top-layer Se pz orbitals with alternative hopping parameters
modulated by the underneath Cr honeycomb. The semiconducting
nature and the divergent local density of states (LDOS) around the
VBM render this material a promising candidate for investigating 2D
strongly correlated physics in semiconducting devices.

Results
Crystal structures of 2D semiconducting Cr8Se12
The crystal structures of 2D chromium selenides including CrSe26,
CrSe2

27,28, and Cr2Se3
28,29, are influenced by the synthesis methods and

conditions. Here, the 2D chromium selenide was synthesized on gra-
phite via MBE (see “Methods”, Supplementary Fig. 20 and Supple-
mentary Fig. 22). A typical large-scale scanning tunneling microscopy
(STM) topography of the as-grown chromium selenide is displayed in
Fig. 2a, in which two types of terraces with different thicknesses are
observable. The STM line profile (Fig. 2a, inset), taken along the orange
dashed line, reveals the typical thicknesses of 1.03 nm and 1.30 nm,
respectively. Based on detailed structure characterizations (Supple-
mentary Note 1, Supplementary Fig. 1), we determined that the thinner
phase with a lateral lattice constant |a0 | = 0.370 ±0.003 nm is the
previously reported “2D Cr2Se3”. This phase has a 5-atomic-layer
thickness28 and is composed of alternating stacks of Se-full and Cr-full
layers along the (001) direction.

As for the thicker phase, structural analysis was conducted by
examining the surface lattice arrangements of the two phases at the
interface. Figure 2c, d present the STM and non-contact atomic force
microscopy (nc-AFM) images obtained at the same scanning window,
from which the surface lattice arrangements of thinner and thicker
phases can be visualized simultaneously. Comparison of the surface
Se triangle lattices of the thinner (upper) and thicker (lower) halves,
represented by blue and red circles (Fig. 2d), reveals identical crys-
talline orientation and commensurate lattice constants between
the two phases. The low energy electron diffraction (LEED) pattern
in Fig. 2b, obtained from the sample incorporating both phases,

Fig. 1 | Illustration of the CT lattice band structures. a, b, c Schematic diagrams
of the (a) kagome lattice, (b) distorted kagome lattice, and (c) CT lattice, which
illustrate the evolution of the CT lattice from the unitary equivalent kagome lattice
via rotating the corner-sharing triangles (θ). Three sets of hopping parameters,

namely t1, t1’, and t2, are denoted by different colors. d Evolution of the CT lattice
band structures with t1 = t1’, but the hopping parameter t2 tuned from t2 = 0 to t2 = 2
t1. e The CT lattice band structures that keep (blue, t1 = t1’) or break (red, t1 ≠ t1’) the
mirror symmetry.
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exhibits only one set of diffraction spots aligned with graphite. All
these above witness a step-flow growth relation between the two
phases. Further cross-sectional scanning transmission electron
microscopy characterization (Supplementary Fig. 3) also suggests
that thicker phase is formed through continuous epitaxial growth of
additional Cr and Se layers on the 2D Cr2Se3, resulting in a 7-atomic-
layer crystal structure.

The atomic-resolved STM and nc-AFM images of the 7-atomic-
layer phase, obtainedwithin the same scanningwindow, are presented
in Fig. 2e, f, respectively. Unlike STM, which relies on tunneling current
for atomic-resolved imaging, nc-AFM utilizes short-range forces,
allowing for a more precise determination of the real positions of
surface Se atoms. A discernible (√3 × √3)R30° surface reconstruction
(depicted as the rhombuses in Fig. 2e and Supplementary Fig. 8) is
easily identifiable. Statistical analysis indicates three distinct nearest-
neighbor interatomic distances, denoted as a1, a1’, and a2, within the
(√3 × √3)R30° unit cell (Fig 2f, g). Notably, the periodic lattice distor-
tion shapes the CT lattice geometrically. Indeed, the STM image dis-
played in Fig. 2e also exhibits a kagome-like morphology, indicating
the potential of the thicker 7-atomic-layer phase for investigating the
electronic properties of the kagome lattice.

