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Holonomies, arising from non-Abelian geometric transformations of quantum states in Hilbert space, offer a promising
way for quantum computation. These holonomies are not commutable and thus can be used for the realization of a uni-
versal set of quantum logic gates, where the global geometric feature may result in some noise-resilient advantages. Here
we report, to our knowledge, the first on-chip realization of a non-Abelian geometric controlled-NOT gate in a supercon-
ducting circuit, which is a building block for constructing a holonomic quantum computer. The conditional dynamics
is achieved in an all-to-all connected architecture involving multiple frequency-tunable superconducting qubits control-
lably coupled to a resonator; a holonomic gate between any two qubits can be implemented by tuning their frequencies
on-resonance with the resonator and applying a two-tone drive to one of them. This gate represents an important step
towards the all-geometric realization of scalable quantum computation on a superconducting platform. © 2021 Optical

Society of America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.416264

1. INTRODUCTION

When a nondegenerate quantum system makes a cyclic evolution
in the Hilbert space, it will pick up a phase, which, in general, is
contributed by both the dynamical and geometric effects. The
dynamical part is the time integral of the energy, while the geo-
metric one depends upon the area enclosed by the loop that the
quantum state traverses in the Hilbert space. This effect, discovered
by Berry in cyclic and adiabatic evolutions [1], has been general-
ized to nonadiabatic [2] and degenerate [3] cases. If a system has
degenerate energy levels, the cyclic evolution of the correspond-
ing degenerate subspaces will produce a matrix-valued quantum
state transformation that is path dependent and referred to as
non-Abelian geometric phase or holonomy [3]. The Berry phase
and holonony depend upon the global geometry of the associated
loops and have intrinsic resistance to certain kinds of small errors,
suggesting that quantum gates based on geometric operations have
practical advantages as compared to dynamical gates [4–7]. In
particular, it was shown that all of the elementary one- and two-
qubit gates needed for accomplishing any quantum computation
task could be achieved with Berry phase and holonomic transfor-
mations, offering a possibility for implementations of geometric
quantum computation [8,9].

The conditional Berry phase was first observed in nuclear
magnetic resonance systems [10]. However, the relatively long

operation time associated with an adiabatic evolution represents
an unfavorable condition for the implementation of geometric
quantum computation with such controlled phase gates. As such,
geometric effects without the adiabatic restriction are highly
desirable for the implementation of quantum logic gates that are
robust against noises [11–16]. So far, nonadiabatic geometric
controlled-phase gates have been realized in ion traps [17–20] and
superconducting circuits [21–23]. On the other hand, Sjöqvist
et al. have proposed an approach for realizing a universal set of
elementary gates based on nonadiabatic holonomies [24], whose
robustness against noises has been analyzed [25,26]. Following
this approach, a universal gate set involving two non-commutable
single-qubit gates and a two-qubit controlled-NOT (CNOT)
gate have been experimentally realized with nuclear magnetic
resonance [27] and solid-state spins [28,29]. Several groups have
demonstrated holonomic single-qubit gates in superconducting
circuits [30–33], which represent a promising platform for quan-
tum computation [34]. Recently, Egger et al. reported a holonomic
operation for producing entangled states in a superconducting
circuit [35]. However, a non-Abelian geometric entangling gate
necessary for constructing a universal holonomic gate set has not
been implemented in such scalable systems. More recently, Han
et al. reported a universal set of time-optimal geometric gates with
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superconducting qubits [36], where single-qubit gates were real-
ized using non-Abelian geometric phase, but the two-qubit gate
was based on Abelian geometric phase.

In this paper, we propose and experimentally demonstrate
a scheme for realizing a non-adiabatic, non-Abelian geometric
CNOT gate for two qubits, one acting as the control qubit and the
other as the target qubit. The two qubits are strongly coupled to a
resonator, so that the energy levels of the target qubit depend on
the state of the control qubit. This conditional energy-level shift
enables the target qubit to be resonantly driven by classical fields,
conditional on the state of the control qubit. With a suitable setting
of the parameters, these classical fields can drive the degenerate sub-
space spanned by the two basis states of the target qubit to undergo
a conditional cyclic evolution, realizing a CNOT gate between
these two qubits. We realize this holonomic gate in a superconduct-
ing multi-qubit processor, where any two qubits can be selectively
coupled to a common resonator but effectively decoupled from
other qubits through frequency tuning. This flexibility enables
direct implementation of holonomic gates between any pair of
qubits on the chip, without the restriction of nearest-neighbor
couplings. The measured process fidelity for the CNOT gate is
above 0.9. With further improvements in the device design and
fabrication, as confirmed by our numerical simulations, the gate
fidelity can be significantly increased. Our scheme is applicable to
other spin-boson systems, such as cavity QED and ion traps [37].

