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We study the emergence of universal tetramer and pentamer bound states in the two-dimensional (N þ 1)
system, which consists of N identical heavy fermions interacting with a light atom. We show that the
critical heavy-light mass ratio to support a (3þ 1) tetramer below the trimer threshold is 3.38, and to
support a (4þ 1) pentamer below the tetramer threshold is 5.14. While the ground state tetramer and
pentamer are both with zero total angular momentum, they exhibit very different density distributions and
correlations in momentum space, due to their distinct angular momentum decompositions in the dimer-
fermion frame. These universal bound states can be accessible by a number of Fermi-Fermi mixtures now
realized in cold atoms laboratories, which also suggest novel few-body correlations dominant in their
corresponding many-body systems.
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Exactly solvable few-body problems provide a crucial
and reliable route for approaching many-body physics. As a
well-known example, the formation of a two-body bound
state plays a fundamental role in driving the BCS-BEC
crossover [1] and the polaron-molecule transition [2,3] of
spin-1=2 fermions. A natural follow-up question is whether
there are ways to go beyond two-body and engineer more
fascinating few-body bound states in fermion systems,
which may evoke even intriguing many-body physics.
One such efficient way is to consider the fermion

components with mass imbalance, which has become
accessible by a number of ultracold Fermi-Fermi mixtures
such as 40K-6Li [4–6], 161Dy-40K [7,8], 173Yb-6Li [9,10], and
53Cr-6Li [11,12]. With mass imbalance, it has been shown
that the three-dimensional (3D) (N þ 1) system, which
consists of N identical heavy fermions interacting with a
light atom, can easily support cluster bound states. These
bound states can be classified as universal and Efimov
types. For instance, the (2þ 1) trimer emerging at the
heavy-light mass ratio η ¼ 8.2 [13] is a universal type,
where the trimer energy does not rely on any microscopic
detail of short-range potential but solely depends on the
scattering length and the masses. In comparison, a
sequence of Efimov-type trimers can emerge at η ¼ 13.6
with discrete scaling symmetry [14], whose energies are
nonuniversal as they additionally rely on a three-body
parameter at short range. Similarly, the (3þ 1) tetramer
[15,16] and (4þ 1) pentamer [17], of both universal and
Efimov types, also exist in 3D above certain critical mass
ratios. Unfortunately, these cluster bound states typically
require a large mass imbalance, and none of them has been
observed in laboratories till now.

In this context, the 2D cold atomic systems might be a
more promising platform to achieve the goal. As inferred by
the fact that any infinitesimal attraction in 2D can afford a
two-body bound state, one expects an equally easier for-
mation of cluster bound states in 2D fermion systems.
Meanwhile, since there is no Efimov-type bound state in 2D,
it is a quite clean platform for the study of universal few- and
many-body physics. However, right now the related knowl-
edge on cluster bound states therein is quite limited. For the
fermionic (N þ 1) system, only the trimer formation at
η ¼ 3.34 [18] and a tetramer at η ¼ 5.0 [19] were reported,
both with total angular momentum jmtotj ¼ 1.
In this work, we bring two new members to the family of

(N þ 1) universal cluster bound states in 2D. They are the
ground state tetramer (N ¼ 3) emerging at η ¼ 3.38 and the
ground state pentamer (N ¼ 4) at η ¼ 5.14, both with total
angular momentum mtot ¼ 0. The previously reported
tetramer at η > 5.0 [19] turns out to be an excited state
instead. We have analyzed the inner structure of these
cluster bound states and shown that they are associated with
distinct angular momentum decompositions in the dimer-
fermion frame. Because of this, they display very different
momentum-space distributions and correlations for the
heavy component. Interestingly, the ground state pentamer
(and tetramer) features a spontaneous triangular crystal-
lization with (without) a center in the three-body (two-
body) correlation function of heavy fermions. These
universal bound states and their associated correlation
patterns can be readily detected in a number of Fermi-
Fermi mixtures now available in cold atoms, which further
shed light on novel few-body correlations in the corre-
sponding many-body systems.
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We start from the following Hamiltonian (ℏ ¼ 1):