To explain the (√3 × √3)R30° surface reconstruction, we proposed
three distinct crystal structures featuring 1/3, 2/3, and a full layer of Cr
beneath the topmost Se (Supplementary Figs. 4a–c), corresponding to
1, 2, and 3 Cr atom(s) in the Cr adlayer per unit cell, respectively.
Through density functional theory (DFT) calculations on their band
structures (Supplementary Figs. 4d–f, Supplementary Fig. 5), we found
that only the configuration with a 2/3-layer of Cr (Fig. 2h) exhibits a
semiconducting behavior. Considering the experimentally determined
semiconducting nature of the 7-atomic-layer phase (as discussed

later), we identify the crystal structure as the one with a 2/3-layer of Cr
beneath the topmost Se (Fig. 2h). Notably, the 2/3-layer Cr atoms form
a honeycomb network, linking the surface CT-lattice distortion to this
honeycomb Cr arrangement. Given that each unit cell comprises 8 Cr
atoms and 12 Se atoms (Supplementary Fig. 16), we henceforth denote
the 7-atomic-layer phase as 2D Cr8Se12.

The crystal structure was further definitively elucidated through
an analysis of its electronic properties using ARPES and DFT calcula-
tions. Figure 3a illustrates the (√3 × √3)R30° commensurate relation
between 2D Cr8Se12 and 2D Cr2Se3, which causes an overlap of high-
symmetry points between their respective Brillouin zones (BZs). The
ARPES valence band dispersion in both BZs reveals their semi-
conducting nature (Fig. 3b). This is further demonstrated by the Fermi
surface mapping (Fig. 3c), where only the π bands from the graphite
substrate are observable. To identify band contributions, band struc-
tures of both phases were calculated (Fig. 3b) considering a small
fraction of 2D Cr2Se3 in the Cr8Se12 sample used for ARPES measure-
ments (Supplementary Fig. 2c). The superimposition of these band
structures on theARPES spectra demonstrates the agreement between
theoretical calculations and experimental observations, corroborating
the proposed crystal structures.

Band structure assignment also facilitates the exclusion of 2D
Cr2Se3 during the analysis of 2D Cr8Se12 by comparing ARPES with
localized STS characterizations. Specifically, the VBM revealed in dI/dV
spectrum (Fig. 3e) closely aligns with the ARPES (Fig. 3b, Supplemen-
tary Fig. 9 and Supplementary Fig. 18) VBM, except for a slight down-
ward shift attributable to the photohole doping that typically happens
in semiconductors30. A bandgap of ~0.8 eV is observable in dI/dV
spectrum, which is consistent with the absence of ARPES conduction
band minimum until the Fermi level. Additionally, the LDOS (Fig. 3e
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and Supplementary Fig. 14) alsomanifests a pronounced valence peak
centered at Vs = -1.10 V, which is energetically aligned with a partial flat
band near the M1 point (Fig. 3b), i.e., the M point of 2D Cr8Se12.

The electronic structures including the VHS can be visualized in
real space throughdI/dVmappingwithin a specific region as illustrated
in Fig. 3d. The dI/dV maps in Fig. 3f-h were measured at energies cor-
responding to the conductionbandminimum(CBM), theVBM,and the
VHS, respectively, which were reproduced by the DFT simulated
charge density distributions at the corresponding energies (Fig. 3i-k).
Notably, the mapping at VHS shows an electron localization at the Cr-
bridged Se atoms, resulting in a kagome-like CT lattice pattern.
Nevertheless, the LDOS distribution at the VBM presents the hex-
agonal close-packed trimers, corresponding to the parabolic band
dispersion at the Γ point.

CT lattice-derived kagome-like bands in 2D Cr8Se12
While VHS and kagome-like morphology have been observed in 2D
Cr8Se12, their exact origins remain elusive. We started from a careful
analysis on the band structures of 2D Cr8Se12 through orbital projec-
tion. Figure 4a illustrates the spin-polarized band structure projected
onto the pz orbitals of the topmost Se atoms. Apparently, the energy
states around the VBM, comprising six distinct energy bands, are pri-
marily contributed by the topmost Se pz orbitals (Supplementary
Fig. 11 and Supplementary Fig. 19). These six energy bands can be
categorized into two sets based on their spins: three are spin-up, and
the remaining three are spin-down. Notably, within each unit cell of 2D
Cr8Se12, three topmost Se atoms lead to the observation of six energy
bands arising from two sets of CT lattice energy bands with distinct

spins. Consequently, the observed VHS contributed by the topmost Se
pz orbitals is supposed to originate from the CT lattice.

