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Ab initio study of the anharmonic lattice dynamics of iron at the γ -δ phase transition
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We report calculations of phonon dispersions of iron (Fe) at its γ -δ phase transition using a self-consistent
ab initio lattice dynamical method in conjunction with an effective magnetic force approach via the
antiferromagnetic approximation. Our results show that anharmonic phonon-phonon interactions play a crucial
role in stabilizing the δ-Fe phase in the open bcc lattice. In contrast, the lattice dynamics of the close-packed
fcc γ -Fe phase are dominated by magnetic interactions. Simultaneous considerations of the lattice anharmonic
and magnetic interactions produced temperature-dependent phonon dispersions for δ-Fe and γ -Fe phases in
excellent agreement with recent experimental measurements. The present results highlight the key role of
lattice anharmonicity in determining the structural stability of iron at high temperatures, which has significant
implications for other high-temperature paramagnetic metals like Ce and Pu.
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I. INTRODUCTION

Elemental iron (Fe) exhibits fascinating structural, me-
chanical, and magnetic properties, which have attracted great
interest in many fields of science and technology. There have
been extensive studies on the mechanisms underlying these
properties, but the complex pressure-temperature (P-T) phase
diagram of iron has presented formidable challenges to a
full understanding of this important and enigmatic material.
Of particular interest are the temperature-driven structural
phase transitions of iron. At low temperatures, iron adopts a
body-centered cubic (bcc) crystal lattice in its α phase, which is
ferromagnetic below the Curie temperature TC = 1043 K; two
paramagnetic structural phase transitions occur as temperature
increases, i.e., the transition to the face-centered cubic (fcc)
γ -Fe at 1185 K and the transition to the high-temperature bcc
δ-Fe at 1667 K, which is stable up to the melting temperature
of 1811 K [1]. While the ground-state behavior of α-Fe is well
understood within the Stoner theory of ferromagnetism [2,3],
the mechanisms for the transitions to the high-temperature γ

and δ phases remain unresolved. Early theoretical accounts for
the phase transitions in iron were highly controversial, where
pure magnetic [4,5] or vibrational [6,7] contributions to the
free energy were considered to be the main driving forces.
In particular, within the spin-fluctuation theory, Hasegawa
et al. [5] ascribed the δ phase stability to the magnetic
disorder in the bcc lattice at high temperatures, while Osetsky
et al. [7] suggested by molecular dynamics simulations an
alternative explanation based largely on the contributions from
the vibrational entropy. It has been shown, however, that
a full understanding of the phase diagram of iron requires
simultaneous considerations of different contributions to the
entropy in the vicinity of the transition temperatures [8].

Recent years have seen significant progress in probing ther-
modynamic properties of iron [9–16]. Neuhaus et al. [11,12]
performed inelastic neutron scattering measurements of the
phonon dispersions of iron at high temperatures near the
distinct phase transitions, and they found that the vibrational
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and electronic entropies contribute almost equally at the α-γ
transition, while the vibrational contribution dominates at
the γ -δ transition, stemming from the low-energy transverse
phonons in the open bcc lattice of the δ phase. These
experimental results have provided important insights into
the stability mechanisms of the high-temperature iron phases.
Nevertheless, the physical interactions governing the observed
unusual thermodynamics are still poorly understood, and the
explanation for the unusual phonon behavior in paramagnetic
iron at high temperatures still poses a great theoretical
challenge.

Several computational schemes [17–23] have attempted
to account for the lattice dynamics of paramagnetic iron,
including a spin-space averaging (SSA) procedure [17], the
dynamical mean-field theory (DMFT) [20], and a spin-spiral
method [21]. By considering the finite-temperature magnetism
in force-constant calculations and using the quasiharmonic
approximation (QHA) that treats only the effect of thermal
lattice expansion, these approaches can reproduce the observed
phonon dispersions of α-Fe and γ -Fe and generally reveal
a strong effect of the magnetic short-range order on the
dynamical stability of α-Fe above TC [18–21]. Very recently,
Leonov et al. [24] extended DMFT calculations to the high-
temperature δ-Fe and found within QHA an instability of
the bcc lattice, suggesting the necessity of including other
anharmonic effects for a correct description of δ-Fe. Anhar-
monicity in the lattice subsystem, i.e., the phonon-phonon
interactions [25], is especially important close to the melting
point, as was seen in the bcc phases of the group 3 (Sc, Y, La)
and 4 (Ti, Zr, Hf) metals [26–29]. Whether the anharmonic
lattice effect is crucial in the case of iron remains to be
demonstrated. Moreover, the interplay between effects of the
magnetism and the lattice anharmonicity is also unclear in
high-temperature paramagnetic iron.

