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Artificial intelligence can recognize
metallic glasses in vast compositional
space with sparse data

Check for updates

Weijie Xie1,2,4, Yitao Sun1,4, Chao Wang1, Mingxing Li1, Fucheng Li1 & Yanhui Liu1,3

Glass formation is frequently observed in metallic alloys. Machine learning has been applied to
discover new metallic glasses. However, the incomplete understanding of glass formation hinders
descriptor selection and material property representation. Here, we use X-ray diffraction spectra, the
essential tool for identifying amorphous structure, as an intermediate link. By representing spectra as
images, we train generative models to produce high-fidelity spectra for all alloys in multicomponent
alloy systems. Training with spectra from a tiny fraction of the total alloys is sufficient for accurate
spectra generation, enabling the identification of compositional regionswith a high probability of glass
formation. The shift from numerical to image-based representation unlocks the potential of machine
learning in the design of glass-forming alloys. Furthermore, our approach is applicable to awide range
of materials and spectroscopic techniques. We anticipate that this strategy will accelerate materials
discovery across previously unexplored compositional and processing spaces.

Metallic glasses (MG) are alloys characterized by the absence of long-range
topological order in microscopic structure1. Their unique structural and
functional properties, such as high strength2, excellent wear resistance3, and
plastic-like processability4,5, make them attractive candidates for technolo-
gical usage6. The ability of an alloy to form a glass is usually quantified by the
lowest cooling rate required for vitrification. Since the discovery of MGs7 in
1960, extensive efforts have been made to develop alloys capable of forming
glass at the lowest possible cooling rate8. Becauseonly a fewalloys exhibit both
strong glass-forming ability and desirable properties, it has been suggested
that amuchbroader compositional space shouldbe explored9.To circumvent
the complicated measurement of cooling rate, numerous indirect criteria
have been proposed to predict glass-forming alloys10,11. However, the com-
plexity of glass formation and the diverse selection of constituent elements in
MG development make accurate prediction challenging. Even though glass
formation has been suggested to be associated with atomic packing12,13,
quantitative correlation remains poorly understood14. As a consequence,
design anddevelopment of newglass-forming alloys are primarily dependent
on empirical rules followed by cumbersome experimental verifications15.
Combinatorialmethodshavebeendeployed to accelerate the search for glass-
forming alloys15–19. However, the compositional space defined by multiple
elements in MGs is vast9. Current combinatorial methods can only handle a
couple of elements at a time18, making the methods insufficient to steer
through the vast compositional space.

With sufficient training data and the ability to identify patterns in large
datasets, machine learning (ML) approaches have been used to uncover
correlations between the characteristics of MGs and their properties. These
include glass formation18,20–23, characteristic temperature24, atomic
structures25,26, elastic moduli27, soft magnetic properties28,29, and prediction
of alloy compositions30. These correlations have been used to develop pre-
dictive MLmodels. However, few alloys with stronger glass-forming ability
than previously reported have been identified using these models31. This
limitation arises because the descriptors in these ML models often rely on
empirical criteria designed for the selection of alloy systems rather than
specific alloys32. In addition, weight-averaged descriptor values based on
elemental composition fail to capture the complex many-body interactions
involved in glass formation31,32.

In either conventional trial-and-error approaches or combinatorial
methods, X-ray diffraction (XRD) is the essential tool for confirming glass
formation of an alloy15–17,19. The diffraction spectrum of an MG is char-
acterized by broad halo peaks, which provide valuable information about
structural features and atomic packing. For example, the power-law scaling
of the first diffraction peak position (q1) with atomic volume reveals the
fractal nature of atomic packing inMGs33. The width of the first diffraction
peak (Δq) has been correlated with glass-forming ability, where a broader
peak suggests more dispersed structural units and stronger glass-forming
ability17. Thus, XRD can be considered as the bridge between microscopic
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structure and glass formation. However, characterizing every alloy using
XRD is impractical, especially given the vast compositional space definedby
the diverse selection of constituent elements inMG development1,9. Ideally,
the XRD spectrum of any alloy within a system can be accurately predicted,
allowing the identification of glass-forming alloys based on the predicted
spectra. Unlike material properties, which are typically represented as
numerical values and can be readily modeled using ML20,21,27, XRD spectra
encode complex, multidimensional information that cannot be treated as
simple numerical data. Although numerical features such as peak positions
and peak widths in XRD spectra are critical characteristics, they do not
encompass the entirety of relevant information. XRD spectra also embody
additional features, such as peak symmetry. These pose a significant chal-
lenge in applying ML strategies developed for MG properties to the pre-
diction of XRD spectra.

