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Quantum generative adversarial networks with multiple
superconducting qubits
Kaixuan Huang1,8, Zheng-An Wang 2,8, Chao Song3,8, Kai Xu 2, Hekang Li 3, Zhen Wang3, Qiujiang Guo 3, Zixuan Song3,
Zhi-Bo Liu 1✉, Dongning Zheng2,4, Dong-Ling Deng5,6✉, H. Wang3, Jian-Guo Tian1 and Heng Fan 2,7✉

Generative adversarial networks are an emerging technique with wide applications in machine learning, which have achieved
dramatic success in a number of challenging tasks including image and video generation. When equipped with quantum
processors, their quantum counterparts—called quantum generative adversarial networks (QGANs)—may even exhibit exponential
advantages in certain machine learning applications. Here, we report an experimental implementation of a QGAN using a
programmable superconducting processor, in which both the generator and the discriminator are parameterized via layers of
single- and two-qubit quantum gates. The programmed QGAN runs automatically several rounds of adversarial learning with
quantum gradients to achieve a Nash equilibrium point, where the generator can replicate data samples that mimic the ones from
the training set. Our implementation is promising to scale up to noisy intermediate-scale quantum devices, thus paving the way for
experimental explorations of quantum advantages in practical applications with near-term quantum technologies.
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INTRODUCTION
The interplay between quantum physics and machine learning
gives rise to an emergent research frontier of quantum machine
learning that has attracted tremendous attention recently1–4. In
particular, certain carefully designed quantum algorithms for
machine learning, or more broadly artificial intelligence, may
exhibit exponential advantages compared to their best possible
classical counterparts2–8. An intriguing example concerns quan-
tum generative adversarial networks (QGANs)7, where near-term
quantum devices have the potential to showcase quantum
supremacy9 with real-life practical applications. Indeed, applica-
tions of QGANs with potential quantum advantages in generating
high-resolution images10,11, loading classical data12, and discover-
ing small molecular drugs13 have been investigated actively at the
current stage.
The general framework of QGANs consists of a generator

learning to generate statistics for data mimicking those of a true
data set, and a discriminator trying to discriminate generated data
from true data7,12,14–18. The generator and discriminator follow an
adversarial learning procedure to optimize their strategies
alternatively and arrive at a Nash equilibrium point, where the
generator learns the underlying statistics of the true data and the
discriminator can no longer distinguish the difference between
the true and generated data. In a previous QGAN experiment16,
the generator is trained via the adversarial learning process to
replicate the statistics of the single-qubit quantum data output
from a quantum channel simulator. However, the implementation
of quantum gradient, which is crucial for training QGANs6, is still
absent. In addition, the involvement of entanglement in QGANs,
which is a characterizing feature of quantumness and a vital

resource for quantum supremacy, has not yet been achieved
during the learning process3.
In this article, we add these two crucial yet missing blocks by

reporting an experiment realization of a QGAN based on a
programmable superconducting processor with multiple qubits
and all-to-all qubit connectivity previously reported in ref. 19.
Superconducting qubits are a promising platform for realizing
QGANs, owing to their flexible design, excellent scalability, and
remarkable controllability. In our implementation, both the
generator and discriminator are composed of multiqubit para-
meterized quantum circuits, also referred to as quantum neural
networks in some contexts20–23. Here, we benchmark the
functionality of the quantum gradient method by learning an
arbitrary mixed state, where the state is replicated with a fidelity
up to 0.999. We further utilize our QGAN to learn an classical XOR
gate, and the generator is successfully trained to exhibit a truth
table close to that of the XOR gate.

