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Scale-tailored localization and its
observation in non-Hermitian electrical
circuits

Cui-Xian Guo1,2,3,8, Luhong Su1,4,8, Yongliang Wang 5, Li Li 1,4, Jinzhe Wang1,
Xinhui Ruan 1,6, Yanjing Du1, Dongning Zheng 1,4,7 , Shu Chen 1,4 &
Haiping Hu 1,4

Anderson localization and non-Hermitian skin effect are two paradigmatic
wave localization phenomena, resulting from wave interference and the
intrinsic non-Hermitian point gap, respectively. In this study, we unveil a novel
localization phenomenon associated with long-range asymmetric coupling,
termed scale-tailored localization, where the number of induced localized
modes and their localization lengths scale exclusively with the coupling range.
We show that the long-range coupling fundamentally reshapes the energy
spectra and eigenstates by creating multiple connected paths on the lattice.
Furthermore, we present experimental observations of scale-tailored locali-
zation in non-Hermitian electrical circuits utilizing adjustable voltage followers
and switches. The circuit admittance spectra possess separate point-shaped
and loop-shaped components in the complex energy plane, corresponding
respectively to skinmodes and scale-tailored localized states. Our findings not
only expand anddeepen the understandingof peculiar effects inducedbynon-
Hermiticity but also offer a feasible experimental platform for exploring and
controlling wave localizations.

The recent surge of research in non-Hermitian physics1–6 has uncov-
ered awide arrayof phenomena that transcend the realmof traditional
Hermitian systems. Non-Hermitian systems exhibit a remarkable sen-
sitivity to theirboundaryconditions, exemplifiedby thenon-Hermitian
skin effect (NHSE)7–18. Featured by the gathering of a significant num-
ber of eigenstates at systemboundaries, theNHSEbreaks the extended
Bloch-wave behaviors and challenges the conventional notion of bulk-
edge correspondence by displaying distinct spectral shapes under
periodic and open boundary conditions19–24. In addition to the skin
effect, the interplay between non-Hermiticity and spatial inhomo-
geneity, such as domain walls, disorders, or impurities/defects, offers

intriguing insights into wave behaviors and introduces additional
richness to localization phenomena in generic non-Hermitian systems.
They include impurity-induced topological bound states25,26, non-
Hermitian quasi-crystals27,28, and the counterintuitive accumulation of
eigenstates known as scale-free localization29–34, where eigenstates
concentrate near defects while the localization length scales with the
entire system size. Electric circuits22,35–38 offer a powerful platform for
simulating various lattice models, where the lattice Hamiltonian is
represented by an adjacency matrix that adheres to Kirchhoff’s law in
current networks. Non-reciprocity can be modeled using active
devices39, facilitating the realization of the NHSE in topolectric
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circuits21. The key asymmetric element is implemented using a nega-
tive impedance converter through current inversion, known as the
INIC device.

The skin localization and the remarkable spectral sensitivity have
been harnessed for innovative functionalities such as optical
funneling40, high-precision sensor devices35,41,42, and optomechanically
induced transparency43. Yet, the collective localization of all eigen-
states inherent in theNHSE poses the challenging task of engineering a
uniform distribution of spatial non-Hermiticity across the entire sys-
tem. Furthermore, it restricts the tunable freedom of wave dynamics,
such as localization length, position, and proportion of eigenstates.
The pivotal question is: Can we precisely tailor wave localization in a
controllable manner within generic lattice systems?

In this work, we uncover a novel type of localization of eigen-
states, termed scale-tailored localization (STL) (See Table 1). Unlike
Anderson localization resulting from wave interference or NHSE
arising from intrinsic point gaps10,11,17, STL emerges due to the pre-
sence of long-range asymmetric coupling, giving rise to localized
modes with distinctive characteristics: both their number and
localization length scale exclusively with the coupling range. Con-
sequently, the energy spectra are partitioned into two distinct
sectors: point- (or arc-) shaped spectra corresponding to modes
barely affected by the long-range coupling, and loop-shaped spec-
tra associated with the scale-tailored localized states. This is in stark
contrast to the NHSE, where skin localization requires a uniform
distribution of non-Hermiticity (e.g., gain/loss or nonreciprocity)
across the entire lattice, and the skin depths of the eigenstates are
fixed and governed by the non-Bloch band theory7,9. From a prac-
tical standpoint, STL customizes wave localization without the
complexity of a full-scale implementation of non-Hermiticity. The
scale-tailored localized modes, unlike the scale-free localized
modes induced by local non-Hermiticity31–33, exhibit resilience in the
thermodynamic limit.

