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Symmetry invariants and classes of
quasiparticles in magnetically ordered
systems having weak spin-orbit coupling

Jian Yang1, Zheng-Xin Liu 2,3 & Chen Fang 1,4

Symmetry invariants of a group specify the classes of quasiparticles, namely
the classes of projective irreducible co-representations in systems having that
symmetry. More symmetry invariants exist in discrete point groups than the
full rotation groupO(3), leading to newquasiparticles restricted to lattices that
do not have any counterpart in a vacuum. We focus on the fermionic quasi-
particle excitations under “spin-space group” symmetries, applicable to
materials where long-rangemagnetic order and itinerant electrons coexist.We
provide a list of 218 classes of new quasiparticles that can only be realized in
the spin-space groups. These quasiparticles have at least one of the following
properties that are qualitatively distinct from those discovered in magnetic
space group(MSG)s, and distinct from each other:(i) degree of degeneracy,(ii)
dispersion as function of momentum, and(iii) rules of coupling to external
probe fields. We rigorously prove this result as a theorem that directly relates
these properties to the symmetry invariants, and then illustrate this theorem
with a concrete example, by comparing three 12-fold fermions having different
sets of symmetry invariants including one discovered in MSG. Our approach
can be generalized to realize more quasiparticles whose little co-groups are
beyond those considered in our work.

In high-energy physics, elementary particles are classified into bosons
and fermions, characterized by their different statistics, (− 1)2s, deter-
mined by their spin quantum number s, where sðs + 1Þħ2 = S2. A similar
distinction exists in their behavior under the anti-unitary time-reversal
operation T, specifically T̂

2
= ð�1Þ2s, with T̂ = eiŜyπ=ħK 1, where Ŝy is the y-

component of the spin operator Ŝ, and K is the complex-conjugate
operator. The hatted quantities are the representations of operators
acting on the single-particle Hilbert space. Therefore, the quantity T̂

2
,

referred to as a symmetry invariant in later discussions, distinguishes
fermions from bosons: T̂

2
= + 1 holds for particles with integer spin

(bosons), while T̂
2
= � 1 is valid for those with half-odd-integer spin

(fermions). About 60 years ago, Eugene Wigner first noted that the
time-reversal invariant ηT � T̂

2
of elementary particles, as an

independent quantity, should not necessarily be related to (− 1)2s. This
principle led to the proposal of additional types of elementary parti-
cles. Unfortunately, all particles discovered in high-energy physics
satisfy constraint T̂

2
= ð�1Þ2s 2 (see Fig. 1), and Wigner’s idea did not

attract much attention.
In condensed matter physics, massless elementary particles like

Dirac3 orWeyl4 fermions can emerge as quasiparticle excitations in the
low-energy limit. Notably, since spatial symmetries (such as lattice
translations and rotations) are discretized, symmetry invariants like
ηT = T̂

2
= ± 1 and ηS

x, y = ð�1Þ2s = ± 1 can take independent values, lead-
ing to the realization of new classes of particles proposed by Wigner.
For instance, massless quasiparticles with T̂

2
≠ ηS

x, y can arise in elec-
tronic energy bands of systems with anti-ferromagnetic order, where
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the nonsymmorphic time-reversal operation is associated with a frac-
tional translation. New types of quasiparticles, illustrated in Fig. 1, exist
in condensed matter physics, featuring T̂

2
= � 1 for bosons and

T̂
2
= + 1 for fermions, without counterparts in high-energy physics.

These emergent quasiparticles in materials are explored using the
representation theory of groups. The symmetryoperations of a system
form a group, and point-like quasiparticle excitations are described by
their projective irreducible co-representations (irReps). Specifically,
quasiparticles and their corresponding projective irReps can be
grouped into several projective classes specified by a set of discrete
values of the symmetry invariants5–11. For example, time-like elemen-
tary particles in the standardmodel belong to two different projective
classes (labeled by the symmetry invariant ηS

x, y =ηT = ± 1) of the little
group Oð3Þ×ZT

2 for massive particles. In solids, the symmetry of a
particle is reduced from continuous rotation O(3) to 32 subgroups
known as crystallographic point groups. Thus, there is interest in the
projective classes of P ×ZT

2 , where P is one of the 32 crystallographic
point groups and ZT

2 is the time-reversal group. To date, researchers
have enumerated all quasiparticles protected by type-II12–26 and type-
IV8,9,27–44 Shubnikov’s magnetic space groups (MSGs)45–51. Two ques-
tions naturally arise: (i) does this list exhaust the projective repre-
sentations for symmetries of the form P ×ZT

2 ? (ii) If not, where can we
find the remaining quasiparticles? For the second question, recent
advances in spin-space groups (SSGs) provide a clue, as they offer a
complete description of the symmetries of magnetic orders beyond
MSGs. SSGs also describe the symmetry of itinerant electrons hopping

on the magnetic lattice, provided the spin-orbit coupling (SOC) of the
electrons is much smaller than the Zeeman splitting caused by the
local magnetic moment52–55. Under weak SOC, unusual electronic
structures and spin splittings emerge56–59. An increasing number of
experimental and theoretical studies on magnetic materials with weak
SOC, including altermagnetism with SSGs as approximate
symmetries55,60–67, have been conducted. Candidate materials include
Mn5Si3

68, RuO2
58,69, MnTe70, MnTe2

71, and CoNb3S6
53,72. A few examples

of new quasiparticles with spin point group symmetry have been
theoretically predicted52–54,72–74. In addition, there are works discussing
the representation theory and new quasiparticles of fermion and
magnon bands within the framework of SSGs75–77. However, a com-
prehensive classification of these quasiparticles has yet to be
accomplished.

In this paper, our results fully address the above open questions,
using symmetry invariants as the primary tool. Symmetry invariants,
a set of variables formed by factor systems, generate the second
group-cohomology group and can be used to classify and identify
the various projective classes for the same symmetry group. The
projective classes form an intermediate layer between the groups
and their (co)representations (Reps for short) and are less familiar to
physicists. In Fig. 2, we summarize the relations among the groups,
the projective classes, and the Reps, and also illustrate the corre-
spondence between the physical entities (on the left) and the
mathematical quantities (on the right). Generally, a symmetry
invariant takes the value of a certain root of 1, but in the present
work, it is always ± 1 valued (see “Methods” section formore details).
For any given point group P, there are mP number of Z2-valued
symmetry invariants, resulting in 2mP projective classes and, conse-
quently, 2mP quasiparticle types. We identify all these invariants and
find the rigorous limit of 680 projective classes, or quasiparticle
types, for all P ×ZT

2 groups. Using the complete set of invariants, we
show that all known quasiparticles protected by MSGs fall into 386
projective classes. To demonstrate that symmetry invariants provide
not only a mathematical classification but also a physical classifica-
tion of quasiparticles, we prove a theorem that any two quasi-
particles with different values for symmetry invariants must differ in
at least one of the following aspects: degeneracy, dispersion, or lin-
ear couplings to external fields.We then search for the remaining 294
quasiparticles unrealizable in MSGs and find that 218 can be realized
in SSGs. Two of these are illustrated in detail to show their unique-
ness: a spin-1/2 fermion with 12-fold degeneracy, as shown in Fig. 3,
and another spin-1/2 fermionwith 4-fold degeneracy, connected with
13 nodal lines, as shown in Fig. 4. We then attempt to scan magnetic
materials with knownmagnetic structures for candidates hosting any
of the 218 quasiparticles, and the search yields one candidate,
Ce3NIn.
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Fig. 1 | Types of (quasi)particles in high-energy physics and condensed matter
physics. T̂

2
= + 1 for bosons and T̂

2
= � 1 for fermions are allowed in high-energy

physics and condensedmatter physics. But the new types, T̂
2
= � 1 for bosons and

T̂
2
= + 1 for fermions, are only allowed in condensed matter physics.