H ¼
X

k

ðϵaka†kak þ ϵfkf
†
kfkÞ þ

g
S

X

Q;k;k0
a†Q−kf

†
kfk0aQ−k0 :

ð1Þ
Here a†k and f†k, respectively, create a light atom and a
heavy fermion with momentum k and energy ϵa;fk ¼
k2=ð2ma;fÞ (ma < mf); the bare coupling g is renorma-

lized through 1=g ¼ −1=S
P

k 1=ðϵak þ ϵfk þ E2bÞ, where
S is the system area, E2b ¼ ð2μa22DÞ−1 is the two-body
binding energy determined by scattering length a2D and
relative mass μ ¼ mamf=ðma þmfÞ.
A general wave function for the (N þ 1) bound state can

be written in the center-of-mass (COM) frame as

jΨiNþ1 ¼
X

k1k2…kN

ψk1k2…kN
a†−k1−k2…−kN

f†k1
f†k2

…f†kN
j0i:

ð2Þ
Imposing the Schrödinger equation HjΨiNþ1 ¼
ENþ1jΨiNþ1, one can obtain the integral equation for the
function Fk2…kN

¼ P
k1
ψk1k2…kN

, from which the binding
energy ENþ1 can be extracted [20]:

Fk2…kN

�
S
g
þ
X

k

1

Ekk2…kN

�

¼
X

k

P
N
i¼2 Fk2…ki−1kikiþ1…kN

δkki

Ekk2…kN

; ð3Þ

with Ek1k2…kN
¼ −ENþ1 þ ϵa−k1…−kN

þP
N
i¼1 ϵ

f
ki
. The

original coefficients in (2) can be related to the F function
via, for instance, ψk1k2

∝ ðFk1
− Fk2

Þ=Ek1k2
for N ¼ 2,

ψk1k2k3
∝ ðFk1k2

− Fk1k3
þ Fk2k3

Þ=Ek1k2k3
for N ¼ 3,

etc. One can see that both ψfkig and Ffkig are antisym-
metric with respect to the exchange ki ↔ kj (i ≠ j).
Physically, Fk2…kN

describes the relative motion
between the heavy-light dimer (at momentum k≡
−k2… − kN) and the rest N − 1 fermions (at k2;…;
kN). It can be factorized as

Fk2…kN
¼

X

m

F̃mðk2;…; kN; θ32;…; θN2Þeimθ2 ; ð4Þ

where ki ≡ kieiθi and θij ¼ θi − θj. It is straightforward to
show that fF̃mg are decoupled between different m, and
thus in principle one can work with the reduced integral
equation from (3) for F̃m in each m sector. We note that the
sector index m actually represents the total angular
momentum of the according (N þ 1) system. This can
be seen by expressing the total angular momentum operator
as L̂z ¼ −ið∂=∂θ þP

N
j¼2 ∂=∂θjÞ, with θ the angle of dimer

momentum k. Utilizing the identities d=dθj ¼ ∂=∂θj þ
∂=∂θðdθ=dθjÞ and

P
N
j¼2 dθ=dθj ¼ 1, we then have

L̂z ¼ −i
P

N
j¼2 d=dθj and when we act it on the wave

function (4) in the m sector we get its eigenvalue exactly
as m.
To solve Eq. (3), we have performed coarse graining of

the module and the angle of fkjg and transformed it into a
matrix equation. The antisymmetry of the F function is
carefully handled and the double counting of any ki ↔ kj

pair is avoided in setting up the matrix. For the trimer and
tetramer, we directly solve the matrix equation to obtain the
energies of the ground state and excited states. For the
pentamer case, given the large matrix size we resort to
the iteration method to find the ground state. In all cases,
the resulted F functions are checked to perfectly match the
form (4) with certain m ¼ mtot. In our numerics, the
convergence of energy is further guaranteed by choosing
different discretization schemes and a different momentum
cutoff kΛ.
The results of ENþ1 for N ¼ 2 (trimer), 3 (tetramer), and