In our setup, we implement a unidirectional electrical circuit
with a rolled boundary condition controlled by electric switches,
where unidirectional coupling is achieved through a simplified
version of active devices, the voltage followers (VFs)34. The scale-
tailored localized modes can be transformed into skin modes or
vice versa with the changing of the asymmetric coupling range,
accompanied by the self-adaptation of the localization length of all
scale-tailored localized states. We then identify the STL by mea-
suring the admittance spectra in the non-Hermitian electrical cir-
cuits. Our results indicate that long-range asymmetric coupling
(non-Hermiticity) can serve as a powerful tool to manipulate wave
localization and offer a feasible platform for exploring the intri-
guing properties of scale-tailored localized states.

Results
Scale-tailored localization
We start by introducing a minimal model that exhibits STL. It has
unidirectional hoppings on a one-dimensional (1D) lattice with rolled
boundary conditions, as depicted in Fig. 1a. The Hamiltonian for this
model is expressed as:

Ĥ =
XN�2

n=0

tĉynĉn+ 1 + tδt ĉ
y
N�1ĉp: ð1Þ

Here, N represents the length of the lattice. ĉyn and ĉn are the creation
and annihilation operators on the n-th site. t is the strength of the
unidirectional hopping between neighboring sites and set to be the
energy unit t = 1 in the following. Our model features an additional
long-range asymmetric hopping connecting the end site and the inner
p-th site with coupling strength δt. The coupling range is l =N − p. The
special case of p = 0 and δt = 1 or δt = 0 corresponds to the periodic or
open boundary condition.

In the presence of the additional coupling, the eigenvalues and
eigenstates of the system are

E = z,

∣Ψi= ðψ0,ψ1, � � � ,ψN�1ÞT = ð1, z, � � � , zN�1ÞT ,

(
ð2Þ

with z given by the roots of the following equation:

zp δt � zN�p� �
=0: ð3Þ

The energy spectra are highly sensitive to the boundary conditions, as
evident from the solutions. For periodic boundary conditions (δt = 1
and p =0), the solutions are zðmÞ = ei

2π
Nm (m = 0, 1, . . . , N − 1), and all

eigenstates are extended Bloch states. The eigenenergies are uni-
formly distributed on the unit circle. In contrast, for open boundary
conditions (δt = 0), there exists a unique N-fold degenerate solution
E = 0. All eigenstates coalesce into the state ∣Ψi= ð1, 0, :::, 0ÞT residing
at the first site of the lattice. This degeneracy arises from N ×N Jordan-
block form of the Hamiltonian, which leads to an N-th order
exceptional point (EP). In our subsequent studies, we focus on the
more general caseswith δt≠0andp ≠0. The solutions canbe classified
into two distinct types. The first type corresponds to a p-fold
degenerate solution z =0, representing a p-th order EP with eigen-
states localized exclusively at the first site. The second type consists of
l non-degenerate solutions given by zðmÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δteiθm

l
p

, where
m= 1, 2, � � � , l,θm = 2π

l m, and l is the number of rolled sites. Interest-
ingly, the first-type solutions can be regarded as remnants of the N-th
order EP, unaffected by the additional long-range coupling. In
contrast, the second-type solutions result from such long-range
coupling, with eigenenergies and wavefunctions given by:

Em =
ffiffiffiffiffi
δt

l
p

eiθm ,

∣ΨðmÞ�= 1,
ffiffiffiffiffi
δt

l
p

eiθm , � � � ,
ffiffiffiffiffi
δt

l
p

eiθm
� �N�1

� 	T

:

8><>: ð4Þ

These l eigenenergies are evenly distributed on a circle of radiusffiffiffiffiffiffiffiffi
jδt jl

p
, dependent solely on the settings of the long-range coupling.

The entire energy spectra are composed of both the isolated EP at the
center and loop-shaped parts circling around, separated in the com-
plex plane, as shown in Fig. 1b.

We proceed to examine the localization properties of the second-
type eigenstates in Eq. (4). They have the same spatial profile but dif-
ferent site-dependent phase factors. The localization length ξ can be
extracted from the spatial profile via jψðmÞ

n j � e�
jn�n0 j

ξ , with n0 the loca-
lization center. When the additional coupling is weaker than the uni-
directional hopping ∣δt∣ < 1, all l states accumulate at n0 = 0 with
localization length

ξ = � l
log jδt j

: ð5Þ

If the coupling is stronger than the unidirectional hopping ∣δt∣ > 1, they
accumulate at the last site n0 =N − 1 with localization length ξ = l

log jδt j.
Figure 1c illustrates the eigenstates’profiles for several typical valuesof
δtwith fixed (N, l) = (40, 20). Themore ∣δt∣deviates from 1, the stronger
the localization becomes. A duality exists between ∣δt∣ and j 1

δt
j with

equal localization length but opposite localization directions. At δt = 1,
they become extended across the whole lattice. The different locali-
zation regimes of the second-type eigenstates are summarized
in Fig. 1a.

