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We show that spontaneous time-reversal-symmetry (TRS) breaking can naturally arise from the interplay
between pair density wave (PDW) ordering at multiple momenta and nesting of Fermi surfaces (FSs).
Concretely, we consider the PDW superconductivity on a hexagonal lattice with nested FS at 3=4 electron
filling, which is related to a recently discovered superconductor CsV3Sb5. Because of nesting of the FSs,
each momentum k on the FS has at least two counterparts −k�Qα (α ¼ 1, 2, 3) on the FS to form finite
momentum (�Qα) Cooper pairs, resulting in a TRS and inversion broken PDW state with stable
Bogoliubov Fermi pockets. Various spectra, including (local) density of states, electron spectral function,
and the effect of quasiparticle interference, have been investigated. The partial melting of the PDW will

give rise to 4 × 4 and ð4= ffiffiffi
3

p Þ × ð4= ffiffiffi
3

p Þ charge density wave (CDW) orders, in addition to the 2 × 2 CDW.
Possible implications to real materials such as CsV3Sb5 and future experiments have been discussed
further.

DOI: 10.1103/PhysRevLett.129.167001

Introduction.—A pair density wave (PDW) is a super-
conducting (SC) state in which Cooper pairs carry finite
momentum and its SC order parameter is spatially
modulated without external magnetic field [1–19] (see,
e.g., a recent review [20]). Such a kind of state is similar
to the one proposed earlier by Fulde-Ferrell [21] and
Larkin-Ovchinnikov [22] in a magnetic field above the
Pauli limit. As a mother state for various descendant
orders, e.g., charge density wave (CDW), loop current,
and charge-4e superconductivity, PDWs have been receiv-
ing increasing attentions from diverse fields in physics
[20,23]. In particular, PDWs were recently proposed as a
promising candidate for explaining various interesting
phenomena in cuprates and other strongly correlated
systems [20,24–27].
In previous studies of PDWs, only electrons near hot

spots on Fermi surfaces (FSs) can come into being finite
momentum Cooper pairs and are gapped, while other parts
of FSs remain gapless. In contrast, as will be revealed in
this Letter, the FS nesting feature admits full PDW pairing
around the FS, that will gain more condensation energy
than the usual partial pairing, while in-gap quasiparticle
excitations are still allowed. Thus, it would be of great
interest to examine the interplay between these two, PDW
and FS nesting. (Note that FS nesting was considered
mostly to play a crucial role in CDWor spin-density-wave,
e.g., see Ref. [28–33]).

In this Letter, we study PDWordering in the presence of
a nested FS on hexagonal lattices. We found that a time
reversal symmetry (TRS) breaking the PDW state is
energetically favored. Bogoliubov quasiparticle excita-
tions, DOS, LDOS, and electron spectral function will
be investigated as well as the quasiparticle interference
(QPI) in scanning tunneling microscopy (STM). The
implications to recently discovered kagome SC
AV3Sb5ðA ¼ K;Rb;CsÞ will be discussed.
Model.—We start with a single band model on a

hexagonal lattice, on which the FS is nested as illustrated
in Fig. 1. The Hamiltonian takes the form

H ¼
X
k;σ

ξkc
†
k;σck;σ þ

X
k;α

½ΔQα
ðkÞc†k;↑c†−kþQα;↓

þ Δ−Qα
ðkÞc†k;↑c†−k−Qα;↓

þ H:c:�; ð1Þ

where c†k;σðck;σÞ is the electron creation (annihilation)
operator with momentum k and spin σ¼↑;↓, ξk¼ϵk−μ
is the energy measured from the chemical potential μ.
Δ�Qα

ðkÞ ¼ Δ�Qα
exp ½−ðjξkj þ jξ−k�Qα

jÞ=ð2ΛÞ� (α ¼ 1,
2, 3) indicates the Cooper pairing with total momentum
�Qα. Here, Λ is an energy cutoff. Setting the lattice
constant a ¼ 1, we consider Q1;Q2;Q3 ¼ ½0; ðπ= ffiffiffi

3
p Þ�;