Fig. 2 | Group, projective class, and irRep. The projective classes are intermediate between the group and the irRep, with their corresponding physical concepts to the
left, and the quantities that specify them on the right.
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Results
Symmetry invariants of quasiparticles
We focus on quasiparticles with crystal momenta near a high-
symmetry point in the Brillouin zone (BZ). Due to their high sym-
metry, these momenta are usually the centers of carrier pockets,
around which effective models are constructed. In the long-
wavelength limit, the quasiparticles move around a high-symmetry
momentum and are thus subject to the little co-group at that
momentum.

Assume the full symmetry of a Hamiltonian on a 3-dimensional
lattice to be G. The three lattice vectors define a translation group T ,
which is a normal subgroup of G. At K ∈ BZ, the little group GK is the
subgroupofG that preservesK up to a reciprocal lattice vector, andwe
define the little co-group GK � GK=T . With the translation symmetry
“modded out", GK describes the effective symmetries for quasi-
particles at K. Physically, a quasiparticle at K in this magnetic state is
covariant under GK, and all observables are GK symmetric.

The tricky part comes when the single-particle wavefunction, not
observable by itself, is considered. The Blochwavefunction transforms
as a projective Rep ρ(g), g ∈ GK

45,47,78,79, such that

ρðg1Þρðg2Þ=ω2ðg1, g2Þρðg1g2Þ, ð1Þ

for g1, g2 being unitary. Throughout the paper, we usehatted operators
ĝ for the Rep of g 2 G in the entire one-particle Hilbert space, and ρ(g)
for the Rep of g∈GK in the subspace spanned by Bloch wavefunctions
at K. Compared with a Rep where ρ(g1)ρ(g2) = ρ(g1g2), Eq. (1) has a
factor system ω2(g1, g2)∈ U(1). It is this factor system that gives rise to
all types of the “new fermions”8,17,32 and more quasiparticles to be
discussed later. For crystallographic point groups, symmetry invar-
iants are Z2-numbers that classify all factor systems for a given
symmetry. For anti-unitary symmetries, the definition of projective

Rep slightly differs, and so does the form of symmetry invariants [See
“Methods” section].

Themost well-known example of projective Reps in physics is the
half-odd-integer spin. The point group of a Galilean vacuum is
Oð3Þ×ZT

2 , and if one takes two twofold axes 2x and 2y, then

2̂x 2̂y = ð�1Þ2s2̂y2̂x : ð2Þ

The symmetry invariant ηS
x, y = ð�1Þ2s = � 1 represents the anti-

commuting relation of 2̂x and 2̂y for all particles of half-odd-integer
spins, like electrons, where the superscript S stands for the spin
contribution. The time-reversal symmetry T introduces an additional
invariant ηS

T = T̂
2
= � 1, which leads to the well-known Kramers

degeneracy.
For a less known but important, example, we look at G being

P212121 ×Z
T
2 with three twofold screw axes C2x = f2x j 12 1

2 0g,C2y =

f2yj0 1
2
1
2g,C2z = f2z j 12 0 1

2g. One easily checks that Ĉ2iĈ2j = t̂x + y+ z Ĉ2j Ĉ2i,
for i, j = x, y, z, i ≠ j and tx+y+z ≡ {E∣111}. Nowwe look at phonons (bosons)

near K = (π, π, π), where GK =D2 ×Z
T
2 . At K, the translation operator

t̂x + y+ z becomes − 1, and we have

ρðC2iÞρðC2jÞ= � ρðC2jÞρðC2iÞ ð3Þ

for i ≠ j, yielding ηL
x, y = � 1, where the superscript L stands for the lat-

tice contribution. At the same time, T is simply time reversal and
ηL
T � ½ρðTÞK �2 = + 1, with K being the complex conjugation. Comparing

Eq. (2) and Eq. (3), one immediately finds that the phonons at K have
ðηL

x, y = � 1,ηL
T = + 1Þ. On the other hand, for electrons at the same

momentum pointK, the total invariants include the contribution from
both the lattice and the spin and take the values
ðηx, y = η

L
x, yη

S
x, y = 1,ηT =η

L
Tη

S
T = � 1Þ, with ηS

x, y = � 1 and ηS
T = � 1. This

Fig. 3 | 12-fold fermions in spin-space group 229.2.1.987. a A magnetic structure
that is compatible with this SSG with 12 spins in one unit cell. The 12 spins are
colored in orange, green, blue, purple, pink, and sky blue, eachofwhichhasupward
and downward magnetic moments. b The schematic dispersion of the 12-fold fer-
mion along three high-symmetry lines [100], [110], [111]. Along [100], the 12-fold

fermion splits into one 4-fold band colored in blue, two 2-fold bands colored in red,
and two 2-fold bands colored in green. Along [110], the 12-fold fermion splits into
one 4-fold band colored in blue and two4-fold bands colored in red. Along [111], the
12-fold fermion splits into two 4-fold bands colored in red and two 2-fold bands
colored in green.

Fig. 4 | 13-nodal-line nexus in spin-space group 229.2.1.987. The nodal lines meet
at R in themagnetic BZ for the 13-nodal-line nexus. The nodal line degeneracies are
exact because the irRep of R remains irreducible along the nodal lines. a The three
red lines are nodal lines along kx, ky, and kz directions. b The two red lines are nodal
lines along kx ± ky directions, the two green lines are nodal lines along kx ± kz

directions, and the two blue lines are nodal lines along ky ± kz directions. c The red
line is a nodal line along kx + ky + kzdirection, and the yellow line is a nodal line along
kx + ky− kz direction. d The green line is a nodal line along kx − ky + kz direction, and
the blue line is a nodal line along kx − ky − kz direction.
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combination of (ηx,y, ηT) is what leads to the multi-chiral fermions
known in transition-metal monosilicides80–83. From the two examples,
we see that the symmetry invariants of GK depend, and only depend,
on (i) the fundamental spin, (ii) the symmetry group G, and (iii) the
crystal momentum K, but not on any specifics of the band structure,
such as the ordering of bands or the Fermi level. This property
motivates one to classify quasiparticles using symmetry invariants. In
the Supplementary Table I, the definitions of symmetry invariants in
terms of the factor system are given, resulting in 680 quasiparti-
cle types.

