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a b s t r a c t

Since the realization of Bose–Einstein condensates (BECs) trapped in optical potentials,
intensive experimental and theoretical investigations have been carried out for bright
and dark matter-wave solitons, coherent structures, modulational instability (MI), and
nonlinear excitation of BEC matter waves, making them objects of fundamental interest
in the vast realm of nonlinear physics and soft condensed-matter physics. Many of
these states have their counterparts in optics, as concerns the nonlinear propagation
of localized and extended light modes in the spatial, temporal, and spatiotemporal
domains. Ubiquitous models, which are relevant to the description of diverse nonlinear
media in one, two, and three dimensions (1D, 2D, and 3D), are provided by the
nonlinear Schrödinger (NLS), alias Gross–Pitaevskii (GP), equations. In many settings,
nontrivial solitons and coherent structures, which do not exist or are unstable in free
space, can be created and/or stabilized by means of various management techniques,
which are represented by NLS and GP equations with coefficients in front of linear or
nonlinear terms which are functions of time and/or coordinates. Well-known examples
are dispersion management in nonlinear fiber optics, and nonlinearity management in
1D, 2D, and 3D BEC. Developing this direction of research in various settings, efficient
schemes of the spatiotemporal modulation of coefficients in the NLS/GP equations have
been designed to engineer desirable robust nonlinear modes. This direction and related
ones are the main topic of the present review. In particular, a broad and important
theme is the creation and control of 1D matter-wave solitons in BEC by means of
combination of the temporal or spatial modulation of the nonlinearity strength (which
may be imposed by means of the Feshbach resonance induced by variable magnetic
fields) and a time-dependent trapping potential. An essential ramification of this topic is
analytical and numerical analysis of MI of continuous-wave (constant-amplitude) states,
and control of the nonlinear development of MI. Another physically important topic
is stabilization of 2D solitons against the critical collapse, driven by the cubic self-
attraction, with the help of temporarily periodic nonlinearity management, which makes
the sign of the nonlinearity periodically flipping. In addition to that, the review also
includes some topics that do not directly include spatiotemporal modulation, but address
physically important phenomena which demonstrate similar soliton dynamics. These are
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soliton motion in binary BEC, three-component solitons in spinor BEC, and dynamics of
two-component 1D solitons under the action of spin–orbit coupling.
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Acronyms

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
BdG Bogoliubov–de Gennes (equations for small perturbations)
BEC Bose–Einstein condensate
CW Continuous-wave (solution, alias plane wave)
DM Dispersion management
FM Ferromagnetic
FR Feshbach resonance
GP Gross–Pitaevskii (equation)
HO Harmonic oscillator
MI Modulational instability
NLS Nonlinear Schrödinger (equation)
NM Nonlinearity management
ODE Ordinary differential equation
PIT Phase-imprinting technique
SOC Spin–orbit coupling
SPM Self-phase-modulation (nonlinear self-interaction)
TS Townes’ soliton
VA Variational approximation
XPM Cross-phase-modulation (nonlinear interaction between two components)

1. Introduction

The nonlinear Schrödinger (NLS) equations are basic models in a broad spectrum of disciplines in physics and
ngineering. Among these models, most thoroughly elaborated ones belong to the realms of nonlinear optics and
ose–Einstein condensates (BECs) of ultracold atoms. In this latter context, the NLS equation is often called the Gross–
itaevskii (GP) equation. Commonly known fundamental solutions of the NLS equations are solitons (self-trapped localized
tates) [1,2]. Many species of solitons have been predicted and observed in optics [3,4] and in BEC [5–9]. In particular, many
esults have been produced in the framework of the dynamical management of solitons, under the action of time-dependent
actors, which are represented by time-dependent terms in the respective NLS or GP equations [10], that may also include
inear losses and compensating gain. A well-known example is the dispersion management (DM) in fiber optics [10,11],
ith the group-velocity-dispersion coefficient periodically alternating between positive and negative values along the
ropagation distance (which is the evolution variable in the guided-wave propagation theory [3]). This setting helps to
tabilize DM solitons against various perturbations, such as random noise and collisions between solitons in multi-channel
ystems [12–15]. Furthermore, the DM scheme was predicted to help stabilize 2D [16] and 3D [17] spatiotemporal solitons
“light bullets”).

Another important variant of the NLS/GP models with the dynamical modulation include nonlinearity management
NM), i.e., a time-varying coefficient in front of the cubic term. This possibility was first elaborated in terms of the
ptics model, based on the two-dimensional (2D) spatial-domain NLS equation for the beam propagation in bulk
edia. Assuming that the medium was composed of alternating elements with self-focusing and defocusing Kerr (cubic)
onlinearity, it was demonstrated [18] that this version of NM stabilizes oscillating 2D solitons against the critical collapse
blowup), which makes all static 2D solitons (called Townes’ soliton (TS) [19] in this case) unstable in the uniform medium
ith the cubic self-focusing [20].
The concept of NM in optics, which ultimately aims to create nontrivial spatiotemporal light patterns, such as “bullets”,