½−ðπ=2Þ;−ðπ=2 ffiffiffi
3

p Þ�; ½ðπ=2Þ;−ðπ=2 ffiffiffi
3

p Þ�, since they are
most relevant to CsV3Sb5 for which experimental evidences
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of a period 4 PDW was recently reported [34]. As shown in
Fig. 1(a), a hexagonal and nested FS can be realized by
choosing μ or the electron filling properly. As a simple
example, we focus on a triangular lattice, set the nearest
neighbor hopping integral t ¼ 1, and choose μ ¼ 2

(or 3=4 filling), such that ξk ¼ −2fcosðkxÞ þ cos ½1
2
kxþ

ð ffiffiffi
3

p
=2Þky� þ cos ½1

2
kx − ð ffiffiffi

3
p

=2Þky� þ 1g. Note that our
main results will also be applicable to more generic
situations, including honeycomb and kagome lattices.
From Fig. 1(b), one sees that each k on a FS segment

along the Qα direction has at least two counterparts −k�
Qα to form finite momentum Cooper pairs. Moreover, M
and X points have four momenta for pairing. These mean
that the nesting feature allows full pairing in the region near
the FS,which is in contrastwith generic FSswithout nesting.
Time reversal symmetry.—The TRS of the Hamiltonian

is respected if and only if ξ−k ¼ ξk and Δ�
Qα
ðkþQαÞ ¼

Δ−Qα
ðkÞ. For the aforementioned form of Δ�Qα

ðkÞ,
sufficient and necessary conditions for TRS reduce to
Δ�

Qα
¼ Δ−Qα

.
The finite momentum pairing leads to a spatially varying

pairing function in real space, resulting in a PDW. To be
simple, we set Δ�Qα

¼ Δeiθαe�iðϕα=2Þ, where Δ is real and
positive, θα ∈ ð−π; π� and ϕα ∈ ð−π; π�. Thus, the pairing
function ΔðrÞ reads

ΔðrÞ ¼ 2Δ
X
α

eiθα cos

�
Qα · rþ

ϕα

2

�
: ð2Þ

Commensurate PDW and descendant CDW order.—
When the PDW partially melts, i.e., the Uð1Þ gauge
symmetry is restored but not the translational symmetry,
a descendant CDW order will arise with wave vectors
q ¼ �Qα �Qβ ≠ 0. These wave vectors can be classified
into three sets: (B) q ¼ �Qα associated with a 4 × 4 CDW;
(C) q ¼ �2Qα associated with a 2 × 2 CDW; (D) q ¼
�ðQα −QβÞ associated with a ð4= ffiffiffi

3
p Þ × ð4= ffiffiffi

3
p Þ CDW

[see Fig. 3(c)]. Note that the FS is nested by q ¼ �2Qα in
C but not those in B or D. So that the descendant CDW
order can be of 4 × 4 and ð4= ffiffiffi

3
p Þ × ð4= ffiffiffi

3
p Þ, in addition to

the 2 × 2 CDW originating from the FS nesting.
Quasiparticles.—To study quasiparticle excitations

in such a PDW associated with a 4 × 4 folded BZ, we
introduce

Ĉ†
k;σ ¼ðc†k;σ; c†kþQ1;σ

; c†k−Q1;σ
;c†kþQ2;σ

; c†k−Q2;σ
; c†kþQ3;σ

;

c†k−Q3;σ
; c†kþ2Q1;σ

;c†kþ2Q2;σ
; c†kþ2Q3;σ

; c†kþQ1−Q2;σ
;

c†k−Q1þQ2;σ
;c†kþQ2−Q3;σ

;c†k−Q2þQ3;σ
;

c†kþQ3−Q1;σ
;c†k−Q3þQ1;σ

Þ;

and rewrite Eq. (1) in a matrix form

H ¼ 1

16

X
k

Hk þ
X
k

ξk

¼ 1

16

X
k

ðĈ†
k;↑; Ĉ−k;↓ÞĤk

� Ĉk;↑

Ĉ†
−k;↓

�
þ
X
k

ξk; ð3aÞ

Ĥk ¼
�

D̂ðkÞ Δ̂ðkÞ
Δ̂†ðkÞ −D̂ð−kÞ

�
: ð3bÞ

Here, Ĥk is a 32 × 32 matrix, D̂ðkÞ ¼ diagfξki
g, ki is

the ith momentum in Ĉ†
k;↑, and Δ̂ðkÞ is a 16 × 16 matrix

defined by Δ�Qα
ðkÞ.