RESULTS
Framework of QGAN algorithm
We first introduce a general recipe for our QGAN and then apply it
to two typical scenarios: learning quantum states and the classical
XOR gate. The overall structure of the QGAN is outlined in Fig. 1a,
which includes an input label, a real source (R), a generator (G), a
discriminator (D), and a quantum gradient subroutine. The input
label sorts the training data stored in R, and also instructs G to
generate data samples mimicking R. D receives the label and
corresponding data samples from either G or R, and then
evaluates with appropriate scores, based on which a loss function
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V is constructed to differentiate between R and G. The adversarial
training procedure is repeated in conjugation with the quantum
gradient subroutine, which yields the partial derivatives of V with
respect to the parameters constructing D or G, so as to maximize V
for the optimal configuration of D and to minimize V for the
optimal G in terms of the chosen values of the constructing
parameters.
Specifically, denoting the sets of parameters constructing G and

D as θ
!

G and θ
!

D, respectively, the loss function V is written as

V ¼ 1
N

XN
n¼1

SD;Rn ð θ!DÞ � SD;Gn ð θ!D; θ
!

GÞ
h i

;

where N is the total number of data samples selected for training
and SD;Rn (SD;Gn ) represents the score of the nth data sample from R
(G) evaluated by D. G and D are trained alternately with D being
trained first. In D’s turn, we maximize the loss function by

iteratively optimizing θ
!

D according to θ
!iþ1

D ¼ θ
!i

D þ αD∇
θ
!

D

V ,

where i is the iteration step index and ∇
θ
!

D

V denotes the gradient

vector of the loss function at the ith step; we train G by minimizing
the square of the loss function with an iteration relation

θ
!iþ1

G ¼ θ
!i

G � αG∇
θ
!

G

V2. The learning rates can be adjusted by

tuning αD and αG which are typically on the order of unity.
An important quantity that plays a vital role in training our

QGAN is the gradient of the loss function with respect to a given
parameter. Interestingly, owing to the special structures of our
quantum circuits for the generator and the discriminator, a
common approach to obtain such a gradient is to shift the
corresponding parameter by ±π/2 and measure the loss function
at the shifted values24. In our experiment, we employ an effective
quantum method—the Hadamard test quantum algorithm25—to
obtain the gradient for the first time. This algorithm can reduce
half of the time in comparison with the common approach to
finish the training, at the expense of an additional auxiliary qubit

and two controlled gates (see Supplementary Note 4 for more
details). At each round of the training process, the parameters of
the discriminator (or generator) are updated simultaneously after
the gradients for all parameters are obtained, and a quantum
process tomography (QPT) is performed to characterize the
overlap fidelity between the generated data based on the
updated parameters and the true data.

Experimental implementation of QGAN
The above mentioned QGAN is experimentally realized on a
superconducting quantum processor using five frequency-tunable
transmon qubits labeled as Qj for j= 0–4, where all qubits are
interconnected by a central bus resonator as illustrated in Fig. 1b.
The role arrangement of Q0–Q4 can be visualized by the
exemplary experimental sequence shown in Fig. 1c. Q0 is to assist
the quantum gradient subroutine. Q1–Q2 stores the label which is
passed to D, with the output score encoded in Q1 by
SD;R=Gn ¼ hσz

1i=2þ 1=2. For the experimental instances with G
inserted, Q3–Q4 also stores the label as the input to G and the
output data sample from G is passed to D via Q3; for the
experimental instances with R in replacement of G, only Q3 stores
the data sample from R as designated by the label. Details of the
device parameters can be found in the “Methods” section and
Supplementary Note.
By tuning the qubits on resonance but detuned from the bus

resonator in frequency, these qubits can be all effectively
connected, which enables the flexible realizations of the multi-
qubit entangling gates among arbitrarily selected qubits. The all-
to-all interactions are described in the dispersive regime by the
effective Hamiltonian HI ¼

P
λjkðσþ

j σ
�
k þ σ�

j σ
þ
k Þ, where σþ

j (σ�
j )

denotes the raising (lowering) operator of Qj, and λjk is the
effective coupling strength between Qj and Qk mediated by the
bus resonator. Evolution under this Hamiltonian for an interaction
time τ leads to the entangling operator with the form of
UENT ¼ e�iHIτ , which can steer the interacting qubits into highly
entangled state. In our QGAN, the parameterized quantum