The analysis above clearly indicates that even an infinitesimal
long-range coupling can trigger eigenstates’ localization, underscoring
its non-perturbative nature. Intriguingly, the localization length of the
second-type eigenstates is directly proportional to the coupling range l
and is irrelevant to the total system sizeN, whichdiffers from the scale-
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free localization29,31–33. Upon rescaling these eigenstates by the cou-
pling range, their spatial profiles become perfectly identical, as
depicted in Fig. 1d. We refer to this type of accumulation as STL. The
case ∣δt∣ > 1 is termed inverse STL due to the opposite localization
direction. In comparison, Fig. 1e shows the eigenstates’ rescaling with

respect to the total system N. In the thermodynamic limit, the scale-
free localized modes become extensive, while the scale-tailored loca-
lized modes maintain a fixed and finite localization length.

The mechanism and generality of STL
The STL exhibits unique characteristics that set it apart from other
localization phenomena, as outlined in Table 1. Figure 2 sketches the
physical mechanism of several typical localizations. In Anderson
localized systems, the eigenstates have finite localization lengths due
to wave interference in disordered media, impeding wave propaga-
tion. The non-Hermitian skin effect, scale-free localization, and STL are
specific to non-Hermitian systems. For the skin effect, the skin modes
are confined to the system boundary, with finite localization lengths
governed by the generalized Brillouin zone. The skin effect accom-
panies spectral collapses from Bloch bands of periodic boundary
conditions and requires the intrinsic point-gap topology or spectral
winding. In contrast, the scale-free localization is the eigenstates’
accumulation near an impurity, with their localization length propor-
tional to the system length, ξ � OðNÞ. In the simplest scenario, the
presence of a local non-Hermitian impurity gives rise to an Oð1=NÞ
correction to the eigenspectra and eigenstates. In STL, the long-range
coupling introduces a new length scale l. Heuristically, the long-range
coupling can be treated as a non-local non-Hermitian impurity that
generates closed paths within the one-dimensional lattice. The wave
propagation at the junction (e.g., the p-th lattice site of the model (1)),
satisfies a self-consistency condition f (zl, δt) = 0 (e.g., zl= δt in Eq. (3)).
While the specific form of f (zl, δt) depends on model details, the self-
consistency condition yields l states characterized by a localization
length of ξ � 1= log jzj � OðlÞ. The highly size-dependent spectral
properties of the critical NHSE44,45 can be visualized from the extreme
case of STL when l =N with N the system length.

While we have presented the simplest unidirectional coupling
model for illustrative purposes, it is worth noting that the phenom-
enon of STL induced by long-range asymmetric coupling is expected

Bloch Bloch

STLSTL inv. STLinv. STL

-th EP

Fig. 1 | Scale-tailored localization (STL) in the unidirectional hopping model.
aUpper panel: Sketch of the lattice model with rolled boundary condition. Bottom
panel: Different regimes (marked in different colors) of eigenstates’ localization
with respect to the coupling strength δt. STL (inv. STL): the induced second-type
eigenstates are localized on the left (right) boundary; Bloch: all second-type
eigenstates are extended.b Eigenenergies for different combinations of (N, l) in the
complex plane with δt =0.1 (solid circles) or δt = 10 (empty diamonds). The cases of
(N, l) = (40, 5), (40, 10), and (40, 20) are marked in red, purple, and pink, respec-
tively. For reference, the black unit circle represents the spectra under periodic
boundary conditions. c Spatial distributions of the second-type eigenstates for
several typical values of δt with fixed (N, l) = (40, 20). d The perfect overlapping of
rescaled spatial distributions by the coupling range l for different (N, l). e Rescaled
spatial distributions by the total system size N with δt =0.1 and l = 5.

Table 1 | Comparison of four distinct wave-localization phe-
nomena based on localization length, position, physical ori-
gin, and fate in the thermodynamic limit

Anderson NHSE SFL STL
Loc. length Oð1Þ Oð1Þ OðNÞ OðlÞ
Position bulk boundary impurity boundary/

impurity

Origin wave
interference

point gap local
impurity

long-range
coupling

Theo. limit ✓ ✓ × ✓

They include (1) Anderson localization, (2) NHSE: non-Hermitian skin effect, (3) SFL: scale-free
localization, and (4) STL: scale-tailored localization. For Anderson localization or NHSE, the
localization length or skin depth is finite. For SFL and STL, the localization length scales with the
total system size and coupling range, respectively.