The diagonalization of Ĥk leads to

Hk ¼
X16
i¼1

EðkÞþi γ†k;↑;iγk;↑;i þ EðkÞ−i ð−γ†−k;↓;iγ−k;↓;i þ 1Þ;

ð4Þ

where EðkÞþð−Þ
i ½ið17 − iÞ ¼ 1;…; 16� are quasiparticle

(holes) energy spectra arranged in ascending order. The
particle-hole symmetry is manifested by EðkÞþi ¼
−Eð−kÞ−i , which would give rise to EðkÞþi ¼ −EðkÞ−i if
the TRS was respected. γk;↑ð↓Þ;i’s are Bogoliubov quasi-

particle operators, and C†
k;↑;i can be written in terms of

them,

C†
k;↑;i ¼

X16
j¼1

½uðkÞijγ†k;↑;j þ vðkÞijγ−k;↓;j�; ð5Þ

where uðkÞij and vðkÞij form a unitary transformation.
It is easy to verify that EðkÞ�i ¼ Eðk�QαÞ�i and γk;σ;i ¼
γk�Qα;σ;i, i.e., the BZ is of 4 × 4 folding.
Z2 symmetry.—It is found that there exist additional Z2

symmetries associated with a theorem as follows.
Theorem 1: For each α, the transformation Δ�Qα

↦
−Δ�Qα

does not change the energy spectra of the system.

(a) (b)

FIG. 1. First Brillouin zone (BZ) of a hexagonal lattice and
nesting feature of PDWs. (a) BZ and the nested FS at 3=4 filling.
The boundary of BZ is in blue, and red lines represent the FS.
(b) Each k on a FS segment along the Qα direction has two
counterparts −k�Qα on the FS to form finite momentum (�Qα)
Cooper pairs.
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The proof of the theorem can be found in the
Supplemental Material [35]. This theorem suggests a
Z2 × Z2 symmetry, since only two of Qα are independent.
Approximate EðkÞþ1 .—To get insight into low energy

excitations, we inspect the lowest branch of quasiparticle
dispersion, EðkÞþ1 , along the FS. Without loss of generality,
we consider the FS segmentM − X [see Figs. 1(a) and 1(b)].
For eachk on this segment and away fromM andX points, it
is found that only the pairings between k and −k�Q1 are
of the order ofΔ, while other pairing terms aremuch smaller
than them because of the energy cutoff. Keeping sizable
terms in Δ̂ðkÞ and neglecting others, we find that Ĥk can
be approximately decomposed into paired and unpaired
parts, i.e., Ĥk ≈ Ĥp

k ⊕ Ĥf
k [35]. Therefore, EðkÞþ1 can be

estimated as

EðkÞþ1 ≈minfEpðkÞ; EfðkÞg; ð6aÞ
where EpðfÞðkÞ is the lowest non-negative eigenvalue of

ĤpðfÞ
k . Straightforward algebra [35] leads to

EpðkÞ ¼ 2Δmin

����� sin
�
ϕ1

2

�����;
���� cos

�
ϕ1

2

�����
�
: ð6bÞ

It takes the minimum EpðkÞmin ¼ 0 at ϕ1 ¼ 0; π and the
maximum EpðkÞmax ¼

ffiffiffi
2

p
Δ at ϕ1 ¼ �ðπ=2Þ. Thus, the

condensation of Cooper pairs will gain most energy at
ϕα ¼ �ðπ=2Þ. Meanwhile, EfðkÞ determined by Ĥf

k is
responsible for (nearly) unpaired electrons and in-gap
excitations in EðkÞþ1 as long as EfðkÞ < EpðkÞ. The
combination of EpðkÞ and EfðkÞ gives rise to EðkÞþ1 ,
approximately.
Away from the FS or near theM or X point, other pairing

terms become considerable and the simple decomposition
of Ĥk does not work any more. We shall diagonalize Ĥk
numerically, and study the ground state and low energy
excitations. Hereafter, we setΛ ¼ 0.1 andΔ ¼ 0.02, unless
otherwise specified.
Condensation energy.—The condensation energy

