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- Classical spins and classical Monte Carlo

- Path integrals in quantum statistical mechanics

- Stochastic Series expansion (incl technical details)
- Ground-state projection with valence bonds
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Classical spin systems
and Monte Carlo simulations
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Classical spin models

Lattice models with “spin” degrees of freedom at the vertices

Classified by type of spin:

* |[sing model: discrete spins, normally two-state oi= -1, +1
e XY model: planar vector spins (fixed length)
* Heisenberg model: 3-dimensional vector spins.

Statistical mechanics 49— ; .’L +
e spin configurations C i s 6 i 1 ”
Qenergy E(C) 9—O0—8@—0— O 0;=-1 \ \ % %‘
e some quantity Q(C) B T AN

e temperature T (kg=1)

1 E = Jz’jo'z'o'j (Ising)
(Q) = E5 Z Q(C)e EO/T i
C

18— Z JZJ§Z : gj = Z Jij COS(@@ = @J) (XY)
7 = Z o O (i) (i)
e &) = Z Jijg;; : §j (Heisenberg)
(27)
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Phase transition in the Ising model

A
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e first-order transition versus h (at h=0) for T<T.

e continuous transition at h=0
Mean-field solution: J=J;,=> " J;

m = tanh|(Jm + h)/T|, (m = (g;))
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sum of local
couplings
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Monte Carlo simulation of the Ising model

The Metropolis algorithm
[Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); C1— Co— C3z— Cs—...
e Cnh:1 obtained by modifying (updating) Cn _‘ é ‘ é—

e changes satisfy the detailed-balance principle ok
S (A B) it W (B) W(A) = —E(A)/T -0—0—0)—0-
Pchange(B — A) W(A) _’ ‘ @ @_
Pchange(A =T B) = Pselect(B’A)Paccept (B‘A) —’ ? ? ?—
T 1/N7 Paccept o mln[W(B)/W(A)v 1} L ——

W (B) _Ag/T (E(A)—E(B)|/T is easy to calculate (only depends
— e E — e : : : ith | g :
W (A) on spins interacting with lipped spin)

Starting from any configuration, such a repeated stochastic process
leads to configurations distributed according to W
¢ the process has to be ergodic
- any configuration reachable in principle
¢ it takes some time to reach equilibrium
(typical configurations of the Boltzmann distribution)

Friday, October 24, 14



Metropolis algorithm for the Ising model. For each update perform:
e select a spin | at random; consider flipping it oi = -0
e compute the ratio R=W(o4,...-0i,...,0n)/W(01,...0i,...,ON)
- for this we need only the neighbor spins of |
e generate random number O<r<1; accept flip if r<R (stay with old config else)
e repeat (many times...)

T= 4.00 I

Simulation time unit
(Monte Carlo step or sweep)
- N spin flip attempts

“Measure” physical observables
(averaged over time) on the
generated configurations
- begin after equilibration
(when configurations are
typical representatives of
the Boltzmann distribution)

Example

- 128x128 lattice
(N=16384) at T/J=4
(> To/d = 2.27)
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Going closer to Tc
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Going below Tc....
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1T= 2.00 10

Staying at same
T, speeding up
time by factor 10
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Time series of simulation data; magnetization vs simulation time for T<T¢
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Quantum spin systems,
quantum antiferromagnets
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Quantum spin models

* the spins have three (x,y,z) components, satisfy commutation relations
* interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components

Bl = Z JiijSj’ = iz Jijo.0;  (Ising)
(i7) (25)

H=) Ji[SfSy+8¥SY] =2 JilSis; +57571 v
(i7) (25)

H = ZngS S _ZJZJ SZSZ S+S S S+)] (Heisenberg)

+ many modifications and extensions... and local spin S=1/2,1,3/2,....
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Quantum antiferromagnets
Nearest-neighbor <i,j> interactions (Heisenberg) on some lattice

H:ngi'gj, JEl
(2,7)

Lattices can be classified as

Bipartite 73/ )r' rl/ )l

- nearest-neighbors i,j always L
on different sublattices A A
- compatible with Neel order S L 2

- but other states possible 7{ x’f/ /Tr' ,ﬁ/—

Non-bipartite
- NO bipartition is possible
- frustrated antiferromagnetic interactions

- different kinds of order or no long-range order (spin liquid)

Fully ordered Neel state (ground state of H for classical spins)

IS not an eigenstate of H even on a bipartite lattice
- if there is order at T=0 it is reduced by quantum fluctuations