Fig. 1 QGAN algorithm and its implementation. a Overview of the QGAN logic. b Sketch of the superconducting processor used to
implement the QGAN algorithm, where the five qubits, Q0–Q4, are interconnected by the central bus resonator. c An instance of the
experimental sequences for fulfilling the QGAN algorithm to learn the classical XOR gate. Both G and D are parameterized quantum circuits
consisting of n layers of the multiqubit entangling gate UENT and n+ 1 single-qubit rotations θx=zj;l;m, where l= n+ 1 is the layer index of single-
qubit rotations,m∈ {G, D}, and the superscript (x or z) refers to the axis in the Bloch sphere around which the state of Qj is rotated by the angle
θ. Shown is the training sequence on G to optimize its parameter θx3;1;G based on the quantum gradient subroutine, which includes two
Hadamard gates (H), two controlled rotation gates, and a π/2 rotation around x-axis (X/2). In this instance, both Q1–Q2 and Q3–Q4 store the
input label, and D’s output score is encoded in Q1 by SD;R=Gn ¼ hσz1i=2þ 1=2, which can be obtained by directly measuring Q1. Q0’s hσz0i gives
the score derivative with respect to the rotational angle parameter right before the first controlled rotation gate, i.e., ∂hσz1i=∂θx3;1;G ¼ �hσz0i for
the sequence displayed here. The first controlled rotation gate can be either a controlled X (CNOT) or controlled Z (CZ) gate depending on the
single-qubit rotation axis it follows as shown in the lower right box.
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circuits that comprise G and D leverage the naturally available
multiqubit UENTs, with the interaction time of the two-qubit UENT

fixed at around 50 ns for G and the three-qubit one fixed at
around 55 ns for D. We stress that, compared to architectures with
limited connectivity8,9,26, the all-to-all connectivity for the device
used in this experiment could reduce the total circuit depths
(hence the running time) in implementing both the generator and
discriminator, which is a crucial merit given that the coherence
time is limited.
As laid out in Fig. 1c, the entangling operators UENT are

interleaved with the single-qubit X and Z rotations, which
successively rotate Qj around x- and z-axis in the Bloch sphere
by angles of θxj;l;m and θzj;l;m, where l is the layer index and m∈ {G,
D}. The lengths of the X and Z rotations are fixed at 30 and 20 ns,
respectively. Taking into account the experimental imperfections,
we perform numerical simulations to decide the depths of the
interleaved layers consisting of UENT and the single-qubit
rotations, for a balance between the learning fidelity and
efficiency, see Supplementary Discussion for the discussion of
the circuit depth. For example, to learn the XOR gate, the circuit
layer depths are set to be n= 2 and 3 for G and D, respectively, as
shown in Fig. 1c.
The QGAN learning process is guided by the gradient of the loss

function with respect to θ
!

G and θ
!

D. To obtain these gradients,
we adopt the method of Hadamard test14,25, which is illustrated in
the sequence instance in Fig. 1c. For the partial derivative with
respect to the parameter θxj;l;m (θzj;l;m), we insert the first controlled-
X (Z) gate right after the single-qubit X (Z) rotation containing this
parameter, with Qj as the target. The second controlled-Z gate is

applied at the end of the training sequence with Q1 as the target.
The partial derivative of Q1’s hσz

1i, which relates to D’s output
score, is given by ∂hσz

1i=∂θxðzÞj;l;m ¼ �hσz
0i, which can be directly

obtained by measuring Q0 and used in computing the gradient of
the loss function. More details about the experimental realizations
of the controlled-X (Z) gates, as well as the theoretical and
experimental verifications of the quantum gradient method are
presented in Supplementary Note 4.