~

~ 1

~

~ 1
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d
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...... ......

Fig. 2 | Schematics of several typical localization phenomena. a Anderson
localization indisordered lattice resulting fromwave interference.bNon-Hermitian
skin modes localized at the system boundary due to nontrivial point gap. c Scale-
free localization induced by a local non-Hermitian impurity. d Scale-tailored loca-
lization (STL) arising from long-range asymmetric coupling.
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to be quite general and applicable to other models as well, such as the
Hatano-Nelson model and Hermitian lattice chain (details in Supple-
mentary Sections I, II and Supplementary Figs. S1–S4). This holds true
regardless ofwhether the original systempossesses skinmodes or not.
Moreover, scale-tailored localized states can emerge both at the sys-
tem boundary and in the vicinity of long-range impurities (details in
Supplementary Section III and Supplementary Fig. S5). The STL per-
sists in the presence of multiple long-range asymmetric couplings
(details in Supplementary Section IV and Supplementary Figs. S6, S7).
These couplings induce various scale-tailored eigenstates of different
length scales. We have further verified the occurrence of STL in 2D
(details in Supplementary Section V and Supplementary Figs. S8, S9)
and in interacting systems46–48 (details in Supplementary Section VI
and Supplementary Fig. S10). The presence of STL, which involves the
reshaping of a fraction of the eigenspectra and eigenstates (scaling
with the coupling range l), implies the potential for effectively
manipulating wave localization by suitably tailoring the long-range
couplings in the system.

Now, let us consider the most general case with lattice Hamilto-
nian

Ĥ =
XN�j�1

n=0

XML

j = 1

tjLĉ
y
nĉn + j +

XMR

j = 1

tjRĉ
y
n+ j ĉn

" #
+ δt ĉ

y
N�1ĉp, ð6Þ

where tjL (tjR) represents the hopping towards the left (right) side, with
the largest range being ML (MR). δt denotes the asymmetric coupling
with range l =N − p. We can analytically solve the eigenspectra and
eigenstates of Hamiltonian (6) and establish a general criterion for the
occurrence of STL (details in the Methods, Supplementary Section II
and Supplementary Figs. S3, S4). We take the Bloch spectra under

periodic boundary conditions E =
PMR

j = 1
tjR
zj +

PML
j = 1tjLz

j . For a given E

inside the Bloch spectra, there exist M =MR +ML solutions
zi(i = 1,⋯ ,M), whichcanbeorderedby theirmoduli ∣z1∣ ≤ ∣z2∣ ≤⋯≤ ∣zM∣.
Note that there must exist solutions with unit modulus because E is
chosen from the Bloch spectra. If the (MR + 1)-th root has unitmodulus:

jzMR
j< jzMR + 1

j= 1, ð7Þ

then there are l scale-tailored states when adding an asymmetric
coupling.

Unidirectional electrical circuit
We implement the unidirectional-hopping model using an electrical
circuit that combines passive and active devices, as illustrated in
Fig. 3a–c. Each unit cell in the circuit comprises an LC resonator with a
capacitor C0 = 10pF (except for the last one with C3) and an inductor
L = 220 μH, a VF, and a connecting capacitor C1 = 220pF which couples
two neighboring nodes. To achieve the rolled boundary condition or
the long-range coupling, we activate the p-th switch while leaving the
other switches off. The coupling strength in the long bond is con-
trolled by capacitor C2. The key element responsible for uni-
directionality is the VF with mismatched input and output currents.
This active device utilizes an operational amplifier (OpAmp) to repli-
cate the input voltage at the output, as depicted in Fig. 3b. The voltage
or current at the input and output ends satisfy the relation:

Vout =Vin, Iin = 0: ð8Þ

A printed circuit board comprising 20 units is fabricated, as dis-
played in Fig. 3c. Based on Kirchhoff’s law, for a given alternating
current (AC) input current with frequency ω, the circuit lattice is
described by

IðωÞ= JðωÞVðωÞ, ð9Þ

where J represents the admittance matrix (or the circuit Laplacian).
The current and voltage vectors are defined as I = (I0, I1,⋯ , IN−1) and
V = (V0, V1,⋯ , VN−1), respectively, with In and Vn denoting the input
current and voltage at node n. The admittance matrix J and its
eigenvalues play a role similar to the Hamiltonian (up to some trivial
constant term) and its associated eigenenergies. In our circuit, the
capacitor at the last unit is set to C3 = 220pF, and the coupling
capacitor is C2 = 10pF, corresponding to δt = 0.0454 in the uni-
directional model (1). The AC input current has a frequency of
ω = 2πf = 2π × 100 kHz, and the coupling range l is adjustable using
switches.