Where can we find materials that realize all these values for sym-
metry invariants? To be more precise, for a given point group P and
specified values of invariants η, is there a lattice with symmetry G and a
crystal momentum K such that GK ffi P ×ZT

2 and the invariants corre-
spond to those specified inη? ForG being a type IIMSG (that is, a space
group (SG) times time reversal), 224 sets are realized; and for G being a
type IV MSG (applicable to, e.g., antiferromagnets with doubled unit
cells), an additional 162 sets are realized. In fact, for
P =C1,s,i,2,3,4,6,2v,3v,4v,6v,2h,3i, S4, D2,2d,2h, T, Td,h, all sets of invariants can
be realized in MSG. However, for P =C3h,4h,6h, D3,4,6,3d,3h,4h,6h, O, Oh,
there are 294 sets of invariants that cannot be realized in MSG.

In MSG, spin-orbit coupling (SOC) requires every point-group
operation p ∈ O(3) to be associated with a spin rotation
det½p�p 2 SOð3Þ. Thismeans that the spin part of the operation is fixed
by the spatial or lattice part of the operation. However, in the limit of
negligible SOC, this locking between spin and space operations is
released, which gives rise to more possibilities for the symmetry
group. These new symmetries with unlocked spin and lattice opera-
tions, termed SSG84,85, provide a way to realize more quasiparticles.

Structure of Spin-space groups
Now we investigate the structure of SSG, which provides important
information for obtaining the invariants of quasiparticles. We consider
the Hamiltonian for itinerant electrons in a magnetically ordered lat-
tice

Ĥ =
p̂2

2m
+V ðrÞ+MðrÞ � ŝ, ð4Þ

where ŝ is the electron-spin operator, V(r) the lattice potential, and
M(r) the Zeeman/exchange field generated by the ordered moments.
The spin symmetry rotations are not necessarily always locked with
lattice rotationsdue to the absenceof the SOC in Eq. (4)52. For example,
in the magnetic material RuO2

58,69 with collinear magnetic order along
the x-axis, the C +

4z lattice rotation should be associated with C2z spin
rotation, characterized by an SSG symmetry ðC2z jjC +

4z j 12 1
2
1
2Þ. Such kinds

of symmetry operations are called SSG operations, which form the
spin-space groups. The absence of SOC in Eq. (4) unlocks the spatial
and spin degrees of freedom of electrons from each other, enabling
the realization of 218 new types of quasiparticles in SSG with little co-
group P × ZT

2 .
Generally, an SSG operation g has a spin part φg 2 SOð3Þ×ZT

2 and
a lattice part lg, with g = (φg∣∣lg). For later convenience, we define a
unitarity indicator ζg such that ζg =0 if g is unitary and ζg = 1 if g is anti-
unitary. The lattice part can be represented as lg = fpg jtggT ζ g , which
contains a point-group part pg ∈ O(3) and a translation vector tg. The
spin rotation is decoupled from pg, under the constraint that {(φg∣∣lg)}
forms a group under multiplication, which requires φ to be a homo-
morphism from the lattice part lg to the spin part φg that preserves
unitarity or anti-unitarity. A pseudo-vector field M(r) is said to be
invariant under g if and only if MðrÞ= sðφg ÞMðl�1

g rÞ. Here, s is an “iso-
morphism" from SOð3Þ×ZT

2 to O(3), i.e., a generalized vector Rep with
s(T) = − 13×3, s(TR) = s(RT) = − s(R), and s(R) being the usual vector Rep
of R for R ∈ SO(3).

Here we mention four key groups associated with the SSG G85: (i)
the group formed by the lattice part L= flg jg 2 Gg, (ii) the group
formed by the spin part S= fφg jg 2 Gg, (iii) all SSG operations that have
a trivial spin partL0 = flg jg 2 G,φg = Eg, and (iv) all SSG operations that
have a trivial lattice part S0 = fφg jg 2 G, lg = fEj0gg. From these defini-
tions, it immediately follows that: (a)L is also the latticepart of anMSG
MwithL ffi M; (b)L0 is a normal subgroupofL; (c)S is a subgroupof
SOð3Þ×ZT

2 , and S0 is a normal subgroup of S. Symbolically, they are
summarized in ref. 85 as:

L0 / L, S0 / S,
L
L0

ffi S
S0

ffi G=ðL0 × S0Þ: ð5Þ

Very recently, the SSGs have been completely enumerated with trun-
cated sizes of magnetic unit cells75,76,86–89. In the present work, we
mainly discuss cases where S0 = {E} is a trivial group. Under this
assumption, G ffi M: an SSG with a trivial S0 is isomorphic to an MSG.
In the case of nontrivial S0, our discussion also applies thanks to the
relation G=S0 ffi L ffi M. We further restrict the discussion to cases
where the magnetic unit cell is twice as large as the crystal unit cell,
specifically considering SSGs that are: (i) isomorphic to type IV MSGs,
and (ii) where nontrivial spin rotations are only associated with group
elements that have nontrivial lattice point operations.

The difference between SSG G and the isomorphic MSG M then
lies in the spin rotation φg for each g 2 L ffi M, which is a homo-
morphism from L to SOð3Þ×ZT

2 . First, we observe thatL0 is the kernel
of this homomorphism that maps to 13×3. Then, we build a surjective
homomorphism from L to the quotient group L=L0 and then an
injective homomorphism to O(3):

L!φ L
L0

!s Oð3Þ, g 7!φg 7!sðφg Þ, ð6Þ

under the constraint det½sðφg Þ�= + 1ð�1Þ if g is unitary (anti-unitary).
For each L and its normal subgroups L0, the quotient group L=L0 is
finite, thus there are a finite number of homomorphisms s ⋅φ. A similar
structure also appears in the later discussion of the little co-group of
quasiparticles.

Now we relate SSG to operators that act on electrons subject to
M(r) as in Eq. (4). Under an SSG operation g = (φg∣∣lg), an electron
operator cα(r), α, β being spin index, transforms as

cyαðrÞ!
g X

β

dβαðφg ÞKζ g cyβðl
�1
g rÞ, ð7Þ

where dðφg ÞKζ g = uðsðφg ÞÞ for unitary g and dðφg ÞKζ g =uðsðTφg ÞÞðiσyKÞ
for anti-unitary g, u: SO(3) → SU(2) is the natural embedding from
SO(3) to SU(2).