Learning an arbitrary single-qubit quantum state
To benchmark the functionality of the quantum gradient method
and the learning efficiency of our QGAN circuit, we first train an
arbitrary mixed state as data which is a simulation of quantum
channel. As shown in the inset of Fig. 2a, the mixed state for Q3

reads ρR ¼ 0:7396 0:0431þ 0:3501i
0:0431� 0:3501i 0:2604

� �
, which is

generated by applying two single-qubit X rotations (with the
rotation angles of 1.35 on Q3 and 0.68 on Q4) followed by the UENT

gate on Q3 and Q4. Correspondingly, G is set up with a single layer
and two parameters describing the single-qubit X rotation angles
during the training, while D remains the one shown in Fig. 1c with
3 layers and all 18 parameters being trained. The trajectories of
the loss function and scores of data from R/G during the training
process are recorded and plotted in Fig. 2a. We optimize D at the
beginning of the training to enlarge the distance between SD,R

and SD,G. At the end of this turn, D can discriminate datasets from
R and G with the maximum probability. In G’s turn, SD,G moves
towards SD,R which means that G is learning the behavior of R.
Each turn ends when the optimal point of the loss function is
reached, or the iteration number goes over a preset limit. As the
adversarial learning process goes on, the value of the loss function
oscillates from turn to turn and eventually converges to 0
indicating that the learning arrives at a Nash equilibrium point,
where G is able to produce a mixed state ρG which resembles ρR
and D can no longer distinguish between them7,14. The training
process is characterized by the similarity between datasets
generated by G and R, which is quantified by the state fidelity
FðρR; ρGÞ ¼ Trð ffiffiffiffiffi

ρR
p

ρG
ffiffiffiffiffi
ρR

p Þ, As shown in Fig. 2a, The average
fidelity increases rapidly with the iteration steps, indicating the
effectiveness of the adversarial learning. The density matrices ρR
and the final ρG are plotted in Fig. 2b, which yields a state fidelity
of around 0.999. We mention that the QGAN demonstrated in our
experiment is distinct from quantum tomography or state
preparation in essential ways. Here, we carry out the tomography
process merely to benchmark the performance of the QGAN.
In practical applications of QGAN with more qubits, this
tomography process is not necessary and one may use other
more efficient approaches to measure the performance.

Learning the statistics of an XOR gate
Now we apply the recipe to train the QGAN to replicate the
statistics of an XOR gate, which is a classical gate with
input–output rules 00→ 0, 01→ 1, 10→ 1, and 11→ 0. The input
bit values store as labels in Q1 and Q2, which is performed to let
the discriminator know the corresponding input state of the state
generated by the generator. We use the computational basis state
0j i and 1j i to encode the classical data 0 and 1, respectively. We
randomly initialize the parameters of both D and G, and then
update them alternately following the rules outlined above. The
trajectories of the key parameters benchmarking the QGAN
performance during the training process are plotted in Fig. 3a,
with the evolutions of two representative parameters constructing
D and G shown in Fig. 3b. Again, the loss function exhibits a
typical oscillation during the adversarial process, and the training
reaches its equilibrium after about 190 steps with an average state
fidelity of 0.927. In addition, after training G successfully exhibits a

a

b

D,G

Training steps

D,R

3,1,

4,1,

Q3

Q4

1

-1 0  1

0

( ) ( )

0 1

1

0

0 1

0.7396
(0.7340)

0.0431
(0.0454)

0.0431
(0.0454)

0.2604
(0.2660)

0
(0)

0.3501
(0.3410)

-0.3501
(-0.3410)

0
(0)