Mermin-Wagner theorem (on breaking a continuous symmetry) implies:
- No Neel order in 1D Heisenberg model

- Neel order possible only at T=0 in 2D system

- Order possible also at T>0 in 3D
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Path Integrals In
quantum statistical mechanics

Quantum statistical mechanics Vi

Q) = %Tr {Qe—H/T} %=1 {e—H/T} — ;O e~ En/T

Large size M of the Hilbert space; M=2" for S=1/2

- difficult problem to find the eigenstates and energies

- we may be especially interested in the ground state (T—0)
(for classical systems the ground state is often trivial)
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Quantum Monte Carlo
Rewrite the quantum-mechanical expectation value into a classical form

A T Azl A
T W,
Monte Carlo sampling in the space {c} with weights W¢ (if positive-definite...)

Different ways of doing it (“sign problem” if
- World-line methods for spins and bosons not the case)

- Stochastic series expansion for spins and bosons

- Fermion determinant methods

For ground state calculations we can also do projection from a “trial state”
U,.) ~ H™|Uy) U,,) = |0) when m — oo

Wg) ~ e PH W) Wg) — |0) when S — oo

Particularly simple and efficient schemes exist for S=1/2 models
Ny 4
Bl = _JZ(Z — i) - o) (+ certain multi-spin terms)
=

No sign problem on bipartite lattices
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Path integrals in quantum statistical mechanics

We want to compute a thermal expectation value

(A) = o Tr{Ae=)

where 3=1/T (and possibly T—0). How to deal with the exponential operator?

“Time slicing” of the partition function

=sig )
Z:Tr{e_ﬁH}:TI‘< He_ATH 0 Ar=p/L
=31 /

Choose a basis and insert complete sets of states;

2= 5 Y aole™ g1} azle > ar)as e ao

o) O OéL—l

Use approximation for imaginary time evolution operator. Simplest way

Ve~ Z<Oéo‘1 = ATH’CVL_1> ST <C¥2’1 T ATH‘Oé1><Oq’1 = ATH‘Oé()>
{o}
Leads to error cx A.. Limit A — ( can be taken
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Example: hard-core bosons

e K —— ) (o

(4,7)

(2,7)

Equivalent to S=1/2 XY model
H=-2) (S757+5Y8Y) =

(4,5)

“World line” representation of

ZxY (aoll - A Hlap-1) -

1o}
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world line moves for
Monte Carlo sampling
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-2

Nk = number of “jumps”
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Expectation values

1
(4) =~ > {aole ™ ap—1) - (azle”™ > |ar)(a1|e” 2 Alag)
{o}
1
Z= > {aole ™ Jap_1) - - {aale™ 2 lag) {aa|e™ 2 |ap)
{o}
We want to write this in a form suitable for MC importance sampling
2oy Ala)W({a})
A) = Ay =(A
< > Z{a} W({Oé}) < > < ({&}»W
W({a}) = weight
A({a}) = estimator

For any quantity diagonal in the occupation numbers (spin 2):

A({a}) = A(a,) or A({a}) = Z Alay)

Measure quantities on all slices and average
- in practice full averaging may take too long and OK to do partial averages
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Off-diagonal expectation values

1
(A) = =) (agle ™ |ap—1) - {azle™ > Fla1){a1le™ 7 Alag)

Z
1o}

In general the states ai,...,an contributing to Z will not contribute to <A>
- more complicated measurements

Special case: term Kjj in the kinetic energy

Multiply and divide by the weight

1 (aple 2 |ap—1) - - - (o le™ "7 Kyj|ap)

B e =VAYS LN —A-H
(A) = Z%{@de Gz-1) - tonle o) A e i
B Z W({a}) (agle™ 7 |ap_1) -+ {az]e 2 H Ky |ap)
Z = (o|em #la= ) (alcm o
1
A e _ _ {aa|Kyjlag) L 0
¢ RO R (o) — 11— A, Ko} e {0, AT} 1

Average over all slices = count number of kinetic jumps

<K,>—<“g>, (K) = <”§> (K) « N — (ng) < BN

There should be of the order BN “jumps” of the worldlines
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Including interactions

For any diagonal interaction V (Trotter, or split-operator, approximation)

e e O 4 O(AY) — (arlem S ) = e S r(arii i B

Product over all times slices —

W({a}) = AZ¥exp (

The continuous time limit

v
* 2 = 10Ul Azex (— new) : 1]
§ [ S\ U

Limit A:—0: number of kinetic jumps remains finite, store events only

B-

Specia

met

nods (loop

and worm updates)
developed for efficient

In the continuum

(a)