2. THEORETICAL MODEL

The system under consideration is composed of two qutrits cou-
pled to a resonator. Each qutrit has three basis states, as shown in
Fig. 1(a), with |g 〉 and | f 〉 serving as two logic states of a qubit,
and |e 〉, lying between |g 〉 and | f 〉, used as an auxiliary state for
realizing the controlled logic operation. For simplicity, we will refer
to the qutrits as qubits. As will be shown, the control qubit (Q1)
remains in its computational space, while the target qubit (Q2) has
a probability of being populated in the auxiliary level |e 〉 during the
gate operation. The transition |g 〉↔ |e 〉 of each qubit resonantly
interacts with the resonator, while | f 〉 state is effectively decoupled
from the resonator. In the interaction picture, the Hamiltonian
describing the qubit–resonator interaction is given by

Hint = ~
2∑

j=1

λ j
(
a |e j 〉〈g j | + a †

|g j 〉〈e j |
)
, (1)

where a and a † are the photonic annihilation and creation
operators for the resonator, respectively, and λ j is the coupling
strength between the j th qubit and the resonator with angular
frequency ωr . We here have set the energy of the ground state |g 〉
for each qubit to be zero. To realize the CNOT gate, the transi-
tion |g 2〉↔ |e2〉 of Q2 is driven by a classical field with angular
frequency (ωr − λ2), and |e2〉↔ | f2〉 is driven by a classical field
with angular frequency (ω f ,2 −ωr + λ2), where ~ω f ,2 is the
energy of Q2’s state | f2〉 [Fig. 1(a)]. The interaction between the
second qubit and the driving fields is described by

Hdr = ~
[
�gee iλ2t

|e2〉〈g 2| −�e f e−iλ2t
| f2〉〈e2|

]
+ h.c., (2)

where �ge and �ef denote the Rabi frequencies of the two fields
driving |g 2〉↔ |e2〉 and |e2〉↔ | f2〉, respectively. We here
have assumed that the phases of the fields driving the transitions
|g 〉↔ |e 〉 and |e 〉↔ | f 〉 are zero andπ , respectively.

Fig. 1. Energy level configuration and excitation scheme for the two-
qubit CNOT gate. The control and target qubits are denoted as Q1 and
Q2, respectively. (a) Bare energy levels of Q2 and frequencies of the drives.
The quantum information of each qubit is encoded in states |g 〉 and | f 〉,
with the auxiliary state |e 〉 used for realizing the controlled-NOT gate.
The transitions |g 2〉↔ |e2〉 and |e2〉↔ | f2〉 of Q2 are driven by classical
fields of angular frequencies (ωr − λ2) and (ω f ,2 −ωr + λ2), respec-
tively. Here ωr is the angular frequency of the resonator that is strongly
coupled to |g 2〉↔ |e2〉 with the coupling strength λ2, and ~ω f ,2 is the
energy spacing between | f2〉 and |g 2〉. (b) Dressed states and energy levels
with Q1 initially in | f1〉. When being initially in | f1〉, Q1 is effectively
decoupled from the resonator due to the large detuning. The strong cou-
pling between Q2 and the resonator results in dressed states |ψ±n 〉, whose
energy levels are nonlinearly dependent on the coupling strength. The two
driving fields are on-resonance with the transitions |g 20〉↔ |ψ−1 〉 and
|ψ−1 〉↔ | f20〉, respectively, but highly detuned from other transitions.
(c) Dressed states and energy levels with Q1 initially in |g 1〉. If initially in
|g 1〉, Q1, together with Q2, is strongly coupled to the resonator, resulting
in three dressed states |8±1 〉 and |80

1〉 in the single-excitation subspace.
The driving fields are highly detuned from transitions of |g 1g 20〉 and
|g 1 f20〉 to these dressed states.