Fig. 3 | Implementation of unidirectional electrical circuit and observation
of STL. a Experimental design of the unidirectional circuit array. Each unit cell
consists of an LC resonator with a capacitor C0 = 10pF and an inductor L = 220 μH, a
VF, and a connecting capacitor C1 = 220pF. b VF as the active device with mis-
matched input and output currents. c The fabricated circuit board with 20 unit
cells. The long-range coupling is controlled by electrical switches. d Eigenvalues of
the admittance matrix with different (N, l) = (20, 4) (red), (20, 6) (blue), (20, 9)

(pink), and (20, 15) (green). (e1–e4) Spatial profiles of all scale-tailored localized
eigenstates (corresponding to the eigenvalues distributed on the circle) of the
admittance matrix with different (N, l). The experimental results (solid diamonds)
align with the theoretical results (hollow circles). e5 Rescaled spatial distributions
divided by the coupling range l of the scale-tailored localized eigenstates. Other
parameters are: ω = 2π × 100kHz, C2 = 10pF, C3 = 220pF.
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Experimental demonstration of STL
By measuring the voltage responses at all nodes in the network when
subjected to a local current input, the admittance eigenvalues and
eigenstates can be accessed. To demonstrate the scaling rule with the
coupling range, we examine four representative cases: l =N − p = 4,
6, 9, 15, whilemaintaining a fixed lattice size ofN = 20 by activating the
corresponding switches. In Fig. 3d, we present the measured admit-
tance spectra in the complex energy plane. For each l, the spectra
consist of two distinct types: l states evenly distributed on a circle with
a radius of ðδtÞ1=l , and the remaining N − l states enclosed within this
circle. These N − l states primarily reside at the first site, arising from
the p-fold degenerate exceptional point, which is highly sensitive to
perturbations. Imperfections or non-uniformities in the capacitors/
inductors can cause the exceptional point to split and spread along the
imaginary axis (details in Supplementary Section VII, Supplementary
Fig. S11 andSupplementary TableS1). In contrast, the states distributed
on the circle display resilience.

In Fig. 3e1–e4, we present the spatial profiles of eigenstates
(with their corresponding eigenvalues distributed on the circle)
of the admittance matrix for different combinations of (N, l). Nota-
bly, for each l, the eigenstates display nearly identical profiles,
with small deviations due to unavoidable circuit noises or device
errors. These eigenstates decay from the left boundary exponen-
tially with a finite spanning. As the coupling range l increases, the
eigenstates gradually become more delocalized. Furthermore, by
rescaling their distributions with the prefactor of l, we observe
perfect overlapping of their profiles for all combinations of (N, l), as
depicted in Fig. 3e5. It indicates that the localization length scales as
OðlÞ, thus confirming the nature of the scale-tailored localized
states.

The reconstruction of the scale-tailored states from the admit-
tance matrix involves N2 voltage response measurements, which is
cumbersome and indirect. Instead, these eigenstates can be obtained
through the measurement of the non-local voltage response, as illu-
strated in Fig. 4a. An AC current feed is injected at the far right end of
the circuit using an AC voltage source connected through a shunt
resistance Rs = 10 kΩ. Each additional resistor R0 and capacitor Cr per
unit cell is used only for circuit stability and facilitating frequency
adjustment. When the driving frequency approaches the system’s
eigenfrequency corresponding to a scale-tailored eigenstate, the
measured voltage response directly yields the profile of the scale-
tailored eigenstate (See “Methods”). Intriguingly, despite the current
being fed at the far right end, the measured voltage response peaks
strongest at the far left end, as shown in Fig. 4b. This counterintuitive
enhancement underscores the exotic localization behavior of the
scale-tailored eigenstate. In fact, the localization length ξ can be
extracted from the voltage response:

ξ =
1

log 1
N�1

PN�2
n=0

jVn j
jVn + 1 j

h i , ð10Þ

whereVn represents the voltage response at the n-th node. As shown in
the inset of Fig. 4b, the linear scaling of ξ with the coupling range l is
further confirmed.

Discussion
We have established STL as a novel localization mechanism stem-
ming from long-range asymmetric couplings, going beyond the
well-known paradigms of Anderson localization due to wave inter-
ference and skin localization arising from intrinsic non-Hermitian
point gaps. Leveraging the high feasibility of electric-circuit arrays
and the adjustability of nonreciprocity through VFs, we have further
observed the scale-tailored localized states in electrical circuits,
accompanied by the separation of energy spectra in the complex
plane. Our framework highlights the non-perturbative nature of

non-Hermitian couplings, resulting in dramatic changes in energy
spectra and eigenstates. With wave localization fully tailored by the
long-range coupling, our study opens new avenues for the versatile
manipulations of peculiar wave phenomena in various open systems
and other experimental platforms, including photonic20,40, ultra-
cold atoms49, and metamaterials19.