-~

(b)

local updates (prob

S~

em when A:—07?)

e consider probability of inserting/removing
events within a time window

sampling of the paths  « Evertz, Lana, Marcu (1993), Prokofev et al (1996)
Beard & Wiese (1996)
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Stochastic series expansion (SSE)
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Alternative to path integral: Series expansion representation

o0 n
: —BH _ & " (approximation-free
Start from the Taylor expansion e E ’ = methodfominar o
M=

—1) -+ {az|H|ag) (o1 |H|ap)

{a}n
Slmllar to the path integral; 1 — A7H — H and weight factor outside

For hard-core bosons the (allowed) path weight is W ({«a},,) = 3" /n!

For any model, the energy is il
this is the operator we “measure”

1 & (=p)" —
5 = ?Z - > {aolHlom) - - (az|Hlon ) {on | H|ag)

{atnt1 «

one more “slice” to sum over here
O

3 o Q 8 o1 ) (Y o :_@
2 ) 5 2 foolHlan 1) (aal Hlon) (o] Hlao) = -

{atn
e relabel terms to “get rid of” extra slice

n:ﬂ

C = (n*) - (n)* — (n)
From this follows: narrow n-distribution with (n) oc N3, o, o< \/Nj3
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Fixed-length scheme

e n fluctuating — varying size of the configurations

* the expansion can be truncated at some nmax=M (exponentially small error)
e cutt-off at n=M, fill in operator string with unit operators Ho=lI

n=10 H4 H7 H] H(, H» H] Hg H3 H3 H5 —

—

M=14 (H4| I |H7| I |H{|Hg| I |Ho|H{|Hg|H3|H3| I |H;5

—_—

- conisider all possible locations in the sequence
- overcounting of actual (original) strings, correct by combinatorial factor:

(M)l _ nl(M —n)!

n M

Here n is the number of H;, i>0 instances in the sequence of M operators

(=P =)
78— E E M <040\Hz'(M)\CVM—1> gt <Oé1|Hi(1)\Oéo>
latv {H;}
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Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

Ny, 2D square lattice
s Z Si(b) : Sj(b)u bond and site labels

b=1

Diagonal (1) and off-diagonal (2) bond operators
H IS e Al
]-7b 4 ’L(b) :](b)’

el — @

Hap = 3055550 T S im):
Ny
J Np

H=-J ;(Hl,b - Hzp) + =

Four non-zero matrix elements
(Tiwydim) [Hipl Tiwylim) =
iy Ti0) [ H1pl LigyTi0)) =

i) Tim) 1H2e| Tiw)die) =
(Tawy i) 1H2,| LiwyTi(0)) =

N N
N— DN

Partition function

00 gn n—1 N2 = number of a(i)=2
e >4 >4(_1)n2 W Z <& H Ha(p),b(p) a> (off-diagonal operators)

in the sequence
a n=0 Ao, 5

Index sequence: S,, = [a(0),b(0)], [a(1),b(1)],...,[a(n —1),b(n — 1)]

Friday, October 24, 14 24



For fixed-length scheme (string length = L now)

Z;Z

Propagated states: |a(p))

i = 1

2

-

ofi) = -1 +1

0]
O

3

-1

.......[I
O O O
@ 0 o

O O O

O O O O

4

2.

-1 +1

O O O O

U

I]

® 6 0 0 O
0 0 0O 0O 0
O © 0 6 0 O

O O
@ o

O O OO O O 0O

O O OO

O
O

6%
n2

6

.

8

-1 +1 +1

O 6 ® 06 ¢
O O O O O

O OO0 OO0 OO0 OO0 O0O0OO0

ﬂ

><a

L—1

[ Hew) o

p=0

ap)

b(p)
2
()
4
6
3
()
()
2
6
0

7

s(p)

4
()
9
13
§
()
()
4
13
()
9
|4

) weso=(5) 65

W>0 (n2 even) for bipartite lattice
Frustration leads to sign problem

Q [ [o! fo)

o & O o G -0 PHE O

In a program:

s(p) = operator-index string
* s(p) = 2*b(p) + a(p)-1

e diagonal; s(p) = even

e off-diagonal; s(p) = off

o(i) = spin state, i=1,...,N
¢ only one has to be stored

SSE effectively provides a discrete representation of the time continuum
e computational advantage; only integer operations in sampling
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Linked vertex storage

The “legs” of a vertex represents
the spin states before (below) and
after (above) an operator has acted

