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Soliton microcombs offer a compact means to generate equally spaced spectral lines via a delicate balance of Kerr
nonlinearity and anomalous dispersion in nonlinear microresonators. However, the simultaneous excitation of
multiple transverse mode families can disrupt soliton formation and degrade spectral uniformity. Here, we dem-
onstrate universal spectral purification of microresonators with ultrahigh intrinsic Q factors exceeding 108. An
aluminum ring is deposited onto a silica microdisk to eliminate high-order transverse modes selectively by intro-
ducing additional losses. The resulting soliton microcombs exhibit an ideal sech2 spectral envelope and enable
continuous tuning of the soliton repetition frequency over a 300 kHz range without compromising phase noise
performance. Our approach can be universally applied to integrated photonic platforms to reduce transverse
modes crowding in high-Q resonators, facilitating the generation of broadband classical and quantum light with
ideal performance. © 2025 Chinese Laser Press

https://doi.org/10.1364/PRJ.568361

1. INTRODUCTION

Optical frequency combs were originally demonstrated using
mode-locked femtosecond lasers (e.g., Ti:sapphire or fiber
lasers), which generated an evenly spaced, phase-coherent
spectrum of lines [1]. Since their inception, miniaturization
of comb generators has been recognized as a critical objective
for extending their application beyond conventional labora-
tory settings. Approximately a decade ago, dissipative Kerr
solitons, often termed soliton microcombs, were discovered
in nonlinear microresonators via Kerr-induced parametric os-
cillation [2,3]. Soliton microcombs have since been applied
in diverse laboratory applications, including low-noise
microwave synthesis [4,5], optical atomic clocks [6–8],
high-precision spectroscopy [9,10], and telecommunications
[11,12].

At the core of microcomb technology lie high-quality-factor
(high-Q) microresonators, which have been realized across a
broad range of material platforms [13–15]. The threshold
power for parametric oscillation is given by

Pth ∝
V eff

Q2 , (1)

emphasizing the necessity of high optical Q factors for low-
power operation (here V eff is the mode volume). In microre-
sonators, the primary loss mechanism is often scattering at
material interfaces. A common strategy to enhance Q is to in-
crease the separation between the optical mode and these in-
terfaces (with air or cladding materials) [16,17]. However, this
approach inevitably enlarges the microresonator’s cross section,
thereby increasing the number of supported transverse modes.
Consequently, avoided mode crossings [18,19] (AMXs) occur
more frequently in such multimode resonators. AMXs are
known to induce spectral anomalies commonly referred to
as dispersive waves (DWs) on soliton spectra [20,21], which
can even cause instabilities of soliton microcombs [22,23].
Although deliberately generated DWs have been exploited to
suppress noise transduction from the pump laser to the soliton
repetition frequency [21,24], their presence limits the continu-
ous tuning range of repetition frequency and degrades the

3172 Vol. 13, No. 11 / November 2025 / Photonics Research Research Article

2327-9125/25/113172-10 Journal © 2025 Chinese Laser Press

https://orcid.org/0000-0002-7036-1712
https://orcid.org/0000-0002-7036-1712
https://orcid.org/0000-0002-7036-1712
https://orcid.org/0000-0002-9259-244X
https://orcid.org/0000-0002-9259-244X
https://orcid.org/0000-0002-9259-244X
mailto:leonardoyoung@pku.edu.cn
mailto:leonardoyoung@pku.edu.cn
mailto:leonardoyoung@pku.edu.cn
mailto:libeibei@iphy.ac.cn
mailto:libeibei@iphy.ac.cn
mailto:libeibei@iphy.ac.cn
https://doi.org/10.1364/PRJ.568361


ultimate noise performance [25]. For non-integrated resona-
tors, such as MgF2 crystal resonators and SiO2 rod resonators,
AMX mitigation has been demonstrated through boundary-
shape engineering techniques such as diamond turning
[26,27] or laser reflow [28]. However, these approaches are
incompatible with mass-produced microresonators and cannot
be universally adapted to integrated microresonator systems.
Previous strategies for mitigating AMXs in integrated microcav-
ities have typically relied on narrowing the resonator’s cross sec-
tion, for example, by incorporating a tapered waveguide section
within the microresonator [29–31]. Unfortunately, such geo-
metric confinement engineering often causes significant degra-
dation of the Q factor, making them less favorable for soliton
microcomb generation.