Methods
Analysis of STL
The unidirectional-hopping model in Eq. (1) is a special case of the
more generic Hatano-Nelson model50 with nonreciprocal couplings:

Ĥ =
XN�2

n=0

ðtLĉynĉn+ 1 + tRĉ
y
n+ 1ĉnÞ+ tLδt ĉ

y
N�1ĉp: ð11Þ

Here, tR and tL represent the hopping to the right and left side,
respectively. The eigenvalues and eigenstates for the abovemodel can
be obtained as:

E = tLzi +
tR
zi
,

∣Ψi= P2
i= 1

∣Ψi

�
=
P2
i= 1

cið1, zi, z2i , � � � , zN�1
i ÞT ,

8><>: ð12Þ

where z1 and z2 satisfy z1z2 = tR/tL = η, and z1 is given by the roots of the
following equation:

zN + 1
1 � η

z1

� 	N + 1

+ δt
η
z1

� 	p+ 1

� zp+ 11

" #
=0: ð13Þ

Without the additional long-range coupling, i.e., δt ↦ 0, Eq. (13)
reduces to z2ðN + 1Þ

1 =ηðN + 1Þ, from which we obtain N solutions
zðmÞ
1=2 =

ffiffiffi
η

p
e± iθm with θm = [mπ/(N + 1)](m = 1, ⋯ , N). These roots form

1914940
1

101

102

103

104

16116
0

5

10

∼

0 1 2 −2 2

00

1 11

00 00 0300

, = (20,6)

, = (20,16)

, = (20,11)

a

b
Theoretical

Fig. 4 | Direct measurement of the scale-tailored localized states. a An input AC
current is fed at the far right end of the circuit using an AC voltage source connected
through a shunt resistance Rs= 10 kΩ. b Voltage response at all nodes relative to the
current feed. The inset displays the localization length ξ extracted from the voltage
responses. Experimental data are marked by colored symbols for different config-
urations: (N, l) = (20, 6) (red diamonds) with (R0, f) = (82 kΩ, 174 kHz), (20, 11) (blue
triangles) with (R0, f) = (22 kΩ, 175 kHz), (20, 16) (green crosses) with
(R0, f) = (16 kΩ, 176.5 kHz),whichalignwith theoretical expectation (black lines).Other
parameters are: C0 = 10pF, C1 = 220pF C2 = 30pF, C3 = 200pF, Cr= 1.5 nF, L=470μ H.
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the generalized Brillouin zone7. The eigenstates are skin modes
localized at the left or right boundary when ∣tR∣ < ∣tL∣ or ∣tR∣ > ∣tL∣,
respectively.

When δt deviates from 0 and exceeds a critical value, part of the
skin modes is reshaped by the long-range coupling. For simplicity, we
focus on the case ofN, p≫ l (l =N −p), that is, the coupling range l is the
smallest length scale of the system. When δt > rl, the solutions of Eq.
(13) can be categorized into two types. The first type consists of p
solutions satisfying jz1j= jz2j=

ffiffiffi
η

p
. Specifically, they are z1=2 =

ffiffiffi
η

p
e± iθ,

where θ is determined by real solutions of rl sin½ðN +
1Þθ�= δt sin½ðp+ 1Þθ�. These solutions represent the skinmodes that are
nearly unaffected by the long-range coupling. The second type has l
solutions satisfying jz2j<

ffiffiffi
η

p
< jz1j. In this case, Eq. (13) reduces to

zN�p
1 = δt , which leads to l solutions zðmÞ

1 =
ffiffiffiffiffi
δt

l
p

eiθm with
θm = 2mπ

l ðm= 1, 2, � � � , lÞ. The localization length of the second-type
eigenstates is determined by the settings of the long-range coupling.
They correspond to STL or inverse STL for ∣δt∣ < 1 or ∣δt∣ > 1 with loca-
lization length ξ = ∓ l

log jδt j / l.

The criterion of STL
Here, we investigate the generic non-Hermitian model described by
Hamiltonian (6) with an additional non-local coupling, as sketched in
Fig. 5a. The solution of the eigenvalue equation Ĥ∣Ψi= E∣Ψi are

E =
PMR

j = 1

tjR
zj +

PML
j = 1tjLz

j,

∣Ψi= PM
i= 1

ci 1, zi, z
2
i , � � � , zN�1

i

� �T
:

8>>>><>>>>: ð14Þ

Here M =MR +ML, and c1, ⋯ , cM are superposition coefficients deter-
mined by the boundary constraints det½HB�=0. For a given E, there
exist M solutions zi(i = 1, ⋯ , M), which can be ordered as
∣z1∣ ≤ ∣z2∣ ≤ ⋯ ≤ ∣zM∣.