A possible solution to this challenge is to treat XRD spectra as images.
An image is fundamentally composed of a matrix of discrete pixel values,
and computational algorithms process these matrices to achieve image
generation. In the context of XRD spectra, the angular positions can be
interpreted as pixel coordinates, while the corresponding intensities can be
considered as the pixel values. This would enable the use of ML models
designed for image generation to predict XRD spectra. For example, the
continuous conditional generative adversarial network (ccGAN) has
demonstrated success in image generation34. By representing spectra as
images, ccGAN may provide a promising framework for modeling and
generating XRD spectra for all alloys within a system. This would sub-
stantially enhance the efficiency of identifying glass formation across pre-
viously unexplored compositional space.

In the present work, we have accomplished this using a generative
deep-learningmodelbasedon ccGAN.The trainedmodel is able to generate
high-fidelity XRD spectra for uncharacterized alloys. The ability of
the ccGAN to generate accurate spectra is validated with datasets from
multiple ternary and quaternary alloy systems, as well as data collected from
synchrotron facilities and molecular dynamics (MD) simulations. We
evaluated the model’s accuracy by training it with an increasing number of
experimentally measured XRD spectra. It was found that the number of
spectra required to effectively train the model is small. To capture the
variation inXRDspectrawith composition, less than5%of the experimental
spectra are needed for training. This dramatically reduces the number of
alloys to be characterized, enabling the exploration of glass formation across
vast compositional space.

Results
Strategy and modeling
To generate high-fidelity XRD spectra, we first need experimental XRD
spectra for training. The workflow is schematically illustrated in Fig. 1. The
XRD spectra were obtained from combinatorial alloy libraries synthesized
using magnetron co-sputtering16. The highly effective cooling rate during
sputtering deposition35 results in vitrification in a wide composition
range15,17,18, allowing us to systematically analyze the tendency of glass for-
mation. The composition spread of the alloy libraries was analyzed by using
energy-dispersive X-ray spectroscopy (EDX). The XRD spectra for training
were collected using a laboratory X-ray diffractometer, following previously
reported methods16,17, with 2θ values range from 20° to 65°. Since the
combinatorial alloy libraries were fabricated and characterized under con-
sistent conditions, we expect generative ML models of high predictability
and generalization canbe trainedwith the collectedXRDspectra. To cover a
wide glass-forming compositional range,webeginwithZr-Cu-Al as amodel
alloy system, in which many bulk metallic glasses with a critical casting
diameter larger than 1mm were reported36,37. Within the Zr-Cu-Al alloy
system, 639 sets of EDX and XRD data were collected. Prior to model
training, a preprocessing protocol was implemented: (1) subtraction of the
Si substrate signal, (2) restriction of 2θ or q values to the same range, (3)
intensity normalization via division by maximum intensity followed by
scaling to 100 of arbitrary units, and (4) standardization of data length to
3743 points through linear interpolation.

The generation of XRD spectra was accomplished by first training
ccGAN, which includes a generator and a discriminator (Fig. 1b). Unlike a
traditional generative adversarial network, the generator of ccGAN incor-
poratesnot only randomnoise as input but also the chemical composition as
a continuous conditional input. In addition to direct assessment of the
generated XRD spectra, the discriminator facilitates a robust correspon-
dence between compositions and XRD spectra. The full width at half
maximum (Δq) and the position (q1) of the first diffraction peak from both
generated and real XRD spectra are further compared to evaluate the ability
of the generative model to capture the spectrum characteristics.