The strong couplings between the qubits and the resonator
produce dressed states, whose energy levels depend on the total
excitation number as well as on the number of qubits being initially
populated in |g 〉. When the control qubit is in the state | f1〉, it does
not interact with the resonator, and the coupling between the tar-
get qubit and the resonator is described by the Jaynes–Cummings
model, whose eigenstates are given by

|ψ0〉 = |g 20〉, (3)

|ψ±n 〉 =
1
√

2
(|e2(n − 1)〉 ± |g 2n〉) , n ≥ 1. (4)

Here the second symbol in each ket denotes the photon number
in the resonator. The eigenenergies of the dressed states |ψ±n 〉 are
~(nωr ±

√
nλ2). We here consider the case that the resonator is

initially in the vacuum state |0〉. Consequently, the classical fields
resonantly couple states |g 20〉 and | f20〉 to the single-excitation
dressed state |ψ−1 〉, as sketched in Fig. 1(b). We suppose that
�ge and �ef are much smaller than λ2, so that the classical fields
cannot drive the transitions from |ψ−1 〉 to |ψ±2 〉 due to the large
detunings. However, these off-resonant couplings shift the energy
levels of |ψ−1 〉 by −2~δ1, with δ1 = 2�2

ge/λ2 (see Supplement 1).
Furthermore, off-resonant coupling to |h1〉|g 20〉 and |e1〉|ψ

±

2 〉

shifts the energy level of | f1〉|ψ
±

1 〉 by an amount of −~δ2, where
δ2 = 9λ2

1/4α1 (see Supplement 1), and |h1〉 is the fourth level of
Q1, andα1 is its anharmonicity (α j = 2ωe , j −ω f , j , j = 1, 2). To
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compensate for these shifts, the angular frequency of the field driv-
ing |g 2〉↔ |e2〉 should be set to ωd ,1 =ωr − λ2 − δ1 − δ2,
while that of the field driving |e2〉↔ | f2〉 should be set to
ωd ,2 =ω f ,2 −ωr + λ2 + δ1 + δ2. With this setting and per-
forming the transformation exp(i Hintt/~), the system dynamics
associated with Q1’s state | f1〉 can be described by the effective
Hamiltonian

Heff = ~�
[

cos
φ

2
|g 20〉〈ψ−1 | + sin

φ

2
| f20〉〈ψ−1 |

]
| f1〉〈 f1| + h.c.,

(5)
where

�=
√
�2

ge +�
2
ef/
√

2, (6)

tan
φ

2
=�ef/�ge. (7)

When Q1 is initially in the state |g 1〉, it is also strongly cou-
pled to the resonator, and there are three dressed states in the
single-excitation subspace:

|80
1〉 = (− sin θ |e1g 20〉 + cos θ |g 1e20〉) , (8)

|8±1 〉 =
1
√

2
[(cos θ |e1g 20〉 + sin θ |g 1e20〉)± |g 1g 21〉] , (9)

where tan θ = λ2/λ1. The corresponding eigenenergies are
~ωe and ~(ωe ±

√
λ2

1 + λ
2
2), as shown in Fig. 1(c). When

(
√
λ2

1 + λ
2
2 − λ2) is much larger than�ge and�ef, the qubits can-

not make any transition between either of these single-excitation
dressed states and the state |g 1g 20〉 or |g 1 f20〉, as each of these
transitions is highly detuned from the driving fields. As a conse-
quence, Q2 is not affected by the driving fields when Q1 is initially
in the state |g 1〉. Therefore, the system dynamics is described by the
effective Hamiltonian of Eq. (5). The evolution of the initial basis
states |c 1d20〉 (c , d = g , f ) are given by

|ψcd(t)〉 = exp

(
−i
∫ t

0
Heffdt/~

)
|c 1d20〉. (10)

When �ef/�ge remains unchanged during the interac-
tion, the evolution satisfies the parallel-transport condition
〈ψcd(t)|Heff|ψc ′d ′(t)〉 = 0, and hence is purely geometric.
If the Rabi frequencies of the driving fields and the inter-
action time are appropriately chosen so that

∫ T
0 �dt = π ,

the degenerate qubit subspace undergoes a cyclic evolution.
Consequently, the qubits return to the computational space
{|g 1g 2〉, |g 1 f2〉, | f1g 2〉, | f1 f2〉} with the resonator left in the
vacuum state |0〉 after the time T. With this setting, the evolution
operator of the qubits in the computational basis is

U =

 1 0 0 0
0 1 0 0
0 0 − cos φ sin φ
0 0 sin φ cos φ

 , (11)

which is a non-Abelian holonomy. For φ = π/2, i.e., �ge =�ef,
this corresponds to a CNOT gate, which flips the state of the target
qubit conditional on the control qubit being in the state | f1〉.