4 (pentamer) are shown in Fig. 1(a) as functions of mass
ratio η≡mf=ma. We first reproduce the lowest trimer (Tr)
as studied in Ref. [18], which emerges from the dimer

FIG. 1. (a) Energies of the ground state trimer (Tr), tetramer
(Te), pentamer (Pen), and an excited tetramer (Te2) in 2D as
functions of mass ratio η≡mf=ma. The energy unit E2b is the
two-body binding energy. (b) Energy difference between the
ground state tetramer (Te) and trimer (Tr), ΔE ¼ E4 − E3.
(c) Energy difference between the ground state pentamer (Pen)
and tetramer (Te), ΔE ¼ E5 − E4. In (b),(c), the triangle points
are numerical results from different momentum cutoffs kΛ ¼ 100,
150 (scaled by 1=a2D); the curves show binomial fittings
according to 103jΔEj=E2b ¼ αðη − ηcÞ þ βðη − ηcÞ2, with para-
meters ðα; β; ηcÞ ¼ ð7.08; 17.39; 3.38Þ (b), (0.58, 0.52, 5.14) (c).
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threshold at η ¼ 3.34 and is double degenerate with
mtot ¼ �1. We then turn to the tetramer and pentamer
solutions. In contrast to the trimer case, we find the lowest
tetramer (Te) and the lowest pentamer (Pen) are both
nondegenerate and associated with mtot ¼ 0. The previ-
ously reported tetramer in mtot ¼ �1 sector [19], denoted
as “Te2” in Fig. 1(a), is an excited state emerging at a larger
η and with a higher energy than Te. To pin down the critical
ηc for the emergence of the lowest tetramer and pentamer,
we have used the binomial fitting of the energy difference
near η ∼ ηc, i.e., 103jENþ1 − EN j=E2b ¼ αðη − ηcÞþ
βðη − ηcÞ2, with α, β, ηc all fitting parameters. As shown
in Figs. 1(b) and 1(c), the fittings give the critical mass ratio
for the lowest tetramer (below trimer) as ηc ¼ 3.38, and for
the lowest pentamer (below tetramer) as ηc ¼ 5.14. We
emphasize that all these bound states are universal, in that
their binding energies do not depend on the momentum
cutoff kΛ (or short-range details), as can be seen from
Figs. 1(b) and 1(c).
To understand the emergence of these cluster states

associated with different mtot, it is useful to decompose the
total angular momentum in the dimer-fermion relative
motion frame. Here we introduce a new set of coordinates
K̄≡ ðK; k̄2;…; k̄NÞT , where K ¼ kþP

N
j¼2 kj is the

COM momentum and k̄j ¼ ½ðma þmfÞkj −mfk�=
ð2mf þmaÞ is the relative momentum between the dimer
at k and the fermion at kj. In this way, K̄ can be related to
the original coordinate vector K≡ ðk;k2;…;kNÞT via
K̄ ¼ AK, with A the transformation matrix. It is then
straightforward to prove that the total angular momentum
operator, L̂z ¼ ð−i=2ÞKT × ∂=∂K, can be reexpressed as
L̂z ¼ ð−i=2ÞK̄T × ∂=∂K̄. In the COM frame (K ¼ 0), we
have

L̂z ¼
XN

j¼2

l̂z;j; with l̂z;j ¼ −
i
2
k̄j ×

∂

∂k̄j
ð5Þ

which shows that the total angular momentum (mtot) is
just the sum of all relative angular momenta (fm̄jg)
between the heavy-light dimer and the other fermions, i.e.,
mtot ¼

P
N
j¼2 m̄j.