Symmetry invariants of spin-space groups
An SSG G has a normal translation subgroup T 0 / L0. Using T 0, the BZ
and the crystal momentum K are defined. The little group GK is the
subgroup of G preserving K, and the little co-group GK =GK=T 0 is
essentially a spin point group90,91 whose elements are given by (φp∣∣p).
The lattice parts p of (φp∣∣p) form LK, the little co-group of L. As
G ffi M ffi L, we have GK≅MK≅ LK withMK, the little co-group ofM,
recalling that the SSGG and theMSGM have the samepure translation
part of L.

The symmetry invariants may come from the spin part, as in Eq.
(2), and the lattice part, as in Eq. (3). Each invariant ofGK hence factors
into the lattice and the spin invariant ηi = η

L
i η

S
i . The lattice part of GK is

nothing but MK, the invariants of which can be computed as

ηL
p1 ,p2

= exp½�iðKp1
� tp2

� Kp2
� tp1

Þ� ð8Þ
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if p1, p2 are unitary with p1p2 = p2p1 and

ηL
p = expð�iKp � tpÞ, ð9Þ

if p is anti-unitary with p2 = E. Here the reciprocal lattice vector Kp is
defined as Kp = ð�1Þζp ðp�1K� KÞ with ζp =0(1) if p is unitary (anti-
unitary)47,92,93, tp is the translation vector of p.

The spin part ofGK, which is essentially a homomorphism from LK
to SOð3Þ×ZT

2 then to O(3), can be classified and enumerated in the
following way. First, L0K, the little co-group of L0 is the kernel of this
mapping. For a given LK, there is a finite number of L0K, and for each
given L0K, one can enumerate the mappings from the quotient group
LK/L0K to O(3). Such a mapping s ⋅ φ: LK → O(3) is a 3-dimensional real
Rep of LK. With φ specified, the spin part of the invariants is

ηS
p1 ,p2

� 12× 2 =dðφp1
Þdðφp2

Þd�1ðφp1
Þd�1ðφp2

Þ, ð10Þ

for unitary elements p1, p2 with p1p2 = p2p1 and

ηS
p � 12× 2 = ½dðφpÞK �2, ð11Þ

for anti-unitary element p with p2 = E.
We focus on those SSGs, and the momentum points K which

have GK ffi P ×ZT
2 . Remembering that G ffi M ffi L,GK ffi MK ffi LK,

and noticing that the MSG M and magnetic point group MK can be
easily identified from the standard crystallographic table, for con-
venience, we denoteMK =P ×ZT

2 (this, in turn implies thatM is a type
IV MSG). In Supplementary Table II, we have computed
P = C3h,4h,6h, D3,4,6,3d,3h,4h,6h, O, Oh, the lattice-part invariants ηL. For
the spin part, in Supplementary Tables III–XIV, we have listed the
choice of L0K, the choice of homomorphism φ, and the resultant
invariants ηS. For easy reference, each unique set of ηL/S is labeled by a
Boolean vector (1 − ηL/S)/2, and the ηS leading to invariants only rea-
lizable in SSG are in RED. Finally, we obtain the full symmetry
invariants for GK using ηi =η

L
i η

S
i , listed in Supplementary

Tables XV–XXVI. The η’s that can be realized in type II and type IV
MSG are colored in GREEN and BLUE, respectively, and those only
realizable in SSG, counting 218, are in RED. The BLACK sets of
invariants cannot be realized in MSG or even SSG. For each RED set,
we have listed all possible pairs (ηL, ηS).

Physical properties determined by invariants
Nowwe show that, for a given P ×ZT

2 , twoquasiparticles fromdifferent
projective classes have distinct physical properties. They can differ
from each other in the degrees of degeneracy. Otherwise, they are
distinguished by the dispersion or the coupling to an external probe
field, such as the displacement (phonon) field and the Zeeman field.
First, we observe that any dispersion ϕ as a function of momentum, or
any external field ϕ, corresponds to a linear irRep of P ×ZT

2 , so its
componentsϕμ

i carry a linear irRepof P × ZT
2 , whereμðP × ZT

2 Þ is a linear
irRep and i= 1, � � � , dim½μ� labels the component within the irRep.

Then we notice that as the fermion operator cym transforms as a
projective irRep ρwithm= 1, :::, dim½ρ�, the bilinear cymcn transforms as
a linear Rep ρ ⊗ ρ*9, which reduces into direct sums of linear irRep μ:
ρ ⊗ ρ* =∑μ ⊕ Nρ(μ)μ, where the multiplicity94

NρðμÞ=
1

2jPj
X
g2P

jχðρÞðgÞj2χðμÞðgÞ+ω2ðgT , gTÞχðρÞ ðgTÞ2
� �

χðμÞðgTÞ
h i

ð12Þ
is the number of times the linear irRep μ occurs in the direct product
Rep ρ ⊗ ρ*. Here, χ(ρ)(g) stands for the character of g ∈ P in the pro-
jective irRep ρ, and χ(μ)(g) is the character of g in the linear irRep μ. ∣P∣ is
the number of elements in the point group P. The elements of the
dim½ρ�× dim½ρ� matrix ΓðμÞτμ i are the Clebsch-Gordon coefficients

combining the bases of the direct product Rep ρ ⊗ ρ* into the i-th
base of the linear irRep μ, where τμ = 1, . . . , Nρ(μ).

In terms of ϕμ
i and ΓðμÞτμi, the general symmetric coupling takes

the form

Ĥ =
X
μ, τμ , i

λðμÞτμ
ϕμ

i Γ
ðμÞτμi, ð13Þ

where coupling parameter λðμÞτμ
2 R. From Eq. (13), we see that the

physical response of a quasiparticle (denoted by the corresponding
irRep ρ) entirely depends on Nρ(μ). For example, letting P =Oh and
identifying ϕ as momentum k, which transforms as T�

1u (−means odd
under time reversal), if NρðT�

1uÞ=0, then there is no linear dispersion
for this quasiparticle. On the other hand, if NρðT�

1uÞ=2, then there are
two independent coupling parameters denoted as λðμÞ1 and λðμÞ2 , hence
two Fermi velocities for this quasiparticle. The same procedure applies
if ϕ stands for probing Zeeman field (T�

1g Rep), lattice displacement
field (T +

1u Rep), strain tensor field (T +
2g Rep or E +

g Rep), and so on.
In Supplementary Note 3, we prove a theorem stating that if

projective irReps ρ1 and ρ2 for P ×ZT
2 belong to different projec-

tive classes (namely, ρ1 and ρ2 have different values of symmetry
invariants), then there must exist at least one linear Rep μ such
that Nρ1

ðμÞ≠Nρ2
ðμÞ. Hence, when dispersion ϕ or external probe

field ϕ carries a linear Rep μ, the quasiparticle carrying irRep ρ1
must behave differently compared to the quasiparticle carrying
irRep ρ2. This seals the conclusion that any one of the 218 new
quasiparticle types has distinct physical properties from the 386
types realizable in MSG, and the 218 classes of new quasiparticles
also have distinct physical properties from each other. This is one
of the central conclusions of the present work. In the next sec-
tion, we will illustrate this result with concrete examples, namely,
by comparing three 12-fold quasiparticles having different sets of
symmetry invariants.