3. EXPERIMENTAL IMPLEMENTATION

The experiment is performed in a superconducting circuit involv-
ing five frequency-tunable qubits, labeled from Q1 to Q5, coupled
to a resonator with a fixed frequency ωr /2π = 5.584 GHz
[21,38,39]. In our experiment, Q1 and Q2, whose anharmonic-
ities are 2π × 242 MHz and 2π × 249 MHz, are used as the
control and target qubits, respectively. The on-resonance coupling
strengths of the g−e transitions of Q1 and Q2 to the resonator are
respectively λ1 = 2π × 20.8 MHz and λ2 = 2π × 19.9 MHz.
The energy relaxation time T1 and pure Gaussian dephasing
time T∗2 for the basis state | f 〉 of Q1 (Q2) are 13.0 (10.7) µs
and 2.1 (1.5) µs, while those for the intermediate state |e 〉 are
23.9 (15.9) µs and 2.7 (2.1) µs, respectively. The other qubits are
on far off-resonance with the resonator so that their interactions
with the resonator are effectively switched off throughout the gate
operation. We note that during the gate operation, the two qubits
have a probability of being populated in | f1e2〉, which is signifi-
cantly coupled to |e1 f2〉 via virtual photon exchange, as the two
qubits almost have the same anharmonicity α ' 2π × 240 MHz.
To suppress this coupling, Q1 should be detuned from Q2 by an
amount much larger than λ1λ2/α. This detuning slightly changes
the energy level configuration of the dressed states associated with
Q1’s initial state |g 1〉, but does not affect the gate dynamics.

As shown in Fig. 2, the experiment starts with the initial-
ization of Q1 and Q2 to the ground state |g 〉 at their idle
frequencies 5.47 GHz and 5.43 GHz, respectively, which is
followed by the preparation of each qubit in one of the six states
{|g 〉, (|g 〉 − i | f 〉)/

√
2, (|g 〉 + i | f 〉)/

√
2, (|g 〉 + | f 〉)/

√
2,

(|g 〉 − | f 〉)/
√

2, | f 〉}. Except |g 〉, each of the other single-
qubit states is produced by a g−e π/2- or π -pulse followed by a
e− f π -pulse.

After these effective single-qubit rotations, these two qubits are
prepared in a product state. We then apply square Z pulses to both
qubits, tuning their |g 〉↔ |e 〉 transition frequencies to 5.58 GHz
and 5.584 GHz and thus switching on their interactions with the
resonator. Accompanying these Z pulses, a driving pulse composed
of two components with frequencies of 5.565 GHz and 5.369 GHz
is applied to Q2, resonantly connecting the computational states
|g 20〉 and | f20〉 to the dressed state |ψ−1 〉. The Rabi frequencies
of these driving fields are �ge =�ef = 2π × 2.2 MHz. Since the
resonator is initially in the vacuum state, the system dynamics is
governed by the effective Hamiltonian (5) and the time evolution

Fig. 2. Pulse sequence. Before the gate operation, both qubits are
initialized to their ground states at the corresponding idle frequencies,
where single-qubit rotations are performed to prepare them in a prod-
uct state. Then a Z pulse is applied to Q1, tuning |g 1〉↔ |e1〉 close to
the resonator’s frequency; Q2 is subjected to a Z pulse, which brings
|g 2〉↔ |e2〉 to the resonator’s frequency, and a driving pulse involving two
frequency components on-resonance with the transitions |g 20〉↔ |ψ−1 〉
and |ψ−1 〉↔ | f20〉. After the CNOT gate, realized with these pulses,
both qubits are tuned back to their idle frequencies for quantum state
tomography.
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Fig. 3. Measured density matrix of the output state with the input state
(|g 1g 2〉 + | f1g 2〉)/

√
2. Each matrix element is characterized by two col-

orbars, one for the real part and the other for the imaginary part. The black
wire frames denote the matrix elements of the ideal output states.

given by Eq. (10). After a duration of τ = 205 ns, the CNOT gate
is realized.