In this work, we present a universal approach to reduce the
transverse modal density in on-chip high-Q microresonators.
By depositing a metal ring on a silica microdisk, we introduce
additional loss that selectively attenuates high-order modes.
This technique reduces the number of modes within a
25 GHz free spectral range (FSR) from over 30 to merely
six, while still preserving an ultrahigh intrinsic Q exceeding
108. As a result, we achieve DW-free soliton microcombs with
repetition frequencies that can be continuously tuned over a
300 kHz range with consistent phase noise performance.
This mode purification method is suitable for mass-produced
microresonators and can be further extended to integrated mi-
croresonator systems, holding promise for enabling broadband
classical and quantum light sources with ideal performance.

2. PRINCIPLE

Figure 1(a) illustrates the concept of the metal-modified micro-
disk. Finite-element simulations of the optical modes indicate
that high-order modes experience significantly increased

attenuation due to their stronger overlap with the lossy metal,
whereas the fundamental mode remains largely unperturbed. In
other words, the metal ring acts as a lossy filter that selectively
dampens high-order modes, thereby spectrally purifying the
microresonator while maintaining the highQ of the fundamen-
tal mode.

The dispersion diagrams in Fig. 1(b) present the calculated
results and provide insight into how the metal ring suppresses
AMXs. The integrated dispersion Dint�μ� is defined as

Dint�μ� � ωμ − ω0 − D1μ � 1

2
D2μ

2 �O�μ3�, (2)

where D1∕2π represents the FSR and D2∕2π is the second-or-
der dispersion, with high-order termsO�μ3� deemed negligible.
The coupled-mode theory [18,32] was employed to examine
the variation in AMX as the loss rate of the crossing mode in-
creases. For clarity, only the fundamental mode (soliton mode)
and high-order mode (crossing mode) families are considered
here, with a coupling strength G. Thus, the eigenvalues of the
hybrid modes are given by

ωμ� � ω̄�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
�ωμ,s − ωμ,c� � i�γs − γc�

2

#
2

� G2

vuut , (3)

where

ω̄ � �ωμ,s � ωμ,c� � i�γs � γc�
2

, (4)

where ωμ,s and ωμ,c represent the unperturbed μth resonant
frequencies of the soliton and crossing modes, respectively,
while γs∕2π and γc∕2π denote their corresponding loss rates.

Assuming that the two transverse modes are represented by
orthogonal states ψ s and ψ c in the absence of coupling
(G � 0), the hybrid eigenstate under finite coupling
(G ≠ 0) can be expressed as
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Fig. 1. Simulated characteristics of the metal-modified microdisk. (a) Schematic of a wedge-shaped silica microdisk with a top-mounted alu-
minum ring (proportions exaggerated for clarity). Inset: simulated optical field profiles of the fundamental and a high-order TM mode in the disk
cross-section, along with their corresponding linewidths comparing cases with/without metal. The yellow regions denote the 10-μm-wide metal ring,
and d is the gap between the metal ring and the upper edge of the 30° wedge. (b) Theoretical integrated dispersion of the hybrid modes formed by
coupling between the fundamental mode (soliton mode) and a high-order mode (crossing mode), simulated for γc∕2π � 3 MHz (i), (ii) and
γc∕2π � 3 GHz (iii). Panels (ii) and (iii) are zoomed-in views of the green shaded area in (i) around the AMX. The color scale represents
the probability percentage of the soliton mode (jpsj2) within the respective hybrid mode. Other simulation parameters are: γs∕2π � 3 MHz,
D1,s∕2π � 25.03 GHz, D2,s∕2π � 30.6 kHz for the soliton mode; D1,c∕2π � 25.00 GHz, D2,c∕2π � −66.0 kHz for the crossing mode;
and coupling strength G∕2π � 63 MHz.
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Ψμ� � psψ s � pcψ c , (5)

with Ψμ� corresponding to the upper and lower branches in
Fig. 1(b). The normalized probability amplitudes ps and pc
are given by �

ps
pc

�
� 1

N

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 � 1

p
� α

1

�
, (6)

where N is a normalization constant and

α � �ωμ,s − ωμ,c� � i�γs − γc�
2G

: (7)

