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Standard low-energy theory of quantum antlferromagnet

g
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Can describe Neel to featureless paramagnetic transition 7 i o
- VBS pattern or topological order cannot be captured by ¢ oA

Topological defects (hedgehogs) in field configurations:

- suppressed in the Neel state
- proliferate in the quantum paramagnet

The VBS state corresponds to a certain
condensation of topological defects

—ellls—ellle—ellle—

- requires a description beyond ¢* theory — —smms—smmy—qmm,- Graph:Senthil et al.

Neel vector described by spinors z; ¢ =

*
ZaO'agZﬁ

- coupled to U(1) gauge field where hedgehogs correspond to monopoles
- VBS on square lattice arises from condensation of quadrupled monopoles

Murthy & Sachdev 1991, Read & Sachdev 1991

Nature of the Neel - VBSH*’E‘r_” N¢

tlon remained unknown...




_ Intriguing hints from numerics

VOLUME 89, NUMBER 24 PHYSICAL REVIEW LETTERS 9 DECEMBER 2002

Striped Phase in a Quantum XY Model with Ring Exchange

A.W. Sandvik,"? S. Daul,>* R.R. P. Singh,4 and D. J. Scalapino2

QMC StUdy Of 2D S=1/2 XY mOdeI T_|'|_T'|_ :|_ - |: : - :| |
with plaquette flip (partial ring exchange) IS I S T BT o
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% : <;k1> - VBS pattern for K/J =10

RS ol Qe e Qi ey X QX Y QY
B, = S7S7 + S;78T = 2(Si85 + SS),

Py = S{S7SEST + 87875, S/,

First-order transition would be
expected for superfluid (XY magnet)
to VBS transition

No discontinuities detected R e S Ay

Motivated re-examina'tir'bn of the field theory




O(3) transition with suppressed topological defects in MC simulations

- changes universality class
Motrunich and Vishwanath 2004 (+ earlier work in particle physics) 4

Topological defects may be “dangerously irrelevant” at 7
the 2D Neel - VBS transition

- universality of defect suppressed O(3)

- topological defects relevant in VBS state only

Senthil, Vishwanath, Balents, Sachdev, Fisher (2004) A
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S, = | drdr| (0, —iAL)zZ.|" + 5|z +u(|z.|?)* + 5o (€,40,0,4A))
0

- non-compact (defect-free) CP!' model
- large-N calculations for SU(N) CPN-1 theory

order parameter

Continuous transition found for large N

- violation of Landau rule
- expected first-order transition between ordered states

Is the transition reallyzédhtihﬁbus for N=2 (small N)?



DQC scenario has two dlvergent Iength scales on VBS side

- correlation length £ « (g — g.) ™"

and emergent U(1) length ¢ o (g — g.)

/
—vV

- due to dangerously-irrelevant perturbation which causes VBS

- known in many classical systems (e.g., 3D clock models)
Jose, Kadanoff, Kirkpatrick, Nelson, PRB 1977

H = —JZCOS(@i — 0,)
)
A

—h Z cos g0,

q=06

h is dangerously irrelevant

- does not change critical point

A Okubo et al, PRB 2015 Q
- changes ordered state
Fixpoints:
a2 P = paramagnet
i = X = 3D XY critical point
Ig | | > Y = XY symmetry breaking
e p,Y, 9 Q=2z,symmetry breaking
Ve Ve
Y, <0 y,’1 >0

Cross-over from XY orderlng to Zq orderlng at Iength scale &

RG flows can be observed in MC simulations




~ MC simulations of classical 3D clock model

H=-J Z cos(0©; —©;)  Restricted to g clock angles
(i7)
Standard order parameter (mx,my)
N q =0

N
1 1 Z .
M, = N ;COS(@i) Ty — N - Sln(@z‘)

Probabillity distribution P(mx,my) shows cross-over from U(1) to Zq for T<T¢
Zs, L=4 Zg L=32