Equation (5) provides a powerful tool for analyzing the
physical origin of various cluster bound states, as illustrated
in Fig. 2. We start from the ground state trimer in Fig. 2(a),
where there is only one dimer-fermion pair and therefore its
relative angular momentum is exactly the total angular
momentum of the system, i.e., m̄ ¼ mtot ¼ �1. Given such
double degeneracy of the lowest dimer-fermion channel, it
is then natural to expect that in the ground state tetramer,
the two relative angular momenta between the dimer and
two fermions are, respectively, m̄ ¼ 1 and −1, thus giving
mtot ¼ 0 [Fig. 2(b)]. This combination implies that once the
trimer appears with m̄ ¼ �1, the tetramer can also be easily

supported—this explains why the critical mass ratio for the
trimer formation (¼ 3.34) is so close to the tetramer one
(¼ 3.38). Further, for the ground state pentamer, the three
dimer-fermion angular momenta are dominated by
m̄ ¼ 1;−1, and 0, again leading to mtot ¼ 0 [Fig. 2(c)].
In Fig. 2(d), we show the angular momentum decompo-
sition for the excited tetramer with mtot ¼ 1, where the two
dimer-fermion lines are either with m̄ ¼ 1, 0 or −1, 2.
Clearly these combinations are less energetically favored as
compared to m̄ ¼ 1;−1 and thus they should stay in an
excited manifold.
The distinct inner structures of these bound states can be

reflected in their momentum-space correlations. To see this,
we examine the n-body density correlation function of
heavy fermions, as defined by

GðnÞðk1;k2;…;knÞ ¼ hnfk1
nfk2

…nfkn
i; ð6Þ

with nfk the density operator of a fermion at momentum k.
For n ¼ 1, Gð1ÞðkÞ ¼ hnfki is exactly the one-body density
distribution. For higher nð≥ 2Þ, GðnÞ gives the density
correlation pattern of n fermions within the system. In
Fig. 3 we take η ¼ 40=6 and show the typical pattern of
GðnÞ in k space, with n up to 3, for various cluster bound
states. Our strategy in plotting Gð2Þ and Gð3Þ is as follows.
For Gð2Þðk1;kÞ, we have fixed k1 at the maximum of one-
body density distribution Gð1Þ, and for Gð3Þðk1;k2;kÞ we
take the same strategy of k1 and further fix k2 at the
maximum of Gð2Þðk1;k2Þ. Apparently such a strategy is

FIG. 2. Illustration of angular momentum decomposition in the
dimer-fermion relative motion frame. For the ground state trimer
(a), the relative angular momentum between the dimer and the
fermion is m̄ ¼ �1, which is also the total angular momentum
mtot. For the ground state tetramer (b), the two relative angular
momenta are m̄ ¼ 1 and −1, givingmtot ¼ 0. For the ground state
pentamer, the three relative angular momenta are dominated by
m̄ ¼ 1;−1, 0, again giving mtot ¼ 0. In (b′), we show two
possible decomposition configurations for the excited tetramer
with mtot ¼ 1, either with m̄ ¼ 1, 0 or −1, 2.
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able to extract the most dominant correlation pattern of
heavy fermions.
From Figs. 3(i) and 3(ii), we can see that the ground state

trimer and tetramer, although associated with differentmtot,
have quite similar one-body density distribution in k space,
which is peaked on a circle with finite radius (determined
by the binding energy). This can be attributed to the fact
that their angular momentum decompositions in the dimer-
fermion frame are all composed by m̄ ¼ �1 [see Figs. 2(a)
and 2(b)], which ensure zero weight at the origin (k ¼ 0)
and the largest weight at finite jkj. However, since the
tetramer has two dimer-fermion pairs while the trimer only
has one, their corresponding two-body correlations are very
different. As shown in Figs. 3(v) and 3(vi), the trimer shows
a clear diagonal correlation and the tetramer shows a stable
triangular correlation.
In comparison, the excited tetramer and the lowest

pentamer exhibit a distinct type of correlation patterns.