In Supplementary Tables XV–XXVI, we have summarized all band
degeneracies for every set of symmetry invariants that are only rea-
lizable in SSG colored in RED, if the minimal dimension of (co)Reps is
FOUR or higher, including the degree of degeneracy, the lowest-order
dispersion, and the direction of the nodal lines (if any) meeting at
this point.

Example: 12-fold fermions and 13 Dirac nodal lines
According to Supplementary Table XXVI, for GK =Oh ×Z

T
2 ,

Invariants �(ηC2x , C2y
, ηT , ηIT , ηTC2a

, ηI,C2a
), when the five invariants

take the values η
!= ð+ 1, + 1, � 1, � 1, � 1Þ, the corresponding pro-

jective class is only realizable in spin-space groups. One such example
is the non-coplanar SSG 229.2.1.9 in the database87, which is iso-
morphic to type IV MSG M=223:109. The elements of the SG L0 �
Pm�3nð223Þ are pure lattice operations with a quotient group

229:2:1:9=223 ffi ZT
2 . The little co-group at the high-symmetry point

R = (π,π,π) isGK =Oh × Z
T
2 , which is generatedby (E∣∣C2x,2y,2z,C2n, I) and

(T∣∣TC2x,2y,2z, TC2n, TI) as listed in Supplementary Table XIV, where I is
spacial inversion, and n is a unit vector in the x̂ ± ŷ, x̂ ± ẑ, ŷ ± ẑ
directions.

To obtain themagnetic configuration, wefirst illustrate a collinear
configuration with 12 spins at the 12d Wyckoff positions in each unit
cell, as shown in Fig. 3a. This configuration has a collinear SSG sym-
metry 229.2.1.3.L. The complete non-coplanar spin configuration
actually contains three or more sets of collinear configurations (for
instance, another two sets may be located at two inequivalent 24 g
Wyckoff positions) with the condition that the directions of different
sets of spins aremutually unparallel. Hence, the final configuration is a
non-coplanarmagnetic order described by the SSG 229.2.1.9. Similarly,
the configuration of the coplanar SSG 229.2.1.6.P canbe obtained if the
number of collinear sets is two. The three groups, 229.2.1.3.L,
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229.2.1.6.P, and 229.2.1.9, have the same lattice operations and only
differ by their spin-only groups with S0 = SOð2Þ⋊ZC2xT

2 ,ZC2zT
2 , fEg

respectively. Furthermore, for the common little co-group symmetry
Oh × Z

T
2 at the R point, the three groups 229.2.1.3.L, 229.2.1.6.P,

229.2.1.9 have the same values of symmetry invar-
iants, (+ 1, + 1, − 1, − 1, − 1).

This set of invariants η
!= ð+ 1, + 1, � 1, � 1, � 1Þ for Oh ×Z

T
2

allows a 12-dimensional irRep given by

ρ1ðC2iÞ= τ0σ0e
�iLiπ , ρ1ðC2nÞ= iτzσ0e

�iL�nπ ,

ρ1ðIÞ= iτxσ013× 3, ρ1ðTÞK = τyσy13× 3K,
ð14Þ

whose dimensionality is higher than any known (co)Reps appearing in
MSGs9. Here Lx,y,z are the three components of angularmomentum for
l = 1, τ0(σ0) = 12×2, τx,y,z(σx,y,z) are three Pauli matrices acting on the
sublattice (spin) sector, n is a unit vector in x̂ ± ŷ, x̂ ± ẑ, ŷ± ẑ directions.
ρ1 � ρ*

1 can be decomposed into linear irReps of Oh ×Z
T
2 :

ρ1 � ρ*
1 = � � � � 4T�

1u � � � � , ð15Þ

the linear irRep μ=T�
1u corresponds to linear dispersion, the compo-

nents ϕμ
1 = kx ,ϕ

μ
2 = ky, ϕ

μ
3 = kz . Since multiplicity Nρ1

ðT�
1uÞ=4, there are

4 coupling parameters λðμÞ1 = v1x , λ
ðμÞ
2 = v1y, λ

ðμÞ
3 = v1z , λ

ðμÞ
4 = v01. According

to Eq. (13), the k ⋅ p model to the lowest order in k, the crystal
momentum relative to K, takes the form

Ĥ1ðkÞ= ðv1xτzσx + v1yτzσy + v1zτzσzÞk � L+ v01τyσ0k � L0, ð16Þ

where L0i � jϵijk jfLj, Lkg, and v1x, 1y, 1z , v
0
1 material dependent Fermi

velocity. This 12-fold degeneracy is a superposition of four spin-1
double-Weyl points, two with Chern number + 2, and the other
two − 2. The linear dispersion and band splitting of this
degeneracy along different high-symmetry lines are shown in
Fig. 3b. Since there are no 12-dimensional irReps of Oh ×Z

T
2 in

MSGs, the 12-fold fermion (14) is qualitatively different from all
quasiparticles with symmetry group Oh × Z

T
2 in MSGs because of

the degree of degeneracy.
This 12-dimensional irRep appears at the R point of the three

SSGs 229.2.1.3.L, 229.2.1.6.P, and 229.2.1.9, even though their S0
are different (the difference in S0 indeed has a consequence in
their irReps. For instance, both 229.2.1.3.L and 229.2.1.6.P have an
8-dimensional irRep at the R point but the non-coplanar group
229.2.1.9 does not).

With the same invariants η
!= ð+ 1, + 1, � 1, � 1, � 1Þ, as shown in

Supplementary Table XXVI, there is a 4-dimensional irRep9

ρ0ðC2iÞ= τ0σ0, ρ0ðC2, 01�1Þ= iτ0σz ,

ρ0ðC2, 110Þ= ði=2Þτ0σz + ð
ffiffiffi
3

p
i=2Þτzσx ,

ρ0ðIÞ= iτzσy, ρ0ðTÞK = τxσxK :

ð17Þ

What is special about this fourfolddegeneracy is that theband splitting
around this point is proportional to k5, unprecedented in previously
studied symmetry-protected band nodes:

EðkÞ= jkxkykz j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 k2

x � k2
y

� �2
+ 2k2

z � k2
x � k2

y

� �2
r

+Oðk6Þ: ð18Þ

Furthermore, as shown in Fig. 4, all high-symmetry directions
around R are Dirac nodal lines, forming a 13-nodal-line-nexus
where all lines remain fourfold degenerate. Since there are no
4-fold fermions with symmetry group Oh × Z

T
2 having quintic band

splitting dispersion in MSGs, our 4-fold fermion (17) with 13-
nodal-line-nexus only realizable in SSGs is qualitatively different
from 4-fold fermions with symmetry group Oh × Z