Generation of laboratory XRD spectra
TheXRDspectraldataset for theZr-Cu-Alalloysystemwas randomly split into
80% training and 20% testing sets. To evaluate the performance of the trained
ccGAN model, we use mean squared error (MSE) to quantify the difference
between experimental XRD spectra and generated ones for the alloys in the

Fig. 1 | Workflow for the generation of high-
fidelity XRD spectra. a The XRD spectra for alloys
sparsely distributed in amulticomponent system are
collected and used as training and testing sets for the
model of continuous conditional generative adver-
sarial networks (ccGAN), which is designed for
image generation. The trained model produces
high-fidelity XRD spectra for all alloys within the
system. b The ccGAN consists of a generator and a
discriminator. Noise and alloy composition are the
inputs of the generator, which generates XRD
spectra. The discriminator compares the generated
spectra and experimental spectra until the generated
spectra cannot be distinguished from the
experimental ones.
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testing set. The average MSE over all alloys in the testing set was calculated as
the indicator of model performance. Figure 2a illustrates the learning curve
of the ccGAN model. It can be seen that MSE dramatically decreases from
more than 500 to less than 50 if more XRD spectra are used for training.
However, the decrease in MSE slows down when the number of training
spectra reaches ~20. MSE as small as 20 is obtained and remains essentially
unchanged even if the training dataset increases to more than 100 spectra. In
addition to examining the average MSE of the testing set, we also analyze the
MSE distribution of the model trained with 20 XRD spectra (Fig. 2b). It
turns out that most MSE values for the testing set are below 40. This indicates
that we achieved an accurate ccGAN model capable of generating synthetic
XRD spectra that are nearly identical to the experimental ones.

It iswell known that the compositional spacedefinedby the constituent
elements expands exponentially as the number of elements increases9. To
explore the vast, high-dimensional compositional space, many efforts have
been made to predict material properties using low-dimensional informa-
tion, such as the weighted averages of elemental properties20,21,30 and binary
phase diagrams23. However, these predictions are often inaccurate32. The
success of the ccGANmodel in ternary alloys encourages us to apply it to the
prediction of XRD spectra for quaternary alloys. As a case study, we take the
Zr-Cu-Ni-Al alloy system as an example.We synthesized and characterized
alloy libraries of the Zr-Cu-Al, Zr-Cu-Ni, Zr-Ni-Al, and Cu-Ni-Al systems,
and collected experimental XRD spectra for 2716 ternary alloys. Addi-
tionally, we collected XRD spectra for 1704 quaternary Zr-Cu-Ni-Al alloys.
The ccGANmodel was trained following three protocols: (1) training with
spectra only from ternary alloys (P1), (2) training with spectra only from
quaternary alloys (P2), and (3) training with spectra from both ternary and
quaternary alloys (P3). For each protocol, various numbers of spectra were
used formodel training. The learning curves are shown in Fig. 2c. It is noted
that the model trained with P1 cannot achieve satisfactory accuracy. Even
whenmore than 2500 spectra (out of 2716) from ternary alloys are used for
training, the average MSE remains as high as ~80 on the testing set (see left
panel of Fig. 2c). In contrast, the models trained with P2 and P3 exhibit
excellent performance, with an average MSE as low as 30. The MSE con-
verges when ~100 XRD spectra are used for training. Further increasing the
number of training spectra does not improve the accuracy of the model.
Figure 2d shows the distribution of MSE for the testing set, for the model

trained with spectra from 100 quaternary Zr-Cu-Ni-Al alloys. It is revealed
that only ~10% of the testing set has anMSE greater than 40, indicating the
high accuracy of the model. In addition, these results suggest that effective
model training requires inclusion of XRD spectra from quaternary alloys,
because themodel trainedwithP1 fails to accurately predictXRDspectra for
quaternary alloys. The results imply that the model can interpolate within
the range of the training data but struggles to extrapolate beyond it. This
limitation likely arises from the complex interactions among elements,
which make the properties of quaternary alloys different from those of
ternary alloys. Furthermore, it is striking that only 5.9% (100 out of 1704) of
experimental XRD spectra are needed to effectively train an accuratemodel.