Fig. 2 QGAN performance in learning a mixed state. a Tracking of
the loss function V, the output scores SD,R/G, and the state fidelity
between R/G’s output states F during the adversarial training
procedure with learning rates αD= 0.8 and αG= 0.6. The alternate
training stages of D and G are marked by red and white regions,
respectively. In each stage, the maximum step number is limited to
50 for D and 100 for G. Inset: the quantum circuit for generating ρR
for Q3. The same circuit is also used for G, with random initial
guesses for the two rotational angles which are then optimized.
b Elements of the real and imaginary parts of the output density
matrices of R(G). The numbers in the parentheses denotes the
corresponding values for G.
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truth table close to that of an XOR gate, as shown in the inset of
Fig. 3a. Note that the fidelity of trained XOR gate is lower than the
fidelity of the above mentioned single qubit mixed state. Due to
the complexity of learning task, generator consisting of more
layers and parameters is employed for training XOR gate, which
would introduce more two-qubit gate infidelities and decoher-
ence error during the learning.

DISCUSSION
We have experimentally implemented a multi-qubit QGAN
equipped with a quantum gradient algorithm on a programmable
superconducting processor. The results demonstrate the feasibility
of QGAN in learning data with both classical and quantum
statistics for small system sizes. The parameterized quantum
circuits for constructing quantum generators and discriminators
do not require accurate implementations of specific quantum
logics and can be achieved on the near-term quantum devices
across different physical platforms. QGAN has far-reaching effects
in solving the quantum many-body problem, which can directly
extend to the optimal control and self-guided quantum tomo-
graphy, especially when the system size goes large27,28. Our
implementation paves the way to the much-anticipated comput-
ing paradigm with combined quantum-classical processors, and
holds the intriguing potential to realize practical quantum
supremacy9 with noisy intermediate-scale quantum devices29.
We note that there might be challenges with the random

initialization and hardware efficient forms of G and D with large
depth. For instance, for larger circuits we may need larger depths to
gain enough representation power. As a result, the coherence time in
our experiment needs to be increased. Moreover, another possible
challenge for larger circuits is the so called “barren plateaus”
problem, namely that the gradient might be vanishing for most of
the parameter regions (see ref. 20–23 for more details). In fact, these

challenges are the common ones facing most of the current
experiments on variational quantum circuits. We also would like to
mention that when scale beyond a handful of qubits, G and D can be
replaced by deep quantum netural networks30 and the correspond-
ing gradient may as well be efficiently evaluated by the backward
propagation algorithm31, similar to the case of training classical deep
neural networks.

METHODS
Details about the quantum device
Our experimental device is a superconducting circuit consisting of 20
transmon qubits interconnected by a central bus resonator with frequency
fixed at around ωR/2π ≈ 5.51 GHz. Five qubits, denoted as Qj for j= 0–4, are
actively used in this work. The frequencies of the used qubits are carefully
arranged to minimize any possible unwanted interactions and crosstalk
errors among qubits during single-qubit operations. Each qubit has its own
microwave control and flux bias lines for implementations of XY and Z
rotations, respectively. Meanwhile, each qubit is dispersively coupled to its
own readout resonator for qubit-state measurement, and all the qubits can
be measured simultaneously using the frequency-domain multiplexing
technique.

Multi-qubit entangling gates generation
The multi-qubit entangling gates that comprise G and D in our QGANs are
generated by tuning all the involved qubits on-resonance at around
5.165 GHz, which is detuned from the resonator frequency by 345 MHz.
Single-qubit phase gates, which are realized by amplitude-adjustable Z
square pulses with a width of 20 ns, are added on each qubit before and
after the interaction process to cancel out the dynamical phases
accumulated during it. In our experiment, the two- and three-qubit
entangling gates contain Q3, Q4 and Q1, Q2, Q3 respectively. The
characteristic interaction time tgate is fixed at π/4∣λ∣, where λ is negative
and approximately equals to eg2/Δ. eg is defined as the average qubit-
resonator coupling strength and Δ denotes the detuning between the
interaction frequency and resonator frequency. λ/2π are around −2.48 and
−2.27 MHz for the two- and three-qubit cases, respectively.

DATA AVAILABILITY
The raw experimental data for generating the plots in this paper are available upon
reasonable request.
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