Ec ≡ En − Es, that is defined by the energy differ-
ence between a SC ground state and corresponding
normal state [36], has been found as Ec¼
ð1=NÞPk ½ð1=16Þ

P
16
i¼1

P
s¼�

P
EðkÞsi>0EðkÞsi − jξkj�. The

numerical calculation finds that Ec½θ1; θ2; θ3;ϕα� reaches
local maxima at ϕα ¼ �π=2. This agrees with the above
analysis of approximate EðkÞþ1 [see Eq. (6)] well.
Moreover, as shown in Fig. 2(a), the PDW state acquires
maximum Ec at ϕα ¼ �π=2 and θ2 − θ1 ¼ θ3 − θ2≡
�2π=3ðmod πÞ, breaking the TRS spontaneously.
Owing to the Z2 symmetry theorem, (θα ↦ θα � π),
the period is π, instead of 2π here.
Ginzburg-Landau free energy.—The TRS breaking and

the Z2 symmetry can be verified in Ginzburg-Landau (GL)
theory. Up to quartic order in ΔQα

, the GL free energy can
be written as [35],

F ½ΔQα
� ¼ F ð0Þ þ F ð2Þ½ΔQα

� þ F ð4Þ½ΔQα
�; ð7Þ

where F ð0Þ isΔQα
-independent, F ð2Þ ¼ gð2Þ

P
3
α¼1 ðjΔQα

j2þ
jΔ−Qα

j2Þ with gð2Þ < 0, and F ð4Þ ¼ F ð4Þ
0 þ F ð4Þ

ϕ þ F ð4Þ
θ .

Here, F ð4Þ
0 depends on jΔQα

j only. F ð4Þ
ϕ and F ð4Þ

θ read

F ð4Þ
ϕ ¼ gð4Þϕ ½ðΔ2

Q1
ÞðΔ2

−Q1
Þ� þ ðΔ2

Q2
ÞðΔ2

−Q2
Þ�

þðΔ2
Q3
ÞðΔ2

−Q3
Þ� þ c:c:�; ð8aÞ

and

F ð4Þ
θ ¼ gð4Þθ ½ðΔQ1

Δ−Q1
ÞðΔQ2

Δ−Q2
Þ�

þ ðΔQ2
Δ−Q2

ÞðΔQ3
Δ−Q3

Þ�
þ ðΔQ3

Δ−Q3
ÞðΔQ1

Δ−Q1
Þ� þ c:c:�; ð8bÞ

respectively, where both gð4Þϕ and gð4Þθ are found to be

positive and ΔQα
-independent [35]. Putting Δ�Qα

¼
Δeiθαe�iðϕα=2Þ into the above leads to F ð4Þ

ϕ ¼
2gð4Þϕ Δ4

P
3
α¼1cosð2ϕαÞ and F ð4Þ

θ ¼2gð4Þθ Δ4½cosð2θ2−
2θ1Þþcosð2θ3−2θ2Þþcosð2θ1−2θ3Þ�. Thus, the lowest
free energy is achieved at ϕα ¼ �π=2 and θ2 − θ1 ¼
θ3 − θ2 ≡�2π=3ðmod πÞ.

(a) (b)

(c) (d)

FIG. 2. (a) Condensation energy Ec (with an offset ε ¼ 0.993)
as a function of θ2 and θ3, where θ1 ¼ 0 and ϕα ¼ π=2 have been
set [see Eq. (2)]. Maximal Ec occurs at θ2 ¼ θ3 − θ2 ≡
�2π=3ðmod πÞ. (b)–(d) Energy dispersion and Bogoliubov
Fermi pockets for the lowest energy state: ϕα ¼ π=2, θ1 ¼ 0,
θ2 ¼ 2π=3, and θ3 ¼ −2π=3. (b) EðkÞ�1 around X point that are
plotted along Γ − X − K. (c) Bogoliubov Fermi pockets at M
and X points and their periodic replica due to the PDW.
(d) Quasiparticle (hole) pocket around X point.
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Henceforward, we shall focus on the lowest energy state
with θ1 ¼ 0, θ2 ¼ 2π=3, θ3 ¼ −2π=3, and ϕα ¼ π=2, and
study various electronic spectra.
Bogoliubov Fermi pockets.—As shown in Fig. 2(b),