To visualize the effectiveness of the generative model, we present
experimental and model-generated XRD spectra for Zr-Cu-Ni-Al alloys in
Fig. 3. The figure displays two examples withMSE below 20 (Fig. 3a, b) and
two examples withMSE above 40 (Fig. 3c, d). TheMSE increases from 3.57
to 196.80 in Fig. 3a, d. With the increase in MSE, the generated spectra
gradually deviate from the experimental ones. This trend suggests that the
MSE is an effective indicator of the model’s ability to generate high-fidelity
XRD spectra. It is remarkable that even when the MSE value is as high as
196.80 (Fig. 3d), the generated spectrum still captures the general trend of
the experimental spectrum. Before model training, the only processing of
XRD spectra is intensity normalization and the subtraction of signals from
the Si substrate. Therefore, the processed spectra contain not only structural
information, but also background signals and noise. However, the ccGAN
model primarily captures the structural information, rather than the
background signals and noise.

Performance on synchrotron XRD and MD simulations
Compared to laboratory X-ray diffractometers, synchrotron X-rays can
provide significantly higher signal-to-noise ratios18. To validate the gen-
erality of the proposed spectrum generation method, we use previously
reported synchrotron data for model training, which include 1323 spectra
for Co-Ti-Zr, 2582 spectra for Co-V-Zr, and 1306 spectra for Fe-Ti-Nb
ternary alloy systems18. These spectra are provided in Q-space, spanning a
range from 1 to 5 Å−1. Within each alloy system, 30% of the spectra are
randomly selected as the testing set. The results show that, for all three
ternary systems, low MSE values can be achieved with only a few tens of

Fig. 2 | Evaluation of the performance of the
ccGAN model in generating XRD spectra.
aVariation ofMSE on the Zr-Cu-Al testing set as the
training set size increases. b Distribution of MSE
values on the testing set using themodel trainedwith
XRD spectra for 20 randomly selected alloys in the
Zr-Cu-Al system. c Variation of MSE on Zr-Cu-Ni-
Al testing set when the models are trained with
spectra only from ternary alloys (red line), only from
quaternary alloys (green line), and from both tern-
ary and quaternary alloys (blue line). d Distribution
of MSE values on the testing set using the model
trained with spectra for 100 randomly selected
quaternary Zr-Cu-Ni-Al alloys.
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spectra in the training set. Specifically, for the Co-Ti-Zr, Co-V-Zr, and Fe-
Ti-Nb systems, the learning curve converges when the training set includes
50 (3.8% of the total spectra), 80 (3.1% of the total spectra), and 60 (4.6% of
the total spectra) spectra, respectively. The corresponding MSE values are
45, 13, and 60. Figure 4a–c presents typical examples of the generated
spectra for these three alloy systems. Notably, although none of the XRD
spectra for the Fe-Ti-Nb system indicate glass formation, the trainedmodel
can still generate high-fidelity spectra with sharp peaks indicating the pre-
sence of crystalline phases. This suggests that the proposed spectrum gen-
erationmethod isnot limited to glass-forming alloy systemsbut is applicable
to crystalline alloys as well. To generate accurate spectra, less than 5% of
experimental spectra are required to train the model.

The successful generation of the XRD spectra for both crystalline and
glass-forming alloy system implies that the ccGANmodel is also applicable
to other types of spectra. To verify this, we take radial distribution functions
g(r) (RDFs) as an example. We obtain RDFs withMD simulation and train
the generative model. For this purpose, we choose the ternary Zr-Cu-Al
alloy system because the potential for MD simulation is readily available.
Each alloy is cooled fromahigh temperature of 2000 K to room temperature
(300 K) at cooling rates of ~1014 K/s. The high cooling rates in the simula-
tions enable glass formation of all the simulated alloys. RDFs of the glassy
alloys are calculated at room temperature. We simulated 1176 Zr-Cu-Al
alloys at a compositional interval of 2 at% and obtained their RDFs, among
which 30% (352 RDFs) are randomly selected as the testing set. From the
remaining 70% of the data (824 RDFs), we randomly chose different
numbers of RDFs as the training set, thereby enabling the construction of
the learning curve. As the training dataset increases to include 40 RDFs

(3.4% of the total), an extremely small MSE of 0.0006 is achieved on the
testing set (Fig. 4d), and further enlarging the volumeof the training set does
not improve the accuracy. This indicates that a highly accurate generative
ccGAN model can be obtained with less than 4% of the total number
of RDFs.