The point color quantifies the fundamental mode fraction in
the hybrid eigenvectors (jpsj2). In the absence of additional loss
(γc∕2π � 3 MHz), by setting G∕2π � 63 MHz, the funda-
mental and crossing mode families strongly hybridize at their
intersection, producing an AMX (indicated by the abrupt per-
turbation in the dispersion curve). In contrast, with a large loss
introduced to the crossing mode (γc∕2π � 3 GHz), the mode
hybridization is effectively eliminated, and the dispersion curve
of the fundamental mode remains smooth and unperturbed
through the crossing region. In other words, the metal ring acts
as a dissipation engineering that selectively dampens high-order
modes, thereby suppressing AMXs and spectrally purifying the
microresonator while maintaining the highQ of the fundamen-
tal mode.

3. EXPERIMENTAL RESULTS

A. Device Fabrication
Figure 2(a) schematically depicts the key fabrication steps for
the metal-modified microdisk. First, silica microdisks with a
wedged edge were formed by photolithography and hydroflu-
oric (HF) wet etching of a 6-μm-thick thermal SiO2 layer on a
silicon substrate. This process yielded microdisks with smooth
wedges of ∼30°. Next, the concentric metal ring pattern was
transferred onto the microdisks via a second photolithography.
Here, a full-ring metal along the circumference is used instead
of a partial one to ensure optimal absorption efficiency and pre-
vent backscattering induced by refractive index discontinuities.
A 150-nm-thick Al layer was then deposited, followed by a 20-
nm-thick aurum (Au) layer, using electron beam physical vapor
deposition. The Al layer exhibited strong adhesion to silica and

a high absorption coefficient of 1.145 × 106 cm−1 [33]. The Au
layer acted as a protective coating to prevent oxidation of Al and
maintained surface hydrophobicity to reduce surface roughness
during the subsequent etching process [34]. After removal of
excess metal through the lift-off process, structural release
was accomplished through xenon difluoride (XeF2) isotropic
etching of the silicon pedestal to produce suspended microdisks
with ∼100 μm undercut region. A scanning electron micro-
scope (SEM) image of the fabricated device is shown in
Fig. 2(b), including a close-up of the smooth wedge region
of the microdisk with the deposited metal ring.

B. Device Characterization
To illustrate the effect of the metal ring on the mode spectrum,
we measured the transmission and dispersion properties of the
resonators under three representative conditions: (i) a bare mi-
crodisk (absence of metal), (ii) a metal-modified microdisk
with a relatively distant ring (d � 28.8 μm), and (iii) a
metal-modified microdisk with the optimal ring placement
(d � 14.8 μm). To ensure consistent coupling conditions,
the cross-sectional diameter of the tapered fiber and its coupling
position on the microdisk wedge were maintained throughout
the measurements. Figure 3(a) shows examples of normalized
transmission spectra spanning across three FSRs around
1550 nm under the TM polarization for each condition.
These spectra indicate a dense set of resonances in case (i),
and only a slight reduction in mode density for the device with
the far-separated metal ring in case (ii). In contrast, the device
with optimal distance in case (iii) shows far fewer resonances,
consistent with many high-order modes being extinguished.
We also extracted the integrated dispersion (Dint) curves for
the resonances in each case, as plotted in Fig. 3(b).
Approximately 400 resonances were identified across 1510–
1590 nm, where the color of each data point corresponds to
the on-resonance transmission depth. Consecutive groups of
points correspond to distinct mode families, and the inset pro-
vides an enlarged view of the fundamental mode family. In the
bare microdisk, numerous mode families appear within an
FSR, and numerous AMXs are evident for the fundamental
mode family. With the metal ring at d � 28.8 μm, the overall
mode density is still high and an AMX is still present [orange
dashed highlight in Fig. 3(b-ii)]. By comparison, for the
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siliconmetal

(a) (b)1. Photolithography yalrevO .3gnihcte FH .2

4. Metal deposition 5. Metal lift-off 6. XeF  etching2

wedge

metal

photoresist silica

Fig. 2. Fabrication process of the metal-modified microdisk resonator. (a) Simplified fabrication process flow. (b) Top-view SEM image of a
fabricated metal-modified resonator (top panel) and magnified view near the wedge (bottom panel).
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optimized device at d � 14.8 μm, both the number of modes
and any measurable AMX perturbations are greatly reduced.
The dispersion curve for the fundamental mode in case (iii)
is essentially smooth and uninterrupted across the measure-
ment range, confirming that the metal-induced loss is effec-
tively filtering out the high-order mode that caused the
AMXs in the other cases. Additionally, no AMX was observed
between fundamental modes with different polarizations
within a wide range of the laser wavelengths.