around the M and X points, EðkÞþ1 sinks down while
EðkÞ−1 rises up, such that both of them go across zero
energy. Indeed, this means that quasiparticles (holes)
possess FSs, namely, Bogoliubov Fermi pockets come into
being. These Fermi pockets are located at the M and X
points and their periodic replica by the PDW (shifted by
q ¼ �Qα �Qβ ≠ 0), as indicated in Fig. 2(c). It is dis-
played in Fig. 2(d) that these Fermi pockets exhibit D3

symmetry.
Density of states.—The differential conductance dI=dV

measured by STM [37] is proportional to the DOS that reads
ρðωÞ ¼ −ð1=8NÞPk

P
16
i;j¼1fjuðkÞijj2½∂nFðω − EðkÞþj Þ=

∂ω� þ jvðkÞijj2½∂nFðω − EðkÞ−j Þ=∂ω�g, where nF is the
Fermi distribution, and uðkÞij and vðkÞij are found via
Eq. (5). As demonstrated in Fig. 3, for kBT ¼ Δ=60 ≪ Δ,
ρðωÞ exhibits a minigap inside the SC gap manifested by
sharp coherence peaks; while for kBT ¼ Δ=10≲ Δ, ρðωÞ
(thereby dI=dV) curve is of a V-shape. Note that both the
minigap and the V-shaped DOS suggest electronic excita-
tions inside the SC gap. The extra peaks outside sharp
coherence peaks are attributed to the Van Hove singularity
[38], and the asymmetry between ρðωÞ and ρð−ωÞ is due to
the broken particle-hole symmetry in ξk.
Local density of states.—Now, we study the LDOS that

serves as a standard tool to identify CDW orders by STM.
The Fourier transformation of LDOS for the PDW state is

given by ρðq;ωÞ ¼ −ð1=8NÞPk

P
16
i;j¼1fuðkÞiju�ðkþ

qÞij ½∂nFðω − EðkÞþj Þ=∂ω � þ vðkÞijv�ðkþ qÞij ½∂nF ðω−
EðkÞ−j Þ=∂ω�gδ̄k;kþq, where δ̄k;k0≡P∞

n;m¼−∞δkþnQ1þmQ2;k0

[35]. It has been found that ρðq;ωÞ does not vanish only at
a finite number of q points in the BZ, as labeled in Fig. 3(c).
These q points are nothing but wave vectors of the
descendant CDW order. Note that jρðq;ωÞj takes the same
value at q points within each set of B, C or D [35]. As
demonstrated in Fig. 3(d), jρðq;ωÞj displays both (B) 4 × 4

and (D) 4=
ffiffiffi
3

p
× 4=

ffiffiffi
3

p
CDW orders in addition to (C)

2 × 2 CDW order caused by the FS nesting. Define the
integrated intensity of these CDW orders as ICDWðqÞ ¼
jR ρðq;ωÞdωj=jR ρðq ¼ 0;ωÞdωj, we find that IB;C;DCDW ¼
1.51 × 10−5; 1.02 × 10−5; 2.82 × 10−6 at kBT ¼ Δ=10 for
the three types of CDW orders, respectively.
Quasiparticle interference.—In the presence of elastic

scatterings, the LDOS will be modulated due to the effect of
QPI. To characterize this feature, we follow Ref. [39] to
study the modulated LDOS δρðr;ωÞ, or its Fourier trans-
formation that is given by

δρðq;ωÞ
≡ ρsðq;ωÞ − ρðq;ωÞ

¼ −
1

16πN

X
k

ImT̃r½Ĝðkþ q;ωþ iδÞT̂ðωÞĜðk;ωþ iδÞ�;

ð9Þ

where ρs (ρ) is the LDOS in the presence (absence) of
scatterings. eTr means tracing the upper-left 16 × 16 block
in a 32 × 32matrix. Ĝðk;ωþ iδÞ ¼ ½ðωþ iδÞI − Ĥk�−1 is
Green’s function in the absence of scatterings and T̂ðωÞ ¼
½ðVsτ̂3Þ−1 − ð1=NÞPk Ĝðk;ωþ iδÞ�−1 is the scattering
matrix. Here, Vs is the nonmagnetic scattering impurity
strength, and τ̂3 is the Pauli matrix spanning Nambu space.
The modulation jδρðq;ωÞj with Vs ¼ 0.1 at ω ¼