Can be quantified with
“angular order parameter”:
2T%

Wi dO cos(qO®)P(O)
0

mq > 0 only if g-fold anisotropy

Lou, Balents, Sandvik, PRL 2007




XY flxed point can be studled using the blnder cumulant of m

U g M)

Flows to these values with the
system size (inverse energy scale)

Use mq to quantify the degree

of Zqg symmetry

- related to the dangerously
Irrelevant coupling

e ’/027T dO cos(qO)P(O)

In principle the length scale &
can be extracted from the flows
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In the f|eld theory the VBS corresponds to condensatlon of topologlcal

defects (quadrupoled monopoles on square lattice) | I

Analogy with 3D clock models: The topological

defects should be dangerously irrelevant

Fugacity of topological defects A4

Graph from Matthew Fisher

VS

? VBS

AF DQCP

U(1) SL

I
I

Non-compact CP!' model

- no topo defects

- does not describe
the VBS phase

- should describe the
critical point (unless
first-order transition)

Goal: Test scenario and obtain quantitative results using numerics




* Ground states for small and large g are well understood
» Standard Néel order up to g=0.45; collinear magnetic order for g>0.6
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0<g<045 0.45 < g < 0.6 g > 0.6

* A non-magnetic state exists between the magnetic phases

» Some recent calculations suggest spin liquid
» Most likely a VBS (what kind? Columnar or plaquette?)
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2D frustrated models are challenging:
QMC sign problems, DMRG/tensors still difficult




Sandwk PRL 2007

The Helsenberg mteractlon IS equivalent to a singlet-projector

Cij:l—Si-Sj

4

- we can construct models with products of singlet projectors
* no frustration in the conventional sense (QMC can be used)
» correlated singlet projection reduces the antiferromagnetic order

@ O O
& (&)

The “J-Q” model with two projectors is

iy B —JZCZ']' R Q Z C’ijckl
(27) (2jkl)
- Has Néel-VBS transition, appears to be continuous

* Not a realistic microscopic model for materials
- “Designer Hamiltonian” for VBS physics and Neel-VBS transition

+ all translations

(/‘..C’kIC’ :
R and rotations

Use to test the deconfined'q'il‘antum-criticality scenario




Staggered magnetization

Y 1 Ti+yi § 10"
M= — Z(—n i G
Dimer order parameter )
| N S 107
Do =75 ;(—1)%&' +Sita
1 N
D?J A7 N Z(_l)yz S’L ; SH—Z& 10'3
=il
Compute squared order parameters o
2 2 2 2
. (-2 DY A
There may be O(5) symmetry R% o
[Nahum, Serna, Chalker, Ortuno, Somoza,
PRL 2015]
Exponents, especially v, show large o

=—a JO,=0

oo JO,=0.03
o JO,=0.0447

o—o J/Q,=0.1

(Sandvik, PRB 2012)

finite-size drifts [Harada et al., PRB 2013]

Need to compute the exponé‘nts more systematically




?’;Emergent U(1) and RG flows in the J-Q3 mo

i A ot =

P(Dx,Dy): Emergent U(1) symmetry 01 Y- — ' '

0.09 J/Q=0.0667 ——— .
J/Q=0.2667 ———
008 J/Q=0.3667 L =46.... -
007 L J/Q=0.4667 » |
| widnzo8ees
0.06 - ™ )/G=07667 i
0.05 + J/Q=0.8667 ——e— _
A J/Q=1.8667 ——=—
0.04 J/Q=2.8667 ——e— .
0.03 i
g . 0.02 1
Define D4 as in the clock model L “laet
to quantify degree of Z4 symmetry
: -0.01 | ' ' | . . .
Use Binder cumulants for 06 0402 0 02 04 06 0B 1
a Un-U
Neel (Um) and dimer order (Up) D™m,

- Up - Um shows flows to phases and dqc point  H. Shao, W. Guo, A. W. Sandvik
(preliminary; work in progress)
Shows similarity with the clock models