Evaluation on structural characteristics
The positions of the first diffraction peaks q1 and their full width at half
maximum (Δq) are critical parameters that provide essential information
about the structural characteristics of an MG17,33. We next evaluate the
ability of the ccGAN model to reproduce q1 and Δq. To generate XRD
spectra, we use the model trained with data from 100 alloys (see Fig. 2c) in
the quaternary Zr-Cu-Ni-Al system. This model is subsequently employed
to generate XRD spectra for all 1704 compositions in the system. Notably,
both the experimental and the generated XRD spectra are originally
represented in 2θ-space. However, since peak positions and peakwidths are
more physically meaningful when expressed in q-space, all spectra are
converted accordingly. We then apply the analysis method reported in
ref. 17 to compute q1 and Δq from both experimental and generated XRD
spectra. Figure 5 presents the comparison of the experimental values of Δq
and q1 with those derived from generated spectra. Linear fittings with y = ax
show slopes nearly equal to 1. Specifically, a = 0.9907 for Δq and a = 1.0026
for q1. The coefficients of determination (R2) for the fittings are 0.9976 and
0.9999, respectively. The excellent fittings confirm the strong linear corre-
lation and the high fidelity of the generated spectra. We reiterate that the
training data comprise only 5.9% (100 out of 1704) of spectra from qua-
ternary Zr-Cu-Ni-Al alloys.

Prediction of glass formation within an alloy system
Given that the model can generate XRD spectra and predictΔq and q1 with
high accuracy, we use it to produce spectral data across the entire com-
positional space of an alloy system and reveal glass formation tendencies
via Δq, which is associated with the ability of an alloy to form glass17. We
first demonstrate this for the ternary Zr-Cu-Al system. To train the gen-
erative model, we use experimental XRD spectra from 20 randomly
selected alloys. As shown in Fig. 6a, these alloys are sparsely distributed in
the compositional space. The large compositional interval between them
far exceeds the compositional sensitivity of glass formation9, preventing any
recognition of glass formation tendency from Δq. However, the model
trained with spectral data from these 20 alloys enables the generation of
XRD spectra at a compositional interval as small as 1 at. % across the
system. Figure 6b presents the variation of Δq across the Zr-Cu-Al system
using the generated XRD spectra. Since a larger Δq suggests a higher
probability for an alloy to form a glass17, the distribution of Δq shown in
Fig. 6b implies that glass formation is most probable in the compositional
range of 20–60 at% for Zr, 20–70 at% for Cu, and 0–60 at% for Al. The
alloys that exhibit the largestΔq are in the range of 30–60 at% for Zr, 45–65
at% for Cu, and 0–20 at% for Al, well consistent with the range in which
bulk MGs were developed38. Figure 6c shows the variation of Δq derived
from experimental XRD spectra of 639 alloys. Surprisingly, the Δq dis-
tribution obtained from the generated XRD spectra is nearly identical to
that from the experimental spectra. Although the 20 alloys are sparsely
distributed (Fig. 6a), the trained model with their XRD spectra successfully
captures detailed glass formation trends across the entire Zr-Cu-Al system
(Fig. 6b). We further extend this approach to the quaternary Zr-Cu-Ni-Al
alloy system. The model is trained using data from 100 randomly selected
quaternary alloys. As in the ternary case, the 100 alloys are far from suf-
ficient to provide detailed insights into glass formation within the Zr-Cu-
Ni-Al quaternary system (Fig. 6d). Figure 6e presents the variation of Δq
from generated XRD spectra. It can be seen that the revealed tendency is
even more comprehensive than that obtained using experimental
XRD spectra from 1704 quaternary alloys (Fig. 6f). Moreover, previous
attempts39 to develop bulk glass-forming quaternary alloys were carried out
right in the composition range showing larger Δq, further validating that
our approach is effective and efficient.
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Assuming a compositional interval of 1 at. %, one can estimate that
there are 4.85 × 103 ternary alloys, 1.56 × 105 quaternary alloys, and
3.76 × 106 quinary alloys per system. The sparse data required to train the
accurate generative ccGANmodel suggests that far fewer characterizations
are needed to reveal glass formation in amulticomponent alloy system than
previously assumed. For example, characterizing only a few tens of alloys
(~2%of the total) is sufficient for a ternary alloy system,while a fewhundred
alloys (<1% of the total) are enough for a quaternary system. These indicate
that only a tiny fraction of all possible alloys inmulticomponent systems are
required to be characterized, which falls within the capabilities of current
combinatorial methods15–18. It is important to emphasize that the quality of
generated results depends on the distribution andboundaries of the training
data. A uniformdistribution of training data across the compositional space
is crucial for accurately generating the spectra. If the training data is con-
centrated in a small compositional range, themodel’s ability to generalize to
new compositional spaces will be compromised.