One of the most important features of the CNOT gate is that
it can convert a two-qubit product state into an entangled state. In
particular, when the control qubit is initially in the superposition
state (|g 1〉 + | f1〉)/

√
2 and the target state in |g 2〉, they will evolve

to the maximally entangled state (|g 1g 2〉 + | f1 f2〉)/
√

2 after this
gate. We measure this output state by quantum state tomography.
This is realized by subsequently biasing each of the two qubits back
to its idle frequency right after the gate operation, applying an
e− f π -pulse to each qubit, and measuring its state along one of
the three orthogonal (x , y , and z) axes of the corresponding Bloch
sphere with respect to the basis {|g 〉, |e 〉}. The z measurement is
directly realized by state readout, while the x (y ) measurement is
realized by the combination of a g−e π/2-pulse and state readout.
The reconstructed output two-qubit density matrix is displayed in
Fig. 3, which has a fidelity of 0.935± 0.016 to the ideal maximally
entangled state, and a concurrence of 0.888± 0.029.

To fully characterize the performance of the implemented
CNOT gate, we prepare a full set of 36 distinct two-qubit input
states before the two-qubit gates, and measure these states and
the corresponding output states. With these measured results,
the process matrix for the gate operation is reconstructed. The
measured process matrix, χmeas, is presented in Fig. 4. The gate
fidelity, defined as F = tr (χidχmeas), is 0.905± 0.008, where
χid is the ideal process matrix. The measured fidelity is in good
agreement with the numerical simulation based on the Lindblad
master equation, which yields a fidelity of 0.908. One of the error
sources is the transitions from |g 1g 20〉 and |g 1 f20〉 to |80

1〉 and
|8±1 〉 and the transition from |ψ−1 〉 to |ψ

−

2 〉 induced by the drive,
which causes quantum information leakage to the noncompu-
tational space. Such a leakage error can be mitigated through
improvement of the qubit’s nonlinearity or by balancing the drive
amplitude and the gate operation time provided the qubits’ coher-
ence is bettered, which allows the gate fidelity to be increased by
about 6.5% (see Supplement 1). On the other hand, the qubits’
energy relaxation and their dephasings contribute about 1.8%
and 1.6% of the error, respectively. Our further numerical sim-
ulations show that the CNOT gate with a fidelity above 99%
can be obtained with sufficiently large qubit nonlinearity α j and
qubit-resonator coupling strength λ j . For instance, with the

Fig. 4. Measured process matrix for the realized CNOT gate. The
process matrix is measured by preparing a set of 36 distinct input product
states in the computational basis {|g 1g 2〉, |g 1 f2〉, | f1g 2〉, | f1 f2〉} and
reconstructing the density matrices for these states and for the output
states produced by the CNOT gate. The |e 〉-state populations of Q1 and
Q2, averaged over the 36 output states, are 2.2% and 2.8%, respectively.

parameters λ j/2π = 110 MHz, α j/2π =−3.69 GHz [40,41],
�ge/2π =�ef/2π = 5.9 MHz, T1 = 60 µs, and T∗2, j = 86 µs,
we find a CNOT gate with the operation time of about 87 ns and
fidelity of 0.991, which is at the surface code threshold for fault
tolerance [42–44]. We note this gate is robust against the frequency
fluctuations of the driving fields. Suppose that the angular frequen-
cies of these drives deviate from the desired values by an amount of
δω= 2π × 100 kHz. The infidelity incurred by this deviation is
about [π(δω)2/(8�2

g e/e f )]
2
' 0.1%.

4. CONCLUSION

In conclusion, we have proposed and demonstrated a scheme for
implementing a non-Abelian geometric gate between two super-
conducting qubits, whose ground and second excited states act as
the computational basis states. The conditional dynamics is real-
ized by resonantly driving the transitions between the basis states
of the target qubit to the single-excitation dressed states formed by
this qubit and the resonator. This entangling gate, together with
the previously demonstrated non-Abelian geometric single-qubit
gates [30–33], constitutes a universal set of holonomic gates for
realizing quantum computation with superconducting qubits.
The method can be directly applied to other systems composed of
qubits coupled to a bosonic mode, including cavity QED and ion
traps.
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