Moreover, from the wide spectral spanning over 80 nm, the
highest intrinsic Q factor (Qi) and mode density were also as-
sessed as a function of the separation d . A statistical distribution
of Qi for the fundamental TM11 mode family is shown in
Fig. 3(c) for case (ii), and the most probable Qi is around

1.47 × 108, where the metal has only a minor impact on the
Q factor of the fundamental mode at this distance. High-order
transverse modes, on the other hand, experience increased loss
due to the metal ring. As d is reduced, we observe that the Q of
high-order modes drops while the fundamental-mode Q re-
mains high. Figure 3(d) quantifies the distribution of mode
counts within one FSR and the maximum intrinsic Q factors
for different polarizations as a function of d . Note that the
highestQi is derived from the fundamental mode family, which
exhibits minimal overlap with the metal ring. The Q-factor dis-
tribution of the fundamental modes over a wide wavelength
range is presented in Appendix B. Meanwhile, due to the
wedge-induced non-orthogonality between TE and TM modes
[35], the number of modes in different polarizations overlaps
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partially. Figure 3(d) also reveals that TM modes experience
more absorption losses from Al, due to their larger electric field
intensity at the Al-SiO2 interface. In our devices, an optimal
spacing of d � 14.8 μm was identified: at this distance, the
number of resonant modes within one FSR is reduced from
>30 (in a bare disk) to only six, while the fundamental mode
still retains an intrinsic Q exceeding 108.

C. Soliton Microcomb Generation
Next, we investigated soliton microcomb generation in these
devices. We employed the auxiliary-laser-assisted method to re-
liably access single-soliton states in the microdisk [36–38]. In
our setup, the pump and auxiliary beams were derived from a
single 1550 nm laser source. An ∼8 MHz frequency offset was
imposed between the two beams using acousto-optic modula-
tors (AOMs), ensuring precise separation for thermal compen-
sation. Both beams were coupled counter-propagating into the
microdisk [28,39]. The auxiliary laser was blue-detuned rela-
tive to the pump laser to compensate for the abrupt thermal
drift of the mode during the soliton generation and establish
a thermally steady state.

Using this auxiliary-laser-assisted approach, we successfully
generated single-soliton frequency combs in all three devices
(i–iii). Upon soliton formation, the laser tuning was stopped,
and the pump light was filtered out from the output. The sol-
iton’s repetition frequency (f rep) was monitored as a radio

frequency beat note using a fast photodiode, while its optical
spectrum was recorded with an optical spectrum analyzer
(OSA). The phase noise of the repetition rate was simultane-
ously measured with a phase noise analyzer (PNA) to assess
comb stability. By maintaining the auxiliary laser blue-detuned
on the soliton mode’s thermally stable side and at a low enough
power to prevent spurious nonlinear effects, we achieved stable
soliton operation for hours without active feedback.

The optical spectra of the resulting combs are displayed in
Fig. 4(a). In the bare microdisk (i) and the device with
d � 28.8 μm (ii), the soliton spectra exhibit pronounced sig-
natures of avoided mode crossings (AMXs), manifesting as ad-
ditional spectral peaks superimposed on the ideal sech2

envelope. These peaks correspond to DWs emitted due to
the mode hybridization in AMXs [13]. In stark contrast, the
spectrum from the spectrally purified resonator (iii) follows
the expected sech2 profile without parasitic spectral features,
confirming that the soliton resides in a mode family free of sig-
nificant AMXs over the entire comb bandwidth. This demon-
strates that the DW observed in case (ii), associated with the
AMX μ � 75 in Fig. 3(b) (orange dashed line), is fully sup-
pressed in case (iii) due to our dissipation engineering.