In this paper, using the self-consistent ab initio lattice
dynamical (SCAILD) calculations [27,28], we explicitly in-
corporate the phonon-phonon interactions to determine the
anharmonic phonon dispersions of both the fcc and bcc iron
phases at the high-temperature γ -δ transition. We consider
the effect of magnetic interactions by including the local
moments in the force calculations required for SCAILD. In the
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high-temperature δ-Fe phase, significant phonon renormaliza-
tion is found due to the phonon-phonon interactions, resulting
in the dynamical stability of the open bcc lattice, whereas
in the close-packed fcc γ -Fe phase, only small anharmonic
lattice effects are predicted, and the magnetic interactions
play a more prominent role. For both δ-Fe and γ -Fe, with
simultaneous considerations of the lattice anharmonic and
magnetic interactions, our calculated temperature-dependent
lattice dynamical properties agree well with the experimental
data.

II. COMPUTATIONAL DETAILS

We have performed finite-temperature phonon calculations
using the SCAILD method with the Hellmann-Feynman forces
obtained from ab initio calculations based on the density func-
tional theory (DFT) as implemented in the VASP package [30].
The projector augmented wave (PAW) scheme [31] was used
to describe the electron-ion interactions, and the general-
ized gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof parametrization [32] for the exchange-correlation
functional was adopted. After running convergence tests, we
have chosen the plane wave cutoff energy of 345 eV. The
supercell used was obtained by increasing the bcc or fcc
primitive cell four times along the three primitive lattice
vectors, and all the reported calculations were performed using
a uniform 4 × 4 × 4 Monkhorst-Pack [33] k-point grid with a
Methfessel-Paxton smearing of 0.2 eV. Thermal expansion
effects were taken into account to determine the lattice
constants at finite temperatures [34].

As an extension of the frozen phonon method [35], SCAILD
determines phonon frequencies using the Hellmann-Feynman
forces in a supercell where atoms are displaced from their equi-
librium positions according to the phonon amplitudes [27,28]

Aqs = ±
√

�

Mωqs

[
1

2
+ n

(
�ωqs

kBT

)]
, (1)

where n(x) = 1/(ex − 1) is the Planck function, T is the
absolute temperature of the system, and M is the atomic
mass. Since all phonons with wave vectors q commensurate
with the supercell contribute to the atomic displacements
present in the same force calculation, the interactions between
different lattice vibrations are included in the calculated
phonon frequencies given by [27,28]

ωqs =
[
− 1

M

εqs · Fq

Aqs

]1/2

, (2)

where Fq is the Fourier transform of the atomic forces and
εqs is the eigenvector of phonon mode s. In view of the
mutual dependence among the forces, displacements, and the
phonons dictated by Eqs. (1) and (2), this approach requires a
self-consistency loop to determine the temperature-dependent
lattice dynamics [if imaginary phonon frequencies occur in the
first iterations, the absolute values |ωqs | are used in Eq. (1)].
As a result, one gets from SCAILD a set of phonon frequencies
that have been renormalized by anharmonic phonon-phonon
interactions to all orders.

A complete description of the lattice dynamics of param-
agnetic (PM) iron requires that the magnetic effect is also

accounted for in addition to the anharmonic lattice effect.
Because accurate force calculations in the PM state are limited
in the presently available DFT implementations, we employ an
antiferromagnetic (AFM) state approximation in consideration
of its features shared with the PM state, specifically the local
moments on the Fe atoms and the zero total magnetic moment
in a unit cell. The single-layered AFM configurations along
the [001] and [111] directions, being commensurate with
the supercells used in the SCAILD calculations, are adopted
for the bcc and fcc iron, respectively. Within these AFM
approximations, phonon frequency calculations converge in
about 50 iterations for the bcc phase and 30 iterations for the
fcc phase. Discussion of the phonon dispersion’s dependence
on the AFM configuration is provided in the Supplemental
Material [36].