We focus on the relevant case with N≫ l≫ 1 and discuss
the existence condition of STL (details in Supplementary Sec-
tion II). The dominant terms in the determinant are
det½HB�=A1 +A2 +B1, with

A1 = zMR + 1
zMR + 2

� � � zM
� �N

Ga

×
XMR

i1≠���≠iMR
= 1

ð�1Þτði1 ���iMR
Þ f 1ðzi1 Þ � � � f MR

ðziMR
Þ

h i
,

ð15Þ

A2 = zMR
zMR + 2

� � � zM
� �N

G0
a

×
XMR�1,MR + 1

i1≠���≠iMR
= 1

ð�1Þτði1 ���iMR
Þ f 1ðzi1 Þ � � � f MR

ðziMR
Þ

h i
,

ð16Þ

B1 = � δtz
p
MR + 1

zMR + 2
� � � zM

� �N
Gb

×
XMR

i1≠���≠iMR
= 1

ð�1Þτði1 ���iMR
Þ f 1ðzi1 Þ � � � f MR

ðziMR
Þ

h i
:

ð17Þ

Here, Ga,G
0
a and Gb are finite polynomials depending on the specific

model. If ∣B1∣≫ ∣A2∣, which requires

δt jzMR + 1
jp≫jzMR

jN , ð18Þ

then the boundary constraints yield A1 + B1 = 0. Consequently,

zMR + 1
=

ffiffiffiffiffiffiffiffi
δtη

l
q

eiθm , ð19Þ

where

η=
Gb

Ga
, ð20Þ

and θm = 2mπ
l with m = 1, ⋯ , l. Since Ga and Gb are finite polynomials,

jzMR + 1
jl = jδtηj � Oð1Þ, indicating there are l scale-tailored localized

states.
Substituting Eq. (19) into Eq. (18), the condition (18) simplifies to

δt>jzMR
jl : ð21Þ

This governs the existence of l scale-tailored localized states with
jzMR + 1

j=
ffiffiffiffiffiffiffiffi
δtη

l
p

under the condition N≫ l ≫ 1. Notably, for sufficiently
large l, jzMR + 1

j ! 1, and the eigenenergies of these scale-tailored states
approach the Bloch spectra (energy spectra under periodic boundary
conditions):

E = EðPBCÞ =
XMR

j = 1

tjR

ðeik Þj
+
XML

j = 1

tjLðeik Þ
j
, ð22Þ

where k ∈ [0, 2π]. Moreover, the condition Eq. (21) holds regardless
of the magnitude of δt only if jzMR

j<1. Thus, the criterion can be
formulated in terms of the Bloch spectra: for any E ∈ σPBC, there exist
ML +MR solutions zi, sorted by their moduli ∣z1∣≤ ∣z2∣≤ . . . ≤ ∣zML +MR

∣.
Note that for the Bloch spectra, there must exist a z-solution of unit
modulus. If these solutions zi further satisfy ∣zMR

∣<∣zMR + 1
∣= 1, then l

scale-tailored localized states appear upon introducing the addi-
tional long-range coupling of arbitrary strength, as sketched
in Fig. 5b.

Circuit Laplacian and impedance matrix
The circuit Laplacian relates the input current and voltage at all the
nodes via Kirchhoff’s law, I (ω) = J (ω)V (ω). For the circuit array shown

( ) < +1
( ) = 1

− 10

a

b

Re( )

Im
(
)

Fig. 5 | Sketch of generic 1D lattice models and the criterion of STL. a A generic
1D non-Hermitian latticemodel. The largest hopping ranges to the left and right are
ML and MR. The additional asymmetric coupling is marked in red. b Sketch of the
criterion of STL. The (MR + 1)-th roots of the Bloch spectra reside on the unit circle
(red circle).
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in Figs. 3a and 4a, the circuit Laplacian is given by:

JðωÞ = �iω

μ C1 � � � 0 0 � � � 0 0

0 μ � � � 0 0 � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � �
0 0 � � � μ C1 � � � 0 0

0 0 � � � 0 μ � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � �
0 0 � � � 0 0 � � � μ C1

0 0 � � � C2 0 � � � 0 μ

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
= eJðωÞ � iωμIN ×N :