- but clock models only have one ordered phase
- different universality expected
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Correlation ength divergent for T — TC f x 6|77, 6= T T

)

Other singular quantity: A(L — 00) o |d]" 5—%/1/

For L-dependence at T¢ just let E»L: A(T ~ T,, L) oc L™"/¥
Close to critical point: A(L,T) = L "/"g(¢/L) = L™V f(§LY")

2D Ising universality class
vy="7/4, v=1
Critical T known

T. =2/In(1 +V?2) ~ 2.2692

When these are not known,

treat as fitting parameters
- or extract in other way

20 -1 250 310 A
o b




~ Systematic critical-point analysis

(PP ———————

Binder cumulant 1 <m4>
- dimensionless U = 5 3 (m?2)?
- size-independent at T¢
2D Isina model: MC results
emamannsneaasEasns Sl o T
oo [ =]28 T
0.8k — L =16 32,64
oo L=8 0.95} T :
_06F L BN ‘
= =
0.4F 0.90 F NN ]
" ee [ = ]024 ]
02l L =128,256,512
0.85F °° L=04
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177 171

Curves cross asymptotically at T.
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Drift in (L,2L) crossing points
U = L(0R Y Lot L2 )
= scaling corrections in crossings
=phin) for T o T
~L-® for U — U(T)
Use correction with free exponent

2265 -

+*%

&
2260+ 1
2.2550~ 0.05 0.1 0.15
0.930 - (b)

0.925!
X% i
S

0.920

0.915
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0.1

Fit with Lmin=12: Te=2.2691855(5). Correct: T.=2.2691853...



Can be extracted from the dU(L,T)

slope of the Binder cumulant s(L,T) = AT
1 s(2L,T™) 1 _
1 _— — L “ . o
a (7)) = el

1.01
Evaluate at crossing point
for sizes (L,2L)

1.00

Fit to power-law _
correction 20.98

Extrapolation stable, 0.97_
gives exponent '
1/v=1.0001(7)

(exact = 1) 095!

Curve-crossings <« “phenomenological renormalization” (Fisher)




Dimensionless quantity:

- Crossing of Ri(g,L), R1(g,rL), g=J/Q,

g*(L), analyze size dependence (using r=2)
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Dimensionless quantity:
- Crossing of Ri(g,L), R1(g,rL), g=J/Q,
g*(L), analyze size dependence (using r=2)

(L) =g Fal 1) 4

gi B )
1 1

= In[s(g™,rL)/s(g", L)l = —In(r)+al “ +...

s(g,L) = dR1(g, L)/dg (slope)

- Small correction exponent; w = 0.5
- v =0.45 +/- 0.01

0.05

0.04

1.50
x 1.49

1.48

From Binder ratio

1.47

005

1/L

01

015

No sign of first-order transition (then v=1/3 in finite-size scaling)




 Two length scales - VBS domain walls

A kol =% ™ - e et e Bt St i o

In some classical systems (clock models,...) the thickness of a domain wall
is larger than the correlation length: € ~ 67, & ~677, VvV > v




General scallng theory (foIIowmg Flsher et aI PRB 1989)
Classical d-dimensional system, free-energy density (singular part)

f(6,L) =&Y (¢/L), €~067"

Excess free energy in presence of domain wall
AF(6,L) =& %Y (¢/L)L?

We can also see that

¢ = total order-parameter “twist”

p = stiffness constant

~

Consistency between the two expressions for AF requires Y ~

Ry g—(d—l)Ld—l

Test with Monte Carlo simulations

5
L?

%



We have developed efficient “multi-canonical” MC method for
CaICUIating AF(L) = FwaII(L) = Funiform(l_)

Define: kK = AF/LCZ_1 5

AF ~ g—(d—l)Ld—l

K~ §_(d_1) 15}

Finite-size scaling .
exactly at the critical
point (T=Ty):