It is crucial to note that considering an individual magnetic
configuration will destroy the symmetry of a bcc or fcc crystal.
To retain the correct symmetry of the calculated phonon
dispersions, the symmetries of the different q vectors are
restored for each iteration by [27,28]

ω̄2
qs = 1

mq

∑
S∈S(q)

ω2
S−1qs , (3)

where S(q) is the symmetry group of the wave vector q and
mq is the number of elements of the group. This procedure
in SCAILD is in principle equivalent to that in SSA [17],
where the force constant matrix derived from a single magnetic
configuration is symmetrized by employing all the lattice
symmetry operations.

III. RESULTS AND DISCUSSIONS

We examine the lattice dynamical properties of paramag-
netic iron near the γ -δ phase transition using the SCAILD
method in the context of both the nonmagnetic (NM) and
AFM approximations. Our results for the phonon dispersions
of δ-Fe are presented in Fig. 1. The theoretical calculations
are carried out at the lattice constant a = 2.897 Å obtained
for PM bcc Fe at T = 1743 K, which is only 1.1% smaller
than the experimental value of 2.931 Å [1]. The NM phonon
dispersions at T = 0 K (Fig. 1, top panel) show imaginary
frequencies along [ξξ0], [00ξ ], and [ξξξ ], which is in
agreement with the previously reported results calculated using
the ultrasoft pseudopotentials [20,37]. At T = 1743 K, the
SCAILD calculations predict that the bcc lattice of δ-Fe is
still dynamically unstable, although the imaginary phonon
frequencies along the [00ξ ] direction have been removed.
Under the AFM approximation, where the local magnetic
moment μ = 1.95μB , the calculated phonon dispersions at
T = 0 K (Fig. 1, bottom panel) also exhibit imaginary modes
in the [ξξ0], [00ξ ], and [ξξξ ] directions. In sharp contrast,
our finite-temperature AFM SCAILD calculations reveal a
significant phonon renormalization due to the phonon-phonon
interactions, which produces a strong phonon frequency
hardening that removes all the imaginary phonon modes,
thus successfully predicting the dynamical stability of the
bcc lattice of δ-Fe at high temperatures. Furthermore, the
calculated T = 1743 K phonon dispersions are in excellent
agreement with recent experimental data for δ-Fe [12]. These
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FIG. 1. (Color online) Phonon dispersions of paramagnetic δ-
Fe calculated within the nonmagnetic (top) and antiferromagnetic
(bottom) approximations, compared to experimental data measured at
1743 K (Ref. [12]). The solid orange lines represent the self-consistent
phonon calculations. The antiferromagnetic 1743 K results obtained
at the experimental lattice constant (gray dashed lines) are also shown.

results clearly suggest that the anharmonic phonon-phonon
interactions play a key role in stabilizing the bcc δ-Fe phase at
high temperatures. Note that by considering this anharmonic
effect Luo et al. [38] had found a lattice stability P-T range
of bcc Fe at the Earth’s core conditions. The reported phonon
dispersions for the δ phase at zero pressure therein are different
from ours in terms of the highest phonon frequency at the N

point (larger in the former), which can possibly be attributed
to the use of a smaller lattice constant or other different
parameters involved in the AFM SCAILD calculations.

We next investigate the phonon dispersions of γ -Fe, and
the results are presented in Fig. 2. The theoretical calculations
are performed at the lattice constant a = 3.608 Å obtained for
PM fcc Fe at T = 1573 K, which is only 1.7% smaller than the
experimental value of 3.672 Å [1]. The calculated NM phonon
dispersions at T = 0 K (Fig. 2, top panel) exhibit imaginary
frequencies around the X point. The finite-temperature NM
SCAILD calculations remove these imaginary modes, thus
predicting that the fcc lattice of γ -Fe is dynamically sta-
ble. However, the obtained T = 1573 K phonon dispersion

FIG. 2. (Color online) Phonon dispersions of paramagnetic
γ -Fe calculated within the nonmagnetic (top) and antiferromagnetic
(bottom) approximations, compared to experimental data measured at
1573 K (Ref. [12]). The solid orange lines represent the self-consistent
phonon calculations. The antiferromagnetic 1573 K results obtained
at the experimental lattice constant (gray dashed lines) are also shown.