Discussion
Understanding the atomic structure and establishing the structure-property
relationship for MGs has long been pursued. XRD has been and will

continue to be the essential tool to confirm glass formation for an alloy.
However, laboratory XRD equipment often suffers from inefficient data
acquisition. Although synchrotron facilities offer higher efficiency in
obtainingXRDspectra, their accessibility remains limited formany research
groups. Toovercome this limitation,MDsimulationshave emerged as a tool
for probing the atomic packing ofMGs, but face constraints in constructing
atomic configurations, particularly for alloys of complex chemical
stoichiometry.

Unlike previous ML approaches that take material properties as
numerical values, we treat the spectra as images. This conceptual shift
enables us touseMLmodels designed for image generation togenerateXRD
spectra nearly identical to experimental spectra. The approach we intro-
duced substantially facilitates the generation of synthetic spectra for alloys
across vast compositional spaces.Aswe have shown, themodel cannot only
identify the variation of peak position andwidthwith compositions but also
can generate the XRD spectra for crystalline alloys. This is particularly
valuable for materials design, as it allows for efficiently determining, in
complex alloy systems, the regions where composition-induced phase
transitions take place. Our approach is also helpful to gain insights into
processing-relatedmicrostructure evolution. For example, to reveal how the

Fig. 5 | Comparison of Δq and q1 extracted from
generated and experimental XRD spectra for 1704
Zr-Cu-Ni-Al alloys. a Comparison of Δq.
b Comparison of q1. The solid lines in the plots are
linear fittings to the data with y = ax. The slope is
0.9907 for Δq and 1.0026 for q1. The coefficient of
determination (R2) is 0.9976 for Δq and 0.9999
for q1.
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microstructures depend on processing, one only needs to carry out XRD
characterizations on materials processed under some conditions, and the
rest can be generated by anMLmodel. Thiswould substantially improve the
efficiency and reduce the cost. For simulation of MG structures, our
approach simplifies structural modeling because simulations are only nee-
ded for alloys of simple stoichiometry, and the structural information for
alloys of complex stoichiometry can be generated by the ML model. Here,
the simple stoichiometry refers to compositions with elemental contents
that can be expressed as integers, such as Zr50Cu30Ni10Al10, while the
complex stoichiometry refers to chemical compositions with elemental
concentrations with decimal precision, such as Zr63.5Cu10.7Ni15.1Al10.7.
Eliminating the need for complex structural modeling and large-scale
atomic system calculations, remarkable computational efficiency with high
precision can be achieved with our approach. Furthermore, computational
demands can be dramatically reduced because simulations and calculations
for an alloy system can be accomplished with a minimal number of
configurations.

In summary, by taking a strategic detour that bypasses the complex
selection of descriptors, inaccurate material property representation, and
insufficient material datasets, we proposed an accurate approach for the
identification of glass-forming alloys. We use XRD spectra as an inter-
mediate link between alloy composition and glass formation. Instead of
taking the spectra as numerical material properties, we represent them as
images, allowing the application of generative machine learning models
designed for image generation to the prediction of metallic glasses. Glass
formation indicators extracted from the generated XRD spectra capture the
details of glass formation tendency across multicomponent alloy systems.
The discovery is surprising because it would ultimately allow the develop-
ment of metallic glasses through data science approaches. The strategy we
introduced is not limited to MGs and XRD but is applicable to various
materials and spectroscopic techniques. The broad applicability, high effi-
ciency, and accuracy of the proposed approach would accelerate compre-
hensive exploration of complex material systems within a vast
compositional space with diverse characterization methods.