The kagome-like bands can be further reproduced through tight
binding simulations. Given the semiconducting nature of 2D Cr8Se12,
we employed the tight binding approximation without considering
electron correlation effects (See Supplementary Information Part 10,
Supplementary Fig. 24, Supplementary Fig. 25 for a discussion on
electron correlation effects). The tight binding Hamiltonian was con-
structed on a CT lattice (Fig. 4b) with two distinct sets of nearest-
neighbor hopping parameters. As displayed in Fig. 4c, the simulated
band structures demonstrate qualitative agreementwith theDFT band
structures (Fig. 4a), with minor discrepancies that can be attributed to
theneglected next-nearest-neighbor hopping andorbitalmixing effect
(see Supplementary Information Part 8, Supplementary Fig. 11 and
Supplementary Fig. 12 for details).

The CT latticemay stem from a triangular lattice with periodically
altered hopping parameters, resulting in exotic electronic excitations
(Supplementary Fig. 13 and Supplementary Fig. 23). As demonstrated
in Fig. 3d, within each unit cell of 2D Cr8Se12, the topmost Se atoms
constitute the distorted triangle sublattice, while Cr atoms are located
only below twoof the three Se triangles. Since the bridging of Cr atoms
tends to enhance the nearest-neighbor hopping between the Se atoms,
the hopping within the Se triangles connected by bridging Cr atoms
would surpass those without bridging, and this hopping configuration
(t1 ~ t1’ > t2) benefits the formation of the kagome-like band structure in
2D Cr8Se12.

The CT lattice characteristics observed in the STM image
(Fig. 2e) and dI/dVmap (Fig. 3f) can be explained at the atomic scale.
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Figure 4d displays a side view of the charge density distribution at
the energy corresponding to the VHS, which not only verifies the
major state contribution of the topmost Se pz orbital at this energy,
but clearly reveals the periodic tilt of these pz orbitals. Thereafter,
the Se pz orbitals, as surface states, contribute the primary
intensity to both the ARPES measurement and dI/dV map. Figure 4e
presents the top-view spatial arrangements of the topmost Se pz
orbitals. By inspecting the tilt configurations, we found that the
upper lobes of all the dumbbell-like pz orbitals tend to tilt toward
neighboring Cr atoms. Consequently, the triangular configuration of
pz orbitals contracts with the Cr in the middle, while expands in the
absence of Cr at the center. This results in a prominent distortion of
the triangular lattice and reproduces the observed dI/dV map with
the CT lattice geometry. Additionally, the tilted orbitals at the atomic
scale also substantiate the enhanced hopping t1(t1’) and the reduced
hopping t2, thus resulting in the CT lattice-derived kagome-
like bands.

Discussion
In summary,wehave characterized theCT lattice in 2DCr8Se12with a 7-
atomic-layer thickness, which is demonstrated to be a 2D semi-
conductor (See Supplementary Information part 4 and Supplementary
Fig. 6 for discussion on the magnetic properties). The scalable synth-
esis of 2D Cr8Se12 not only expands the magnetic 2D materials family,
but also opens a new avenue for investigating lattice-borne exotic
electronic excitations. Notably, experimentally observed kagome-like
bands originating from the CT lattice, accompanied by the promi-
nently enhanced LDOS, were found near the VBM. This suggests a
promising research direction involving the elevation of the VHS to the
Fermi level, thereby enabling the observation of the proposed lattice-
borne correlated phases.

Methods
Sample preparation
The 2DCr2Se3 was grown in an ultra-high vacuum (UHV)MBE chamber
with a base pressure of 1 × 10−10 mbar, which is connected to a com-
mercial Omicron LT-STM/nc-AFM system. The cleaved single crystal-
line graphite (NGS Naturgraphit GmbH) or epitaxial graphene-
terminated n-type 4H-SiC(0001) substrates have been used as the
substrate. The graphite substrate was cleaved in air and immediately
loaded into the MBE chamber to degas the surface contaminations.
The epitaxial graphene was prepared by following the procedure
demonstrated in ref. 31. High-purity Se (99.999%) andCr (99.95%)were
evaporated froma standardKnudson-style thermal effusion cell and an
electron-beam evaporator, respectively, with a Se/Cr flux ratio higher
than 10/1 and a substrate temperature of ~440 °C. The average growth
rate for 2D Cr8Se12 is around 0.014ML/minute.