ð23Þ

Here μ= 1
ω2L � ðC1 +C0Þ in Fig. 3, and μ= 1

ω2L � ðC1 +C0 +CrÞ � 1
iωR0

in
Fig. 4. The capacitors C0 and C3 are set to satisfy C1 +C0 = C2 +C3 in
our circuit. IN×N is the N × N identity matrix. JN−1,p = − iωC2 represents
the long-range coupling. Compared to the theoretical model in
Eq. (1), we have the coupling strength t and tδt set by the capacitors
C1 and C2 in the circuit array. In the experiments illustrated in
Fig. 3, each unit cell is composed of an LC resonator, a capacitor, and
a VF (OpAmp OP07) with a gain bandwidth product of 600 kHz. In
Fig. 4, each unit cell incorporates an additional resistor (R0) and a
capacitor (Cr), with the VF (OpAmp OP27G) having an 8 MHz
bandwidth product. We plug the circuit unit into the circuit
motherboard, allowing for easy adjustment of both boundary
coupling and lattice size. To mitigate crosstalk between adjacent
inductors, we maintain a distance of approximately 4 cm between
two lattice sites.

To access the admittance eigenvalues and eigenstates, we per-
form voltage-response measurements with respect to a local current
input for all nodes in the network. These responses are encoded in the
impedance matrix G:

VðωÞ=GðωÞIðωÞ: ð24Þ

Specifically, with an input AC current In at the n-th node and the
measured voltage response Vn

m at the m-th node, the impedance
matrix element Gmn is given by:

Gmn =
Vn

m

In
: ð25Þ

The admittance matrix J (ω) and the impedance matrix are related
through J (ω) =G−1(ω). In the experimental setup shown in Fig. 3, the AC
current is provided by an AC voltage source (NF Wave Factory1974)
through a resistance ofRs = 2 kΩ, and the voltage response ismeasured
using a lock-in amplifier (Zurich Instruments UHF).

Besides the reconstruction of the admittancematrix, direct access
to the scale-tarilored eigenstates is possible through the non-local
voltage measurements as in Fig. 4a. The impedance matrix G ωð Þ (the
inverse of the admittance matrix J ωð Þ) encodes information about the
eigenmodes. It can be expressed as

G ωð Þ= G0 G1

0 G2

� 	
, ð26Þ

where G0 is a p × p upper triangular matrix with elements being

½G0�i, j = �1
Ji, i + 1

�Ji, i+ 1
Ji, i

� �j�i + 1
. G1 is a p × l matrix defined by

½G1�i, j =
�Ji, i + 1
Ji, i

� �p�i
½G2�0, j . G2 is an l × l matrix:

G2 =
XN�1

n=p

1
jn

ψ0
nRψ

0y
nL

ψ0y
nLψ

0
nR

ð27Þ

withψ0
nR, i =ψnR,p+ i andψ0

nL, i =ψnL,p+ i. Here,ψnR orψnL(n = p,⋯ ,N − 1)
is the right or left eigenvector with eigenenergy jn of the admittance
matrix J ωð Þ, representing the scale-tailored eigenstates. We denote the

eigenfrequency of the electric circuits as ω mð Þ
c , determined by det

J ω mð Þ
c

� �h i
=0. When the driving frequency approaches an eigenfre-

quencyω mð Þ
c , the eigenvalue associated with a scale-tailored eigenstate

satisfies jm ω ! ω mð Þ
c

� �
! 0 and Ji,i = − jm. We thus have

G1 ω ! ω mð Þ
c

� �
 �
i, j =

1
jm

ψ*
mL,p+ j

ψ0y
mLψ

0
mR

ψmR, i ð28Þ

with i = 0, ⋯ , p − 1, and j =0 ⋯ , l − 1. The matrix G2 reduces to

G2 ω ! ω mð Þ
c

� �
 �
i, j =

1
jm

ψ*
mL,p+ j

ψ0y
mLψ

0
mR

ψmR,p+ i ð29Þ

with i =0, ⋯ , l − 1, and j =0 ⋯ , l − 1. This indicates that when the
driving frequency approaches the eigenfrequency ω mð Þ

c , the x-th
x =p, � � � ,N � 1ð Þ column of the impedance matrix directly yields the
scale-tailored eigenstate ψmR, i.e.,

G ω ! ω mð Þ
c

� �
 �
x =

1
jm

ψ*
mL, x

ψ0y
mLψ

0
mR

ψmR � ψmR: ð30Þ

Therefore, the scale-tailored eigenstates canbe accessedbymeasuring
the voltage response related to the input AC current at the far-right
end of the circuit under ω ! ωðmÞ

c .

Data availability
The data used in this study are available in the GitHub repository
https://github.com/G-CX1/STL-Code.

Code availability
The code used in this study is available in the GitHub repository
https://github.com/G-CX1/STL-Code.
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