T
2 realized

in MSGs.
Aside from the 12-fold fermion (14), another 12-fold fermion can

also only appear in SSGs with different values of invariants. For
instance, at the R point, the SSG 229.2.2.36 has the invariants
(+ 1,− 1,− 1, + 1,− 1) for the little co-groupOh ×Z

T
2 , whichdiffer fromthe

invariants of (14) only by ηT and ηTC2a
. The corresponding 12-

dimensional irRep reads,

ρ2ðC2iÞ= τ0σ0e
�iLiπ , ρ2ðC2nÞ= iτ0σye

�iL�nπ ,

ρ2ðIÞ= τ0σz13× 3, ρ2ðTÞK = iτyσ013× 3K :
ð19Þ

ρ2 � ρ*
2 can be decomposed into linear irReps of Oh ×Z

T
2 :

ρ2 � ρ*
2 = � � � � 6T�

1u � � � � : ð20Þ

The 12-fold fermion also has linear dispersion μ=T�
1u with the

components ϕμ
1 = kx ,ϕ

μ
2 = ky, ϕ

μ
3 = kz . Since multiplicity Nρ2

ðT�
1uÞ=6,

there are 6 coupling parameters λðμÞ1 = v2x , λ
ðμÞ
2 = v2y, λ

ðμÞ
3 = v2z , λ

ðμÞ
4 = v02x ,

λðμÞ5 = v02y, λ
ðμÞ
6 = v02z . According to Eq. (13), the linear dispersion of the 12-

fold fermion takes the form

Ĥ2ðkÞ= ðv2xτxσy + v2yτyσy + v2zτzσyÞk � L
+ ðv02xτxσx + v

0
2yτyσx + v

0
2zτzσxÞk � L0,

ð21Þ

where L0i � jϵijk jfLj, Lkg. The linear dispersion of this 12-fold fermion
along high-symmetry lines is given in Fig. 5. Comparedwith Fig. 3b, the
two 12-fold fermions have different responses to linear dispersion
along the high-symmetry line [111], which result from
Nρ1

ðT�
1uÞ≠Nρ2

ðT�
1uÞ in Eqs. (15) and (20). These qualitative differences

distinguish the two 12-fold fermions (14) and (19) coming from two
different projective classes of Oh ×Z

T
2 with different sets of symmetry

invariants.
Actually, if the little co-group is GK =Oh ×Z

T
2 × SUð2Þ, instead of

Oh × Z
T
2 , a 12-dimensional irRep may also appear in type-II MSGs

without SOC. The 12-fold fermion can be realized at the R point of type
II MSGs 222.99, 223.105 (or H point of 230.146)41. In fact, there is a

2
E

2
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2
E

2
2

2
2 4

4

44

k//[100] k//[110] k//[111]

2 2
2
2
2

2

Fig. 5 | 12-fold fermion in spin-space group 229.2.2.3687. The schematic disper-
sion of the 12-fold fermion along three high-symmetry lines [100], [110], [111]. Along
[100], the 12-fold fermion splits into one 4-fold band colored in blue, two 2-fold
bands colored in red, and two2-foldbands colored in green. Along [110], the 12-fold

fermion splits into one 4-fold band colored in blue and two 4-fold bands colored in
red. Along [111], the 12-fold fermion splits into two 2-fold bands colored in red, two
2-fold bands colored in green, and two 2-fold bands colored in blue.
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6-dim irRep of Oh ×Z
T
2 in the projective class denoted by invariants

η
!= ð+ 1, + 1, + 1, + 1, � 1Þ

ρ3ðC2iÞ= τ0 expð�iLiπÞ,ρ3ðC2nÞ= τz expð�iL � nπÞ,
ρ3ðIÞ= τx13× 3,ρ3ðTÞK = τ013× 3K :

ð22Þ

With spin degrees of freedom, the symmetry group is Oh ×Z
T
2 × SUð2Þ,

the band degeneracies at high-symmetry points are 12-fold.
We compare the two 12-fold fermions coming from two different

projective classes (14) and (22). Following the general argument, ρ1 �
ρ*
1 and ρ3 � ρ*

3 are decomposed into linear irReps of Oh ×Z
T
2 :

ρ1 � ρ*
1 = � � � � 2T +

2g � � � � , ð23Þ

ρ3 � ρ*
3 = � � � � T +

2g � � � � : ð24Þ

In Eqs. (23), (24), Nρ1
ðT +

2g Þ≠Nρ3
ðT +

2g Þ, so the two quasiparticles
have different spectra under an external μ=T +

2g -field (+ means
even under time reversal), which can be a strain tensor field
(ϵyz, ϵxz, ϵxy) with the components ϕμ

1 = ϵyz ,ϕ
μ
2 = ϵxz ,ϕ

μ
3 = ϵxy. To be

more specific, according to Eq. (13), for projective class ρ1(14) the
coupling takes the form

Ĥ1 = v1 ϵyzτ0σ0fLy, Lzg+ ϵzxτ0σ0fLz , Lxg
�

+ ϵxyτ0σ0fLx , Lyg
�
+ v2 ϵyzτxσ0Lx

�
+ ϵzxτxσ0Ly + ϵxyτxσ0Lz

�
,

ð25Þ

for projective class ρ3 (22) we have

Ĥ3 = v3 ϵyzτ0fLy, Lzg+ ϵzxτ0fLz , Lxg+ ϵxyτ0fLx , Lyg
� �

: ð26Þ

We plot the spectrum of band splitting of Ĥ1 (colored in red) and
Ĥ3 (colored in blue) under (ϵyz, ϵxz, ϵxy) = (ϵ, ϵ, ϵ) for
v1 = v3 = 1, v2 =

1
3 and ϵ 2 ½0,

ffiffi
3

p
3 �. From Fig. 6, we see that the two 12-

fold fermions are qualitatively different under an external strain
tensor field.

Material candidates
It would be helpful for experimentalists if we could list a few candidate
materials where any one of the 218 SSG-only fermions may be dis-
covered. In fact, a comprehensive search is possible using (i) Supple-
mentary Tables III–XXVI of this work, (ii) the database MAGNDATA
where over 2000 experimentally discovered magnetic structures are
registered, and (iii) the enumeration of all SSGs in ref. 86. First, we sort
out all realistic magnetic structures having non-coplanar magnetic
structures, which amount to 206 in total. Next, for any one of them,we
ask if the hosting SSG is isomorphic to a type-IV MSG. Then, we ask if
the point-group part of the SSG is any one of the following: P ×ZT

2 with
P =C3h,4h,6h, D3,4,6,3d,3h,4h,6h, O, Oh. Finally, we compute the symmetry
invariants contributed by the spin operations. If any SSG contains the
invariants marked as RED in Supplementary Tables III–XIV, the corre-
spondingmaterial hosts an SSG-only fermion according to our theory.
A comprehensive search following the above protocol has been per-
formed, yielding onematerial: Ce3NIn. The SSG-only co-representation
in this material is discussed in Supplementary Note 5. Interestingly,
during the revision process of this work, this same material has been
proposed as an unconventional p-wave magnet95. The scarcity of
candidate materials is related to the fact that only a small fraction of
magneticmaterials have their magnetic structures detected. There are
only 2000 materials with known magnetic structures, in contrast to
the number of 200000 materials with known crystal structures.