curves deviate considerably from the experimental data [12],
especially for the longitudinal modes near the X and L

points. Considerable improvement is achieved by invoking
the AFM approximation for γ -Fe where the local magnetic
moment μ = 1.92μB . In sharp contrast to the NM case,
the resulting T = 0 K phonon dispersions (Fig. 2, bottom
panel) display no imaginary frequency, thus predicting the
dynamical stability of the γ -Fe fcc structure; moreover, these
calculated results at T = 0 K are already in reasonably good
agreement with experimental data [12]. The AFM SCAILD
calculations at T = 1573 K introduce additional but small
improvements compared with the experimental observations.
These results demonstrate that magnetic interactions have a
dominant impact on the vibrational properties of γ -Fe, and
given the small extent of the phonon renormalization effect
arising from the phonon-phonon interactions (confirmed also
by the T = 1200 K results in the Supplemental Material [36]),
the lattice anharmonicity in the close-packed fcc γ -Fe phase
plays a much less prominent role compared with its impact on
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TABLE I. Three cubic elastic constants (in GPa) deduced from
the calculated phonon dispersions for δ-Fe and γ -Fe, compared
to available experimental data. We also list the theoretical and
experimental lattice constants.

Method Phase T (K) C11 C44 C ′ a (Å)

NM SCAILD bcc 1743 123 78 −51 2.897
AFM SCAILD bcc 1743 129 103 4 2.897
Expt. (Refs. [1] and [12]) bcc 1743 158 86 11 2.931
NM SCAILD fcc 1573 361 138 100 3.608
AFM SCAILD fcc 1573 169 85 32 3.608
Expt. (Refs. [1] and [12]) fcc 1573 171 68 18 3.672

the open bcc lattice of the δ-Fe phase, which is similar to the
cases found in hcp Ti, Zr, and Hf [27,39].

Using phonon dispersions, we calculated the elastic prop-
erties of δ-Fe and γ -Fe. We determine the cubic elastic
constants C11, C44, and C ′ by utilizing the relationships [40]
ρV 2

001L = C11, ρV 2
001T = C44, and ρV 2

110L = C11 + C44 − C ′,
where ρ is the density and V denotes the longitudinal (L)
or transverse (T ) sound velocities along the [00ξ ] and [ξξ0]
directions. Our calculated results are listed in Table I and
compared with experimental data [12]. It is seen that the NM
SCAILD calculations are unreliable, producing a negative C ′
for δ-Fe and considerably overestimating the elastic constants
for γ -Fe; meanwhile, the AFM SCAILD calculations produce
elastic constants in good agreement with experimental data for
both phases.

It is worth noting that for both δ-Fe and γ -Fe the
local magnetic moments included in the AFM approximation
are an essential requirement for correctly explaining their
phonon behavior within SCAILD since, overall, calculations
within the NM approximation produce lattice dynamical
properties which differ significantly from the experimental
measurements. These findings highlight the interplay between
the magnetism of the electrons and the lattice degrees of
freedom and underscore the importance to consider both the
lattice anharmonic and magnetic effects simultaneously for a
good quantitative description of the high-temperature lattice
dynamics in paramagnetic iron.

In addition, we also performed AFM SCAILD calculations
at the experimental lattice constants 2.931 Å for δ-Fe at 1743 K
and 3.672 Å for γ -Fe at 1573 K, producing phonon dispersions
showing an obvious softening compared to the measured data
(see gray dashed lines in the bottom panels of Figs. 1 and 2).
The discrepancy is expected to be overcome by combining the
SCAILD method with advanced techniques such as the DMFT,
which can avoid the use of a specific AFM configuration and
treat the magnetic effect more accurately. This is, however,
beyond our capability at present, and should be the direction
for future research.

IV. CONCLUSIONS

We have studied the anharmonic lattice dynamics of iron
at its γ -δ transition using the SCAILD method in conjunction
with an effective magnetic force approach via the antiferro-
magnetic approximation. Our results show that the anharmonic
phonon-phonon interactions are largely responsible for the
stability of the bcc δ-Fe, while the magnetic interactions play
a dominant role in stabilizing the fcc γ -Fe. Simultaneous
considerations of the two effects have led to an excellent
agreement between the theoretical results and the experimental
data on the temperature-dependent lattice dynamical prop-
erties in δ-Fe and γ -Fe. Finally, we remark that once the
magnetic effect is properly treated the SCAILD method is
capable of describing the anharmonic phonon-phonon effects
in paramagnetic materials, and it would be interesting to apply
this method to other high-temperature paramagnetic metals
such as the bcc phases of Ce and Pu [41,42].
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