£ — L

—

c i Y

MC data analysis:
- assume K ~ LP

- extract p(L) using (L,2L) data: p(L)

r

T

|

« 3D Ising

« 2D Ising

0.1 0.2 1/[?,3 0.4
- In[r(L)/£(2L)]/ In(2)

Agreement with expectation p 2 d-1 when L 2




- Quantum system + two length scales

e et et e — -s — o - - — e PSR Te——

Quantum-critical point Two divergent lengths
- dynamic exponent z; d — d+z £~V 5/ ~ 5 YA
- F becomes ground-state energy Eo

Generalizing the Fisher et al.
approach to 2 lengths:

Energy in the thermodynamic limit
should be controlled by €, since

5—(d—|—z) - g/—(d—l—z)

o e
ARy(6,1) =& “ITE/L /T AB(6L) = 0) (5 ) €19
Consistency between the two relationships requires
¥ L 52 52 —(d+2z—2) ¢1—1 7 d—1
T e

Deconfined quantumCrif—iéél’ity: d=2, z=1 - k ~ €1 &1



Two kinds of VBS domain walls can be
Imposed In open-boundary systems

- 1t wall splits into two 11/2 walls

L 5—15/—1
Ambiguity in finite-size scaling:
gplien 1} € 2 L. & — |V :K~ LUy
option2)€ - L, € =L k~L>2
aplion3)& > L. & —|vv: k~ L11vv) B R ¥ W ¥ T R— Y

Results show option 3 (exponent < 2):
vV’ = 0.715 +/- 0.015 p(L) = In[k(L)/x(2L)]/In(2) — 1+ v /V/

This result demonstrates explicit ' "iafivergent length scales!
- different from the standard “dangerously irrelevant” perturbation




L
N 3 3
oA
?'_v.‘-_

3D q-st clock model (q>3)

- basic example of dangerously irrelevant perturbation [to U(1) symmetry]

H = —JZCOS(@Z' — 0,)
(27) G

10 F

- restriction to
“clock” angles

The predictionfor g = 6
the domain wall =
energy in the thermodynamic
limit is Il
foi o

-

¢’ ~ 15”/]/”, Vv a2 (g = 6)

10 °F

Finite-size scaling at Tc shows

S

—_

o e

The “dangerously irrele\)ant"’ pertbation in the J-Q model
is more serious (“super-dangerous”?)



Nature of magnetic excitations

The VBS state is confined

- confining string

- excitations carry S=1

- “triplon” = bound spinon pair

The confining string weakens
as the critical point is approached

- deconfinement
= Spinon (S:1/2) excitations What is the size A of the bound

liberated at the critical point spinon pair?

The theory predicts A ~ &’ (or possibly ¢ <A< ¢'....)

))))))) |
))3))))
))3))))
))3))))
))3))))

QMC simulations can be carried out in the valence-bond basis
- lowest state in each spin sector, S=0,1,2,...
- S=1 state used to study triplons and spinons

Test the scaling of the spinon bound state in the J-Q model




Project valence bonds W|th Hm or exp(—BH) /
Expectation values (correlation functions) ) { ) ) ) ( ( l (

computed using transition graphs ) ( ( (
11 O )
)1) FCTCTCIC
) ) (V] = — )
O=—=0]e . ®
Vi) V) (Vi|Vr) / : )
Put the spins back in a way compatible e—lelo
with the valence bonds (singlets) and ( o
sample in a combined space of spins \
o

and bonds

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)
* “measure” using valence bonds

Total spin S=0 conserved, faster 60nvergence than T—0 method




Extended valence bond ba3|s for S>0 states
Tang, Sandvik PRL 2011, Banerjee, Damle JSTAT 2010

Consider S#=S

- for even N spins: N/2-S bonds, 2S unpaired “up” spins
- for odd: (N-2S)/2 bonds, 2S upnpaired spins