The spectral width of the soliton optical frequency comb in
Fig. 4(a-iii) is narrower than the former two cases due to the
decreased Q factor, with the explanations detailed in
Appendix C below.
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D. Microwave Synthesis
The spectrally purified microresonator enables low-noise mi-
crowave synthesis with wide repetition rate tunability. We sys-
tematically characterized the soliton microcomb’s repetition
rate (f rep) and phase noise evolution under pump laser fre-
quency tuning for all three devices. In cases (ii) and (iii),
the reduced mode density permits smooth laser frequency tun-
ing in the soliton existence range without mode hops. In stark
contrast, the high modal density of the bare microdiskhigh mo-
dal density of the bare microdisk in case (i) introduces unavoid-
able mode-hopping events during tuning, significantly
degrading the soliton repetition tuning range. Figure 4(b)
quantifies the soliton repetition rate’s dependence on the laser
frequency offset δ. As the pump laser is redshifted, f rep redshifts
continuously in cases (ii) and (iii), maintaining a single-soliton
state. For the bare micordisk in case (i), mode-hopping disrupts
this tuning process. Experimentally, we achieve continuous
f rep tuning over 300 kHz by redshifting the pump laser over
2.3 GHz.

Figure 4(c) tracks the phase noise at 10 kHz offset across
different pump detunings δ. The spectrally purified resonator
in case (iii) exhibits superior performance, with synthesized mi-
crowave maintaining ultralow phase noise (< −123 dBc∕Hz)
throughout tuning, illustrating robust comb coherence. This
stability directly results from the spectrally purified resonator’s

reduced mode density, which enables unimpeded thermal tun-
ing without mode hops that plague conventional multimode
microcavities [Fig. 4(b)]. Figure 4(d) shows the optimized sin-
gle-sideband phase noise spectra for all three cases at ∼25 GHz.
The spectrally purified resonator in case (iii) can more easily
achieve superior performance. Phase noise oscillations below
1 kHz originate from environmental perturbations (e.g., tem-
perature and acoustic variations).

4. CONCLUSION AND OUTLOOK

Our strategy readily extends to integrated microring resonators
[Fig. 5(a)]. Unlike previous methods that rely on geometric
confinement for waveguide mode filtering, such as tapered ring
widths [29] and partially etched structures [40], dissipation en-
gineering enables spectrally purified whispering-gallery modes
with inherently lower scattering losses and undisturbed
dispersion characteristics of the fundamental mode, as it does
not affect the structure of the fundamental mode.

As a concrete example, we consider an 800-nm-thick Si3N4

ring with a 100 GHz free spectral range. We model sidewall
roughness as a thin absorptive layer whose loss rate matches
typical Si3N4 scattering losses [41]. Two approaches are then
compared: (i) confinement engineering by narrowing the wave-
guide width to suppress high-order transverse modes, and (ii)
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engineering method). Inset: optical field amplitudes for the TE11 and TE21 modes at d � 9 μm. The shaded red regions correspond to
QTE21 � 1.5 × 106 and the green shaded regions correspond to the tolerance range, which is 0.5 μm and 1.7 μm for the two methods, respectively.
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dissipation engineering by introducing a lossy metal ring to se-
lectively attenuate them. In our finite-element simulations, the
metal ring is assigned a loss rate far exceeding that of the side-
wall layer. We extract intrinsicQ for the fundamental TE11 and
higher-order TE21 modes and find that dissipation engineering
drives QTE21 down much faster than confinement engineering,
as illustrated in Figs. 5(b) and 5(c). It is possible to realize
QTE21 at ∼1.5 × 106 while preserving QTE11 at ∼7.9 × 107.
This confirms that targeted loss can eliminate unwanted modes
without compromising the fundamental-mode quality.

The tolerance range, was also analyzed for these two ap-
proaches, corresponding to the shaded green regions in
Figs. 5(b) and 5(c), respectively. It is defined as the parameter
range (w or d ) that maintains QTE11 > 43 × 106 (half the
maximum QTE11 � 86 × 106 in our simulation) and
QTE11

QTE21
> 3, corresponding to the requirements for high-Q

and large suppression ratio of higher-order mode. The dissipa-
tion engineering method exhibits a wider tolerance range
(1.7 μm) than the confinement engineering method
(0.5 μm). A larger tolerance range reduces photolithography
requirements in device fabrication and improves the device
yield, thereby laying the foundation for mass production.

Maintaining few-mode operation at ultrahigh quality factors
also unlocks both classical and quantum opportunities. Beyond
serving as the low-noise backbone for microcomb-based RF os-
cillators, such resonators enable large-scale squeezed-state gen-
eration [42,43], with the absence of avoided-mode crossings
preserving ideal multimode squeezing correlations. Our ap-
proach thus establishes a versatile platform for integrated pho-
tonics and fundamental quantum-optics research.