STM/STS and nc-AFM measurements
For scanningprobemicroscopy characterizations, the as-grownCr2Se3
samples were in-situ transferred into the Omicron LT-STM/nc-AFM
systemwithout breaking vacuum. The experiments were conducted at
4.3 K using a qPlus AFM sensor (spring constant k0 ≈ 1800N⋅m−1,
resonance frequency f0 ≈ 27.4 kHz, and quality factor Q ≈ 30,000)
equipped with a tungsten tip. The clean and atomically sharp tip apex
was obtained by applying repeated voltage pulses and controllable
crashes on the Au(111) substrate, and the tip statewas calibrated on the
Au(111) surface before the STS characterization. The STS spectra and
dI/dVmaps were acquired using standard lock-in techniquewith a bias
modulation of 10mV at 963Hz. All the dI/dV maps were collected in
the constant height mode. An oscillation amplitude of 40pm is used
for all the nc-AFM imaging. The STM and nc-AFM images were pro-
cessed using the WSxM software.
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and the upper lobes of the Se orbitals are displayed.
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ARPES measurements
ARPES experiments were conducted in UHV conditions at 40K with a
SPECS PHOIBUS 150 electron energy analyzer and a helium discharge
lamp (He Iα light, hν = 21.2 eV). To prevent surface contamination, the
Cr2Se3 samples were capped with ~10 nm of Se by deposition of
Se at room temperature before being transferred to the ARPES
system. Before the ARPES characterization, as shown in Supple-
mentary Fig. 21, the Se capping layer was subsequently removed by
annealing the samples at 300 °C for 30minutes in UHV conditions
(2.5 × 10−10 mbar).

First-principles calculations
Our first-principles calculations were based on DFT as implemented in
the Vienna Ab Initio Simulation Package using the projector
augmented-wave method. The generalized gradient approximation
with the Perdew−Burke−Ernzerhof realization was adopted for the
exchange-correlation functional. The plane-wave cutoff energywas set
to 500 eV. A Monkhorst Pack k-point mesh with a size of 11 × 11 × 1 was
used for the BZ sampling. The crystal structurewas optimized with the
fixed experimental lattice constants and the fixed surface atom posi-
tions until the forces on the atoms were less than 0.001 eV/Å. To
simulate the dI/dV maps, the partial charge density within an energy
range of 0.02 eV centered at the specific energy was plotted as a
function of the real space position.

Tight binding modeling
The spin polarized DFT analysis reveals that themajor contributions to
the six valence bands near the valence band maximum (VBM) are pz
orbitals of the topmost Se atoms. Three of them are spin-up bands and
the other three are spin-down bands. In the absence of spin-orbit
coupling, the spin and orbital parts of the electronic wave function are
decoupled. Therefore, the spin polarized electrons in each spin chan-
nel can be treated separately like for spinless particles.We describe this
behavior within a single-orbital tight binding model of connected pz
orbitals with two sets of hopping parameters, each of which corre-
sponds to a set of spin-bands. By making a fit to the DFT spectra, we
can determine the on-site energy εi and the hopping parameters ti.
With these parameters, we solve the generalized eigenvalue equation
Hjψi= Ejψi to obtain the tight binding spectra, where the spinless
Hamiltonian is defined as H =

P
iϵia

y
i ai +

P
hi, jitnnða

y
i aj +aia

y
j Þ. Here,

tnn is the hopping parameter, which represents t1, t1’ or t2 as defined
in Fig. 4b.

Data availability
The authors declare that data generated in this study have been
deposited in the FigShare database under accession code: https://doi.
org/10.6084/m9.figshare.26964691.

Code availability
The authors declare that code supporting the findings of this study
have been deposited in the FigShare database under accession code:
https://doi.org/10.6084/m9.figshare.26964691.
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