Because of the presence of the m̄ ¼ 0 component in their
angular momentum decomposition [Figs. 2(c) and
2(d)], their one-body density distributions are both peaked
at k ¼ 0, see Figs. 3(iii) and 3(iv). The manifestation of
m̄ ¼ �1 components only shows up in the level of two- and
three-body correlations. For instance, their two-body cor-
relations are both peaked at a finite radius [Figs. 3(vii) and
3(viii)] and the three-body correlations show crystalline
patterns, either as a centered diagonal [see Fig. 3(ix) for the
excited tetramer] or as a centered triangle [Fig. 3(x) for the
lowest pentamer].
We remark that the emergent crystalline patterns, as

shown in Figs. 3(v), 3(vi), 3(ix), and 3(x), exactly represent
the dominant distributions of N correlated fermions in the
(N þ 1) cluster bound states. In particular, the relative
distribution of three fermions in the lowest tetramer state
automatically forms a regular triangle [Fig. 3(vi)], and the
four fermions in the lowest pentamer form a centered
triangle [Fig. 3(x)]. In distinct contrast to the Pauli crystal
for identical fermions confined in a harmonic trap [21–24],
here the crystalline patterns are purely driven by the heavy-
light interaction and thus may be termed as an interaction-
induced crystal.
In a cold atoms experiment, the one-body density

distribution in momentum space can be directly measured
through the time of flight technique, and the two-body
density correlation can be measured using the atom noise in
absorption images [25–30] or the single atom resolved
image [31]. Using the latter technique, the three- and even
higher-body correlations now also become measurable as in
the recent observation of Pauli crystals [23].
To summarize, we have reported the ground state

tetramer and pentamer formation in the 2D (N þ 1) cluster
system, as long as the mass ratios between the heavy
fermions and the light atom are, respectively, beyond 3.38
and 5.14. These bound states require considerably lower
mass imbalance than the 3D counterparts, and thus can now
be accessible by more Fermi-Fermi mixtures such as
40K-6Li [4–6] and 53Cr-6Li [11,12] (the tetramer is also
accessible by 161Dy-40K [7,8]). The ground state tetramer
and pentamer both emerge in the mtot ¼ 0 channel.
Nevertheless, they can be distinguished by the momen-
tum-space distribution/correlation patterns of heavy fer-
mions (Fig. 3), thanks to their distinct angular momentum
decompositions in the dimer-fermion frame (Fig. 2).
The universal feature of these bound states ensures that

there is only one length scale, the 2D scattering length
(a2D), to determine their characteristic sizes. In the regime
where a2D is much larger than the interaction range r0,
these bound states have very little overlap with deep
molecules (of size ∼r0) and therefore should be quite
stable against inelastic loss [32,33]. Moreover, our theory is
expected to apply for a realistic quasi-2D setup under a
strong axial trap, i.e., when the trap length lz ≪ a2D. In the
future, it will be worthwhile to explore how these 2D bound

(i)

(ii)

(iii)

(iv)

(vi)

(vii) (ix)

(x)(viii)

(v)

Low

High

FIG. 3. Momentum (k)-space correlations of heavy fermions
for the lowest trimer [(i), (v)], lowest tetramer [(ii), (vi)], excited
tetramer [(iii), (vii), (ix)] and lowest pentamer
[(iv), (viii), (x)]. (i)–(iv) show the one-body density distribution
Gð1ÞðkÞ; (v)–(viii) show the two-body correlation Gð2Þðk1;kÞ,
with k1 pinned down at the maximum of Gð1Þ (red point); (ix)
and (x) show the three-body correlation Gð3Þðk1;k2;kÞ, with
k1 and k2 pinned down, respectively, at the maximum of Gð1Þ

and Gð2Þ (red points). Here we take the mass ratio η ¼ 40=6,
and the momentum unit is 1=a2D.
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states connect to the 3D counterparts [15–17] by changing
the confinement strength, as previously studied for small
clusters [19,34].
Our results shed light on novel few-body correlations in

mass-imbalanced Fermi-Fermi mixtures. Specifically, by
adjusting the mass ratio between fermion components,
various cluster bound states can be supported and they
strongly suggest the dominant multibody correlations well
beyond the two-body one. As an example, we have shown
recently that these bound states can be dressed with
particle-hole excitations in Fermi polarons and drive a
sequence of smooth crossover therein [35], in distinct
contrast to the equal mass case. For a thermodynamic
system, these bound states may induce a new fermion
superfluid based on cluster condensation, which is far
beyond the conventional pairing mechanism. We hope our
current work can stimulate more studies in the future on
such intriguing phases in mass-imbalanced fermions.
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