Discussion
We use symmetry invariants to label projective classes of P ×ZT

2 and
find 218 new types of quasiparticles only realized in the electronic
bands of non-coplanar (S0 = {E}) SSGs whose magnetic unit cells are
only 2 times the size of the crystal unit cells. The non-coplanar SSGs are
isomorphic to type IV MSGs and the little co-groups at high-symmetry
points are of the form GK = P ×ZT

2 . For each projective class of P ×ZT
2 ,

the irRep ρ and the Clebsch-Gordon coefficients of the reducible Rep
ρ ⊗ ρ* are obtained by the eigenfunction method7,94.

Our procedure can be extended to study Rep theory of other
types of SSGs86,87, including the non-coplanar SSGs isomorphic to type
I or type III MSGs, and the SSGs with nontrivial spin-only groups S0,
namely the collinear and coplanar SSGs. In the following, we comment
on these two cases separately.

Fig. 6 | Spectra of two 12-fold fermions under a strain tensor field (ϵyz, ϵxz, ϵxy).
a 12-fold fermion with a symmetry group Oh ×Z

T
2 only realizable in SSGs, coming

from projective class ρ1 in Eq. (14). Under coupling (25), the 12-fold fermion splits
into three 4-fold bands colored in red. b symmetry group is Oh ×Z

T
2 × SUð2Þ, a

6-dimensional irRep (22) of Oh ×Z
T
2 splits into 4-fold and 2-fold bands under cou-

pling (26). Due to extra SU(2) spin symmetry, the 12-fold fermion splits into 4 × 2-
fold and 2 × 2-fold bands colored in blue.
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The type I MSGs are 230 SGs, and the little co-groups at high-
symmetry points are 32 crystallographic point groups. Since all the
projective classes of the 32-point groups have already been realized in
the 230 SGs, one cannot obtain any new symmetry invariants (new
quasiparticle types).

For the non-coplanar SSGs isomorphic to type III MSGs, the little
co-groups GK at high-symmetry point K can be 58 type III magnetic
point groups of the form H+T(P − H), where H is a subgroup of the
point group P containing half of the elements in P, the other half P − H
followed by time reversal T. There are in total 380 projective classes for
the 58 type III magnetic point groups. From Eqs. (8), (9), (10), and (11),
we calculate lattice-part invariants ηL and spin-part invariants ηS, then
obtain the full invariants η= ηLηS. Using the symmetry invariants, we
have confirmed that 260 classes are realizable in type IIIMSGs or at non-
time-reversal-invariant high-symmetry points of type II and IV MSGs.
There are 120 sets of invariants that cannot be realized in MSGs. In
Supplementary Table XXVII, we give definitions of symmetry invariants
of 58 type III magnetic point groups. If the symmetry invariants of a
group cannot be completely realized in MSGs, the values of symmetry
invariants are marked in BLUE if they are realizable via MSGs, and are
marked in RED if they are realizable by SSGs only. The BLACK sets of
invariants cannot be realized by either MSGs or SSGs. We find an addi-
tional 108 classes of new quasiparticles with type III magnetic point
group symmetries only realizable in the electronic bands of SSGs. If the
minimal dimension of irReps of the same class is FOUR or higher, we
provide the degree of degeneracy, the lowest-order dispersion, and the
direction of nodal lines. An example is a four-fold degenerate 7-nodal-
line-nexus fermion protected by Td ×Z

IT
2 (No.57 type III magnetic point

group in Supplementary Table XXVII), only realizable in SSGs, with three
nodal lines along kx, ky, kz directions and four along
kx+ ky+ kz, kx+ ky− kz, kx− ky+ kz, and kx− ky− kz directions.

For coplanar SSGs, the spin-only group is S0 =Z
C2zT
2 = fE,C2zTg,

and for collinear SSGs, the spin-only group is S0 = SOð2Þ⋊ZC2xT
2 with

ZC2xT
2 = fE,C2xTg. The nontrivial S0 will generally give rise to extra

symmetry invariants andmay also affect the dimensions of irReps (see
Supplementary Note 6.B for more discussions). Due to S0 and the fact
that the magnetic unit cell of a general SSG is enlarged compared to
the original crystal unit cell, the little co-group of SSG at a high-
symmetry point K is generally not isomorphic to P ×ZT

2 or type III
magnetic point groups. Our approach also applies to these SSGs.

Methods
Projective Reps and 2nd group cohomology
For aprojective Repof afinite groupG, anelement g∈G is represented
by ρ(g) if g is a unitary element and is represented by ρ(g)K if g is anti-
unitary, whereK is the complex-conjugate operator satisfying KU =U*K
with U an arbitrary matrix and U* its complex conjugation.

The multiplication of (projective) Reps of g1and g2 depends on if
they are unitary or anti-unitary. If we define a unitarity indicator ζg

ζ g =
0, if g is unitary,

1, if g is anti-unitary ,

�
ð27Þ

and the corresponding operator Kζ g

Kζ g =
identity operator , if ζ g =0,

K , if ζ g = 1,

(
ð28Þ

then we have the multiplication rule of a projective Rep,

ρðg1ÞKζ g1 ρðg2ÞKζ g2 = ρðg1g2Þeiθ2ðg1 , g2ÞKζ g1g2 , ð29Þ

where the U(1) phase factor ω2ðg1, g2Þ � eiθ2ðg1 , g2Þ is a function of two
group variables and is called the factor system. If ω2(g1, g2) = 1 for any
g1, g2 ∈ G, then the above projective Rep becomes a linear Rep.

Substituting the above results into the associativity relation of the
sequence of operations g1 × g2 × g3, we can obtain

ρðg1ÞKζ g1 ρðg2ÞKζ g2 ρðg3ÞKζ g3

=ρðg1g2g3Þω2ðg1, g2Þω2ðg1g2, g3ÞKζ g1g2g3

=ρðg1g2g3Þω2ðg1, g2g3Þωð�1Þζg1
2 ðg2, g3ÞKζ g1g2g3 ,

ð30Þ

namely,

ω2ðg1, g2Þω2ðg1g2, g3Þ=ωð�1Þζg1
2 ðg2, g3Þω2ðg1, g2g3Þ: ð31Þ

Eq. (31) is the general relation that the factor systems of any finite
group (nomatter unitaryor anti-unitary) should satisfy. The solutionof
the above equations is called 2-cocyles. If we introduce a gauge
transformation ρ0ðgÞKζ g =ρðgÞΩ1ðgÞKζ g , where the phase factor
Ω1ðgÞ= eiθ1ðgÞ depends on a single group variable, then the factor
system changes into

ω0
2ðg1, g2Þ=ω2ðg1, g2ÞΩ2ðg1, g2Þ, ð32Þ

with

Ω2ðg1, g2Þ=
Ω1ðg1ÞΩð�1Þζg1

1 ðg2Þ
Ω1ðg1g2Þ

: ð33Þ

The quantity Ω2(g1, g2) defined above are called 2-coboundaries. The
equivalent relations (32) and (33) define the equivalent classes of the
solutions of (31). The number of equivalent classes for a finite group is
usually finite.