- transition graph has 2S open strings

o =0 @ <VBIVa>

1
S=1/2 Q)/\. S <VB()IVli)>
J
1 k
e 1 o> 2 51\9 <Vp(i,DIVa(ik)>
]

Overlaps and matrix elements involve loops and strings
- very simple generalizations of the S=0 case
- loops have 2 states, strings have1 state

Use to study spinon bound states and unbinding
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. J-Q model at the critical point
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Exponent v’ (confinement lengt)
H. Shao W Guo A. W. Sandvik (801ence 2016)

Deflne A\ (size of spinon bound state)
as root-mean-square string distance

Crossing-point analysis of A/L

N/L crossing points converge better
than in other cases (monotonic)

Slope analysis shows v’ = 0.58(2) > v

= Transition is associated with
spinon deconfinement

v/V' =0.77 +/- 0.03

In OK agreement with 0.715 +/- 0.015
from VBS domain-wall energy

From 2-spinon distance

How do the two divergehf‘“l“‘e

SREREREREEE 0 002 004 006
SESERERENEN 1/L

| _ghg‘éffect other observables?




Anomalous scaling of winding numbers

First-or

(W*)

3.5

3=

vistunov, Kuklov, Troyer,..

Jiang, Nyfeler, Chandrasekharan,Wiese (2008)

= (W) + (W) + (W7)

AN

— 2/8108 + —X

g

Linear divergence (first-order)?

34

3.2

|

| | | | L]

|

LI |

Jiang et al. (2008)

z2=1,0x L —

. (2008-2013)

ps x L', x o< L7

— (W?=) = constant

Multiplicative log correction?

3.1 T T LI B
3.1 v 1 v 1 M

30}
30F |
29F

A | 28F

| | P S |
10 20 30 40 50 100
L

(Sandvik, PRL 2010)

Anomalous scaling or first-order transition?

|
200




Two dlvergent lengths tuned by one parameter EXO0 ”, f X 5 V'

Finite-size scaling of some quantity A. Thermodynamic limit: A o< 0"
Conventional scenario

A8, L) = L™V f(§L'" 5LV

When L —»oo: f(5L1/’/,5L1/’/) N (5L1/u),<
Alternative scenario

A6 1) -1 "k fiaptie aplie

Wkl L, f(5L1/V,5L1/V/) L (5L1/1/’)/<;

Example: Spin stiffness: k=v(z+d-2). At criticality:
—(2+d—2) —(z+d—2)v /v’

ps X L or . ¢ I

The first scenario has so far been assumed
- unexplained drifts in Lps in J-Q and other models (z=1, d=2)

Can alternative scaling form resolve the enigma?




(L,2L) crossing-point analysis of Lps and Ly
The conventional scaling form Replaced by new form
Dy 7—(z+d—2) Dy X 7 —(zFd=2)v /v’

v/v = 0.72

Fixed; taken from
domwain-wall
scaling fit

00 0 .I 0.65' Iol.l 1L 010_ 0 .I 0.65' 0.1 I/L
0 50 100 [, 0 50 100 [,

Behavior interpreted as first-order transition is actually unconventional scaling!

Finite-temperature behaviors are similarly affected




Unconventional T>0 critical scaling

Conjecture involving the two

/ 4
length-scale exponents: v / v~ 0.72
& oo T7Y ("““”/’/)(1+a,T‘"€)7 Fixed; taken from
/ domain-wall
(d/Z—l)V/V W
xr o4 (14 0T™) scaling fit

1.6F | | | | '
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0.044 F
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°
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]

Experimentally important revision of critical scaling



Conclusions

Two length scales observed explicitly in the J-Q model

No signs of first-order transition in the J-Q model

Simple two-length scaling hypothesis explains anomalous scaling
of spin stiffness and susceptibility
- conventional wisdoms revised

Finite-temperature

- T>0 corresponds to thickness of quantum system in imaginary time
- scaling laws from finite-size scaling forms

Standard T>0 critical scaling forms have to be reconsidered
- existing J-Q results support unconventional forms with v/v’
- experimentally important

How general is this kind of two-length criticality?