@ O

C o
I [

O
O

O
@)

O

—

@ ® OO ® O @ O

p
[

10
9

~J

) 4=  n

_— 9

2 3 2503

g

—1 | E——

O @ @ O

e
v X(v) v X(v) v X(v) v X(v)
44 18| |45(30| |4o6|106| (47|17
40| - | |41 - | |42]| - | |43] -
36|31 |37 7| |38 4| |39 5
32114 |133|15] |34|12] |35]| 0
28119 |29]| 6 | |30(45]| |31|36
24 25| - | |26 - | |27]| -
200 - | (21] - | |122] - | |23] -
16 (46| |I7|47| (I8|44]| |19]|28
12134 (13| 2| |{4|32]| [I15|33
8 9 - 10| - | |11] -
41381 | 5139|629 | 7|37
0135|113 |2|1I3] |31
[=0 =1 =2 =3

2550 2 3
e
ce Oe
g

X() = vertex list

e operator at p—X(v)
v=4p+l, 1=0,1,2,3

* [inks to next and
previous leg

Spin states between operations are redundant; represented by links
e network of linked vertices will be used for loop updates of vertices/operators
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Monte Carlo sampling scheme

Change the configuration; (o, S;) — (o, 5" )

W(O/a SL) Pselect (O/a S}, — (O, SL)

W (a, Sp) = (

Paccept — 111N

Diagonal update: [0, 0], < [1, 0],

lop+l)) @ O O @ O @ ® O

® OO0 ®0 e e O

A

o(p))

Attempt at p=0,...,L-1. Need to know |a(p)>

e generate by flipping spins when off-diagonal operator
Pselect(a =U—a= 1) - 1/Nb7

Pselect(a:1—>a:()) =l
W@=1) (/2

Wi(a = 0)
Acceptance probabilities

Paccept([oa O] " [17 b]) =

min

min

Paccept([la b] VI [07 O]) o

L—n Wi(a=1)

L—n+1
B/2

BNy 1]

2T -’
2(L—n+1)

BNy

W(Oé, SL) Pselect (Oé, SL G O/? S}/)

(bE{l,...,Nb})

:

:

® OO0 0 e e o0
—

® OO0 ®0 e e 0

o M@
Theaias S0

S

™~

|

=

@)
O O O
@ 0 0

[l

O O O O
@ © 0 ©

[IOOOO
o O

O OO0 OO0 O 0O

O O OO

I].......
O O O
®© © © © 0 O

@ © © 0 ©

O O O OO

®© © 0 000000 0 0 0
O OO0 OO0 OO OO0 O0O0O0

@ © © 0 O
O O O O O
O O
@ 0
I]...

O
O
O

n is the current power
en — n+1(a=0 — a=1)
en—n-1 (a=1 — a=0)
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Off-diagonal updates

O 0 O
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Determination of the cut-off L

e adjust during equilibration
e start with arbitrary (small) n

Keep track of number of operators n
® increase L if nis close to current L
®e.g., L=n+n/3

Example
*16x16 system, B=16 = 6000} e i
e evolution of L ;
e n distribution after 5000
equilibration ~
e truncation is no 4000 0.006f ™ " : ' 1 5
approximation < * 0.005 ]
3000 0004} 1
< 0.003} !
2000 ’ 1
0.002 2
1000 0.001} i )
OTTTH600 4800 5000 n
% "0 100 150 200 250

MC sweeps
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Does it work?

Compare with exact results
® 4x4 exact diagonalization

e Bethe Ansatz; long chains

Susceptibility of the 4x4 lattice = =

0.08

0.06

T

1

e improved estimator
o standard estimator

0.04+
e SSE results from 10'° sweeps
® improved estimator gives smaller .
error bars at high T (where the & P | | | | |
number of loops is larger) / Y L : 2 LT
05 1 1.5 2
177
EN [T ! 1 T T I T
0.443148 ¢ - 2 g =
e ) @
§ ® < Energy for long 1D chains
0.443146 5
1 e SSE results for 10° sweeps
o O N =1024(SSE) e Bethe Ansatz ground state E/N
T S it S e SSE can achieve the ground
® N =409 (SSE) tate Ilmlt (T_’O)
0.443142 % — N = 4096 (T=0, exact) S
1 | | | | | | 1
Nigealat—g 9 10 1 12 13 14
m (B=2")
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Valence bonds and
Ground State Projection
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The valence bond basis for S=1/2 spins

Valence-bonds between sublattice A, B sites (5,7) = (| T:1;) — | L:1;))/v2

Basis states; singlet products
N/2

W) = [l Grs dre)s 7=1,...(N/2)!