APPENDIX A: SIMULATION OF METAL-
MODIFIED MICRODISK RESONATORS

Regarding the positional tolerance of the metal ring, we first
simulate both mode counts with Q > 2 × 106 and the Q fac-
tors of the fundamental mode family across different metal-
to-wedge distances (d ), as shown in red and blue curves,
respectively, in Fig. 6. The results confirm that reducing the
metal-to-wedge distance d gradually decreasesQ factors of both
the fundamental optical mode and higher-order optical modes.
Therefore, the smaller d gives rise to fewer mode counts. As
shown in Fig. 6, optimal mode filtering occurs within
d � 13–17 μm (pink region), where the mode count decreases
significantly while the Q of the fundamental mode is main-
tained above 108.

Experimentally, positional accuracy is ensured by the ultra-
violet photolithography process, which can achieve an overlay
error < 1 μm, well within the tolerance range of the metal
position.

APPENDIX B: CHARACTERIZATION OF METAL-
MODIFIED MICRODISK RESONATORS

Figure 7 presents the measured wavelength-dependent Q-fac-
tor distributions of the fundamental TM and TE modes in
both (i) bare silica microdisks and (ii)–(iv) metal-modified mi-
crodisks with varying metal-to-wedge distances (d ). For the
bare microdisk resonator, random occurrences of Q-factor

degradation across the entire scanning wavelength can be ob-
served for both polarizations. However, in the metal-modified
microdisks, such Q-factor degradation becomes localized
within specific wavelength ranges, appearing as distinct dips
in Figs. 7(a-ii)–7(a-iv). As the metal-to-wedge distance d de-
creases, the spectral range affected by Q-factor degradation
gradually widens. However, this dip feature disappears for
the TM-polarized modes in the metal-modified silica microdisk
with d � 14.8 μm [Fig. 7(a-iv)], which can be explained via
the interaction between the soliton mode and crossing mode.
To explain this phenomenon more clearly and intuitively, we
calculate the intrinsic Q-factor distribution of the hybrid
modes formed by the coupling between the fundamental (sol-
iton) mode and a high-order (crossing) mode using the coupled
mode equations.

As shown in Fig. 7(c-i), when the Q factors for the soliton
mode (Qs) and crossing mode (Qc) are comparable (Qs� 108,
Qc � 5 × 107), the Q factors of the hybrid modes are approx-
imately the average of their original Q factors, and the wave-
length range within which the Q factors are affected is very
localized. When the Q factor of the crossing mode decreases
to Qc� 105 [Fig. 7(c-ii)], it induces a reduction in the soliton
mode’s Q factor (Qs) in a wider wavelength range, due to in-
creased energy transfer to the crossing mode with a larger decay
rate. However, asQc continues to decrease to 103 [Fig. 7(c-iii)],
the crossing mode’s contribution to the hybrid mode dimin-
ishes, and consequently the local decrease of Qs can be sup-
pressed by decreasing Qc . This calculated result aligns well
with our experimental measurements [Fig. 7(a)], where the
Q factor of the crossing mode (typically higher-order mode)
decreases as the d decreases. Notably, such a phenomenon is
more pronounced for TM polarization compared to TE polari-
zation modes, as shown in Figs. 7(a) and 7(b). This difference is
believed to arise because TE modes exhibit weaker electric field
intensity at the Al-SiO2 interface, making them less sensitive to
metal-induced loss than TM modes. Consequently, the cross-
ing mode in TE polarization experiences insufficient damping
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to fully suppress the localized Qs reduction, resulting in a dis-
tinguishable dip feature.

Additionally, as shown in Fig. 8, decreasing the metal-to-
wedge distance (d ) gradually reduces the mode-coupling-in-
duced frequency shift between fundamental and high-order
modes, indicating that the avoided mode crossings (AMXs)
are not shifted out of the range of interest, but rather effectively
suppressed.