0.01ð<Δ ¼ 0.02Þ is plotted in Fig. 4(a). For comparison,
we also study QPI of a uniform s-wave superconductor, as
shown in Fig. 4(b). In both figures, the intensity at q ¼ 0
has been subtracted.
Electron spectral function.—The LDOS modulation due

to scatterings can be analyzed by electron spectral function
Aðk;ωÞ ¼ −ð1=πÞIm½Ĝðk;ωþ iδÞ�11 in the absence of
scattering. As is pointed out in Ref. [39], the summation
in Eq. (9) is dominated by terms in which both k and kþ q
are poles of Ĝ. Thus, the vectors q associated with the
scattering processes connecting two points with large
Aðk;ωÞ will show significant jδρðq;ωÞj. This feature of
q is displayed in Fig. 4(c). An essential difference between
the PDW state and a uniform s-wave state is that the in-gap
state is absent in the latter and the corresponding Aðk;ωÞ
and jδρðq;ωÞj vanish at ω < Δ, as shown in Figs. 4(b)

(a) (b)

(c) (d)

FIG. 3. DOS and LDOS. DOS ρðωÞ at (a) kBT=Δ ¼ 1=60 and
(b) kBT=Δ ¼ 1=10. (c) Wave vectors q ¼ �Qα �Qβ (or their
equivalent vectors in first BZ) associated with descendant CDW
orders. (d) LDOS ρðq;ωÞ exhibits three types of CDW orders B,
C, and D. Here, Λ ¼ 0.1 and Δ ¼ 0.02 have been chosen.
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and 4(d). This also provides an experiment scheme to probe
PDW states.
Discussions and conclusions.—(i) Recently discovered

kagome SC AV3Sb5 (A ¼ K,Rb,Cs) with a nearly 3=4
filled electron band is a natural platform toward the
realization of the interplay between PDW and FS nesting
[40–45]. TRS breaking signatures have been extensively
discussed both experimentally and theoretically in AV3Sb5
[46–51]. For the SC properties, the AV3Sb5 is shown to be
a spin-singlet SC hosting s-wave features [52–54].
However, a residual thermal transport at T ¼ 0 and
“multigap” V-shaped DOS with residual zero-energy con-
tributions were observed in SC states [34,54–56], which
conflicts with the conventional s-wave nature. This contra-
diction can be resolved within the TRS breaking PDW
scenario proposed in the present Letter. More importantly, a
PDW state ordering atQα has been observed in recent STM
measurements [34]. Therefore, our theory may provide new
insight into the PDW states and TRS breaking in AV3Sb5.
Indeed, both 2 × 2 and 4 × 4 CDWs have been observed in
STM. Our theory suggests that the ð4= ffiffiffi

3
p Þ × ð4= ffiffiffi

3
p Þ

CDW should appear as well, as long as the frequency ω
is chosen properly.
(ii) Indeed, such a TRS breaking SC state breaks the

spatial inversion symmetry as well [see Eq. (2)], resulting
in a chiral state with stable residual gapless quasiparticle
excitations. The ground state is a flux state with sponta-
neous loop current [57,58], as calculated in the
Supplemental Material [35]. And the Bogoliubov Fermi

pockets yield the linear T-dependent specific heat at low
temperature.
(iii) One of the remaining issues is what microscopic

theory may give rise to the finite-momentum Cooper
pairing instability on a nested FS. In the weak interaction
limit, pairing at zero momentum is usually favored.
Nonetheless, strong correlation might favor PDW insta-
bility against uniform pairing (see, e.g., Refs. [15,59]). By
establishing the microscopic model, the comparison with
relevant models [60–63] based on the conventional CDW
instabilities with nesting vector 2Qα is one of the essential
topics.
In summary, we have found that the FS nesting allows a

full PDW pairing and in-gap states simultaneously. Such a
PDW ansatz will give rise to a TRS breaking ground state.
Subsequently, descendant CDW orders and various elec-
tronic spectra have been studied, and the relevance to newly
discovered kagome SC has been revealed.
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