=l

The valence bond basis is overcomplete and non-orthogonal

e expansion of arbitrary singlet state is not unique

W) = Z oy (all fr positive for non-frustrated system)

All valence bond states overlap with each other

A
B

e — oNo—N/2Z  N_ = number of loops in overlap graph

Spin correlations from loop structure

4
O (i) in different loops)

<‘/l‘§z i gj‘Vr> e { §(—1)xi_xj‘|‘yz’_yj (i,j in same loop)

]

ViIv;)
e

More complicated matrix elements
(e.g., dimer correlations) are also
related to the loop structure

K.S.D. Beach and AW.S.,
Nucl. Phys. B 750, 142 (2006)

Vi)

)

F—9

)

Vi)

)

]

Vil Vi)
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Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(-H)" projects out the ground state from an arbitrary state

R ) Z ci|t) — co(—=Eo)"|0)

S=1/2 Heisenberg model
H=) 8-8;=-> Hy, Hyi=(3-5"5;
(2,7) (2,7)

Project with string of bond operators

Z H Hi(p)j(p)‘\Il> — 1|0) (r = irrelevant) st
{H;;} p=1 ,"’/ @d) \\\
Action of bond operators m (c,b) ‘m
i a b C d
AN (e d) ) = (@, b).. (e, d)...) i g E =

1

Hy|..(a,b)...(¢c,d)...) = S ]...(c,b)...(a, d)...) (4,9 = (| L R

Simple reconfiguration of bonds (or no change; diagonal)
® no minus signs for A—B bond ‘direction’ convetion
® sign problem does appear for frustrated systems
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Expectation values: (A) = (0|A|0)
Strings of singlet projectors

o = H H;, »)inp)» k=1,...,Ny' (Ny = number of interaction bonds)
=l
We have to project bra and ket states

D PdVi) = Wi |[Vi(k)) — (—Eo)"col0)
k k

» (VilPr =Y (Vi(g)|Wy — (Olco(—Eo)™

g g
6-spin chain example: (A) = 2,5\ Vil PG AL V2
: > gk (Vi P V2
) | (L1010 SuaWeli@lav®)
) 1 TS W Wer Vi) Vi (R))
) ‘ ) H ) ( l ( ( - Monte Carlo sampling
f operator strings
YIITITZ U CIC | C N —
(V] —> A ¢ V) trsagi?i:rzsgr:;re\s i
Py Py
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More efficient ground state QMC algorithm — larger lattices

Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010

Put the spins back in a way compatible with the valence bonds
(ai,b5) = (Tal; — LiT;)/V2
and sample in a combined space of spins and bonds
A
) (VO -
YOIl O
— |7

R

o—1—0

(V] —— ¢ *
H H

Loop updates similar to those in finite-T methods

(world-line and stochastic series expansion methods)

e good valence-bond trial wave functions can be used

e larger systems accessible

e sample spins, but measure using the valence bonds
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T>0 and T=0 algorithms side-by-side

Finite-temperature QMC
(world lines, SSE,...)

e} = 3" 2 fal (~H)" o)
: @0 O Q—:H:
O OIC .IO O

periodic time boundary conditions

® Computer implementations similar

Ground state projection

> fafalBlI(=H)™|e)
of

O

Pl
v
\.Jl.

— O

O

O

O

B

k

open boundaries capped by
valence bonds (2-spin singlets)
[AWS, HG Evertz, 2010]

Trial state can conserve relevant
ground state quantum numbers

(S5=0, k=0,..

)
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Starting point: S=1/2 antiferromagnetic Heisenberg model

JZSi'Sj FEA A

A A

Sublattice magnetization 1197
71" oA A

Z $:Si, ¢ = (=1)%T¥ (2D square lattice)

Long- range order. <ms2> > 0 for N—o

LxL lattices up to 256x256, T=0
Quantum Monte Carlo P — Pr — T

- finite-size calculations T ~0.00002 B
- imati 0.13+| |} 4 -
no approximations b } " PO 1

000000 .. .
) ; C-In

- extrapolation to infinite size .. = ||/l d
Reger & Young 1988 0.12+ 1 000002
Mg — 030(2) (’).ll:— P

~ 60 % of classical value : AT

M

2
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I
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")
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o

il e M’

AWS & HG Evertz 2010 0.10F 70 " T

ms = 0.30743(1)
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