Usually, the so-called standard gauge choice is adopted, where
ω2(E, g) =ω2(g, E) = 1 for any g∈G. This is equivalent to requiring that E
is always represented as the identity matrix.

Two 2-cocycles ω0
2ðg1, g2Þ and ω2(g1, g2) are equivalent if they

differ by a 2-coboundary, see Eq. (32). The equivalent classes of the
2-cocycles ω2(g1, g2) form the second group cohomology H2ðG, Uð1ÞÞ.

Writing ω2ðg1, g2Þ= eiθ2ðg1 , g2Þ, where θ2ðg1, g2Þ 2 0, 2π½ Þ, then the
cocycle Eqs. (31) can be written in terms of linear equations,

ð�1Þζ g1 θ2ðg2, g3Þ � θ2ðg1g2, g3Þ+ θ2ðg1, g2g3Þ � θ2ðg1, g2Þ=0: ð34Þ

Similarly, if we write Ω1ðg1Þ= eiθ1ðg1Þ and Ω2ðg1, g2Þ= eiΘ2ðg1 , g2Þ, then the
2-coboundary (33) can be written as

Θ2ðg1, g2Þ= ð�1Þζ g1 θ1ðg2Þ � θ1ðg1g2Þ+ θ1ðg1Þ: ð35Þ

The equal sign in Eqs. (34) and (35) means equal mod 2π. From these
linear equations, we can obtain the solution space of the cocycle
equations, as well as the classes that the solutions belong to. The set of
classes forms a finite Abelian group, which labels the classification of
the projective Reps (the “projective classes” of G).

Symmetry Invariants
The second group-cohomology group is generated by a set of invar-
iants, dubbed projective symmetry invariants, or symmetry invariants
for short. The invariants are special combinations of the cocycles
variables ω2(g1, g2). For any cocycle solutions, the invariants are, by
definition, invariant under the gauge transformation (32) and (33), and
their values must be equal to roots of 1. Therefore, the values of the
invariants are fixed for a given class of factor systemsω2(g1, g2). On the
other hand, the values of the complete set of symmetry invariants
uniquely determine the projective class to which a factor system (and
the corresponding projective Reps) belongs.

For crystallographic point groups, all the invariants take Z2

values, namely ± 1. Once the values for the complete set of symmetry
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invariants are given, the factor systems in the corresponding projec-
tive class can be easily obtained (up to gauge transformations). In the
following we give three examples.

(I) The unitary groupD2 = {E, C2x} × {E, C2y}. For the unitary Abelian
group D2 = {E, C2x} × {E, C2y} = {E, C2x, C2y, C2z}, the classification of
2-cocycles is

H2ðD2, Uð1ÞÞ=Z2, ð36Þ

where the 2-cocycle equations can be simplified into ðω2ðC2x ,C2yÞ
ω2ðC2y ,C2x ÞÞ

2
= 1

plus some coboundary relations. Therefore, there is only one
independent symmetry invariant, namely,

ηC2x ,C2y
=
ω2ðC2x ,C2yÞ
ω2ðC2y,C2xÞ

= ± 1: ð37Þ

The projective class with invariant ηC2x ,C2y
= � 1 is nontrivial,

which indicates that the projective Repmatrices ofC2x andC2y are anti-
commuting, ρ(C2x)ρ(C2y) = − ρ(C2y)ρ(C2x) although C2x and C2y are
commuting as group elements of D2. As an example, the factor system
in this class can be chosen as: ω2(C2y, C2x) = ω2(C2y, C2z) =
ω2(C2z, C2x) =ω2(C2z, C2z) = − 1, and all the other components are equal
to 1. The projective irReps belonging to this class are 2-dimensional.

On the other hand, the projective class with invariant ηC2x ,C2y
= 1 is

trivial. A typical factor system in this class is the one with all compo-
nents equal to 1. In the trivial class, all the irReps, including the linear
Reps as a special case, are 1-dimensional.

It should be mentioned that the choices of symmetry invariants
may not be unique. For the D2 group, since the relation
ηC2x ,C2y

=ηC2x ,C2z
=ηC2y ,C2z

is always valid, any one of
ηC2x ,C2y

,ηC2x ,C2z
,ηC2y ,C2z

can be chosen as the symmetry invariant.
(II) The anti-unitary group ZT

2 = fE,Tg. The simplest anti-unitary
group is the time-reversal group ZT

2 = fE,Tg, the classification of its
2-cocycles is

H2ðZT
2 , Uð1ÞÞ=Z2, ð38Þ

where the 2-cocycle equations can be simplified into ω2ðT ,TÞ
� �2 = 1

under the standard gauge. Therefore, the symmetry invariant is given
by

ηT =ω2ðT ,TÞ= ± 1: ð39Þ

Here projective class with ηT = − 1 stands for the Kramers class which
guarantees the double-degeneracy, while projective class with
ηT = 1 stands for the trivial class where no degeneracy is guaranteed.

(III) The anti-unitary group D2 ×Z
T
2 . Now we consider the group

D2 ×Z
T
2 , the classification of 2-cocycles is

H2ðD2 ×Z
T
2 , Uð1ÞÞ=Z4

2 : ð40Þ

Under the standard gauge, the 2-cocycle equations can be simplified
into

ðω2ðC2x ,C2yÞ
ω2ðC2y ,C2x ÞÞ

2
= 1, ðω2ðT ,TÞÞ2 = 1, ðω2ðTC2x ,TC2xÞÞ2 = 1, ðω2ðTC2y,TC2yÞÞ2 = 1

plus some coboundary relations. Therefore, the resultant symmetry
invariants are

ηC2x ,C2y
=
ω2ðC2x ,C2yÞ
ω2ðC2y,C2xÞ

= ± 1,

ηT =ω2ðT ,TÞ= ± 1,

ηTC2x
=ω2ðTC2x ,TC2xÞ= ± 1,

ηTC2y
=ω2ðTC2y,TC2yÞ= ± 1:

ð41Þ

There are totally 16 projective classes, 15 of them are nontrivial and the
rest one, the trivial class with all the invariants equal to 1, is gauge
equivalent to linear Reps.

Data availability
All results shown in this work are mathematical in nature, and no
external data has been used to generate them.

Code availability
The code used to calculate is available from the authors upon rea-
sonable request.
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