Methods
Alloy library fabrication and characterization
Combinatorial thin-film libraries were fabricated via magnetron co-
sputtering deposition (SKY Technology Development Co., Ltd., Chinese
Academy of Sciences, TRP450) onto 100-mm-diameter single-side-
polished Si wafers, using pure metal sputtering targets with a purity of over
99.95%. For each alloy system, 3–4 experiments with adjusted sputtering
power were conducted to cover the majority of the compositional space.
Compositions and structures of the alloys were automatically characterized
by EDXattached to a Phenom scanning electronmicroscope and aMalvern
Panalytical Empyrean X-ray diffractometer with a Cu Kα radiation source,
respectively. XRD spectra for each alloy were processed using programs
developed in ref. 17 to calculate the position and full width at halfmaximum
of the first diffraction peak for amorphous phases.

Continuous conditional generative adversarial network (ccGAN)
The architecture of the generator comprises an initial linear layer followed
by a transposed convolutional network. The linear layer serves to amalga-
mate the noise with the input composition. The transposed convolutional
network is structured with five transposed convolutional layers, character-
ized byoutput channels of [384, 384, 256, 96, 1], kernel sizes of [5, 5, 5, 7, 15],
and strides of [3, 3, 3, 3, 5]. Batch normalization and the ReLU activation
function were employed in the first four transposed convolutional layers.
The output from the final transposed convolutional layer undergoes a sig-
moid activation function, which constrains the resultant values within the
range of 0–1, subsequently scaled by a factor of 100. The discriminator was
constructedwith a convolutional network succeeded by two fully connected
layers. This convolutional network consists of five convolutional layers,
exhibitingoutput channels of [96, 256, 384, 384, 256], kernel sizes of [11, 5, 3,
3, 3], and strides of [4, 2, 1, 1, 1]. The outputs from the convolutional layers
are directed into two fully connected layers. The first fully connected layer
features a singular output neuron followed by a sigmoid activation function,
while the second fully connected layer is designed to have a number of
neurons that corresponds to the size of the composition.
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Fig. 6 | Composition-dependent distribution of Δq extracted from experimental
and generated XRD spectra. a Δq for 20 randomly selected alloys from the Zr-Cu-
Al alloy system for model training. b Δq extracted from XRD spectra generated by
the model trained with spectra from the 20 alloys shown in (a). c Δq extracted from
XRD spectra by high-throughput experiments covering 639 Zr-Cu-Al alloys. d Δq

for 100 randomly selected alloys from the Zr-Cu-Ni-Al alloy system. e Δq extracted
from XRD spectra generated by the model trained with spectra from the 100 alloys
shown in (d). The black dots in the plot mark the previously reported bulk glass-
forming alloys in the system. f Δq extracted from XRD spectra by high-throughput
experiments covering 1704 Zr-Cu-Ni-Al alloys.
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MD simulations
MD simulations with a system size of 40,000 atoms were carried out using
LAMMPS software40. An embedded atom model potential developed by
Shenget al.was adopted todescribe the interatomic interactions41. Toensure
the comparability of simulation outcomes, an identical MD simulation
protocol was employed for each composition. Initially, the alloy systems
were relaxed at 2000 K for 20 ps under the NVT ensemble. Then, the
ensemble was switched to theNPT during quenching from 2000 K to 300 K
at a cooling rate of ~1014 K/s, resulting in the formation of amorphous
structures. Finally, a 20 ps relaxation was conducted at 300 K. The radial
distribution function of the final configuration was calculated using a cutoff
distanceof 16.0 Åwith3000bins in theNVEensemble over 1000 simulation
steps, applying time-averaged sampling every 1000 steps to obtain statisti-
cally meaningful data.

Data availability
The authors declare that the data supporting the findings of this study are
included within the paper. The data are available from the corresponding
author upon reasonable request.

Code availability
The code is available from the corresponding author upon reasonable
request.
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