APPENDIX C: EFFECT OF DISSIPATION
ENGINEERING ON SILITON COMB

To balance thermal effects within the microcavity, we imple-
mented an auxiliary laser method using the experimental setup

shown in Fig. 9. The pump and auxiliary lasers were generated
from a single NKT laser (∼1551 nm), which is driven by two
acousto-optic modulators (AOMs), with a fixed frequency dif-
ference of ∼8 MHz between them. The pump power for
generating solitons is 100 mW, the effective mode area of
the cavity is Aeff � 36 μm2, and the pump mode intrinsic
Q is Q0 � 68 million (metal-modified microcavity with d �
14.8 μm). When the pump laser reaches the soliton state at
effective red detuning, the auxiliary laser resides in a thermally
stable region on the blue-detuned side of the soliton mode.
When the NKT laser wavelength is tuned, both the pump
and auxiliary laser frequencies vary accordingly. As the NKT
laser frequency decreases, the laser-tuning-induced thermal ef-
fect from the auxiliary laser redshifts the pump mode.
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Consequently, the pump mode redshifts in tandem with the
pump light frequency. Additionally, after stabilizing to the sol-
iton state, we carefully reduced the auxiliary laser power to
5–6 mW below the four-wave mixing threshold of
Pth ≈ 24.7 mW for a cavity with d � 14.8 μm (Pth ≈
7.7 mW for a cavity with d � 28.8 μm [13]). This prevents
the auxiliary light from generating additional comb teeth along
with increasing soliton repetition frequency noise.

The low mode density is a key reason why few-mode micro-
cavities can achieve a 2.5 GHz pump tuning range without los-
ing the soliton state. In high-mode-density cavities, the
difference in optical field distribution between higher-order
modes and the fundamental mode will lead to disparities in
the average thermal optical field [25]. These disparities result
in distinct thermal redshifts for different-order modes. Some
higher-order modes may shift less than the pump mode during
pump laser tuning, causing the soliton mode to cross higher-
order modes. During this process, energy diversion to higher-
order modes can trigger drastic local temperature changes,
driving the soliton mode out of the soliton existence range (mode
hopping). Reducing mode density can mitigate this mode-
hopping effect by lowering the probability of encountering

higher-order modes during the pump tuning. Therefore, by
combining the auxiliary laser’s thermal stabilization effect with
the advantages of low mode density of the metal-modified silica
microdisk, we ultimately achieved a 2.5 GHz pump tuning
range, which significantly exceeds the soliton existence range.

In Fig. 4(a-iii), the spectral width of the soliton comb is de-
termined by theQ factor in our experiment, while the dispersion
characterization remains consistent for microdisks with various
metal-to-wedge distances d (D2∕2π � 30.1 kHz for d �
14.8 μm and D2∕2π � 30.6 kHz for d � 28.8 μm). The op-
tical spectrum of the soliton, also a hyperbolic secant, is given
by [2]

Ψ�ω − ωp� �
ffiffiffiffiffiffi
D2

2κ

r
· sech

�
ω − ωp

Δω

�
, (C1)

where the maximum spectral width of the soliton, denoted as
Δωmax, is mathematically expressed by the formula

Δωmax � 2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηPinQn2
β2n0V eff

s
∝

ffiffiffiffiffiffiffi
ηQ

p
: (C2)

Here, η is the coupling efficiency, defined as η � κext∕κ,
where κext is the coupling rate between the microdisk and
the tapered fiber and κ is the total cavity decay rate; P in is
the input pump power; Q is the quality factor of the soliton
mode; n2 is the nonlinear refractive index of the medium; β2 is
the group velocity dispersion; n0 is the linear refractive index;
V eff is the effective mode volume. Thus, in our experiments,
the other parameters remain the same, and the maximum width
of the soliton spectrum Δωmax is only related to Q under criti-
cal coupling. Since the pump mode Q factor of the metal-
modified microdisk with spacing d � 14.8 μm and
d � 28.8 μm is Q14.8 � 68 × 106 and Q28.8 � 122 × 106, re-
spectively, the theoretical ratio of their maximum soliton spec-

tral width is
ffiffiffiffiffiffiffiffi
Q28.8
Q14.8

q
� 1.34, which is consistent with the

experimental result
ffiffiffiffiffiffiffiffiffiffi
Δω28.8
Δω14.8

q
� 1.35 (here Δω14.8 �

1.72 THz and Δω28.8 � 3.14 THz represent the fitted spec-
tral width of the soliton comb generated for d � 14.8 μm
and d � 28.8 μm).
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