s naturally related to the rapidly developing area of experimental and theoretical studies aimed at the creation and
arious applications of structured light [21–27] . In most cases, the structure in light beams is induced by means of
inear techniques (see, e.g., Ref. [28] and references therein). Frequently, the so created light patterns take the form of a
flying focus”, with the focal point featuring controlled spatiotemporal motion [29]. Because nonlinearity is the underlying
opic of the present article, it is relevant to mention that, very recently, a more powerful method was elaborated, which
akes it possible to build optical fields with an embedded “self-flying-focus”, by means of inherent nonlinearity of the
edium [30]. Another experimentally implemented technique, which is very relevant in the context of models considered
elow in the present article, makes it possible to create arbitrarily structured averaged optical patterns “painted” by a
apidly moving laser beam [31].
3
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In the GP equation, the cubic term accounts for effects of inter-atomic collisions in BEC, treated in the mean-field
pproximation, with the coefficient in front of it proportional to the s-wave collision scattering length [32]. In the
xperiment, this parameter can be controlled by means of the Feshbach-resonance (FR) effect, i.e., a change of the
cattering length under the action of magnetic field, which creates short-lived quasi-bound states in the course of the
nter-atomic collision [33,34]. It was demonstrated that the FR may be used to very accurately adjust the nonlinearity
trength in BEC of potassium [35] and lithium [36,37] atoms, as well as in binary BEC mixtures, such as one formed
y 23Na and 87Rb atoms [38]. The FR can also be imposed optically, by appropriate laser illumination [39–42], as well
s by microwave [43] and electrostatic [44] fields. Then, NM for BEC may be realized using time-dependent and/or
onuniform control fields [4,10,40,41,45–48]. In particular, the FR technique makes it possible to quickly reverse (in time)
he interaction sign from repulsion to attraction (positive to negative scattering length), which gives rise, via the onset of
he collapse, to abrupt shrinkage of the condensate, followed by a burst of emitted atoms and the formation of a stable
esidual condensate [49]. A similar method relies on the use of quench, i.e., sudden change of the self-attraction strength
n BEC, which makes it possible to transform a quasi-1D fundamental soliton into an oscillatory state in the form of a
reather [50]. A still more spectacular outcome is “bosonic fireworks” in the form of violent emission of matter-wave jets
rom the original condensate [51,52]. In other experiments, the time-periodic modulation of the nonlinearity strength,
pplied to the quasi-1D (cigar-shaped) BEC, initiates a transition to a granulated state in the condensate [53].
In the case of the attractive interaction, matter-wave solitons may be readily formed in an effectively 1D condensate [5].

owever, in the 2D geometry the attraction results in the critical collapse of the condensate, if the number of atoms (the
orm of the wave field, in terms of the GP equation) exceeds a critical value. The FR technique was predicted to be quite
seful in these settings: similar to the above-mentioned results for the 2D spatial solitons in the optical bulk waveguide
ith the periodic alternation of the self-focusing and defocusing [18], 2D matter-wave solitons may be readily stabilized
gainst the critical collapse by the time-periodic variation of the nonlinearity coefficient between negative and positive
alues. This approach was elaborated in detail in various forms [54–57]. Unlike the fundamental 2D solitons, the NM
cheme cannot stabilize 2D solitons with embedded vorticity against the splitting instability (to which the vortex solitons
re most vulnerable [58] ), and it cannot stabilize 3D solitons against the supercritical collapse either (in the latter case, the
ritical norm is zero, i.e., any value of the norm may lead to the collapse). However, 3D solitons can be stabilized if the NM
s combined with a quasi-1D spatially periodic potential (optical lattice) applied to the condensate [59]. A generalization
f the FR technique for controlling the strength and sign of the interaction between atoms in BEC and, thus, the coefficient
n front of the cubic term in the corresponding GP equation, is the application of a control field containing time-periodic
ac) and constant (dc) components. Another essential ramification is the use of FR in BEC mixtures, to adjust the relation
etween strengths of self- and cross-component interactions (alias self- and cross-phase modulation, SPM and XPM, in
erms of nonlinear optics [4]), which helps to produce robust multi-component states in the experiment [60–62].

A natural generalization of the NM scenarios for BEC is to combine the variable coefficient in front of the nonlinear
erm in the GP equation, imposed by the temporal and/or spatial modulation of the scattering length, with a temporarily
odulated potential trapping the condensate. In particular, a specially designed relation between the spatiotemporal
ependence of nonlinear and linear factors in the GP equation makes it possible to produce integrable versions of the
quation in 1D [63–71]. A similar approach was developed for constructing solvable 3D models, which admit factorization
f the respective 3D equation into a product of relatively simple 1D equations, which admit exact solutions (in particular,
olitons) [72–76]. In fact, the integrability of such specially designed (engineered) models is not a fundamentally new
athematical finding, because they may be transformed, by means of tricky but explicit transformations of the wave

unction (or several wave functions, in the case of multi-component systems), spatial coordinates, and the temporal
ariable, into the classical integrable 1D NLS equation with constant coefficients (or the Manakov’s [77] integrable
ystem of the NLS equations) [78,79]. Accordingly, a great variety of integrable and nearly integrable models can be
enerated by means of inverse engineering, applying generic transformations of the same type to the underlying integrable
quation(s) [80]. Although this approach to the expansion of the set of solvable models seems somewhat artificial, it is
eaningful, and quite useful in many cases, as it has a potential to predict tractable nontrivial configurations in BEC and,

o a lesser degree, in optics (it is not easy to apply flexible modulation of local nonlinearity to optical media, where there
s no direct counterpart of FR).

In this review article, we summarize basic results (chiefly, theoretical ones) for the dynamics of BEC and optical fields
rapped in time-dependent potentials, combined with the variable (time-modulated) nonlinearity. The respective models
re based on one-, two-, and three-component nonautonomous GP/NLS equations. It is relevant to stress that all the results
ncluded in the review have already been published, although some of them are quite recent. In particular, an essential
irection in these studies, elaborated in many theoretical works, is the design of specific nontrivial models which can be
xplicitly transformed into an integrable form, thus making it possible to use the huge stock of exact solutions, available
n the original models. The analytically found exact solutions are, in many cases, confirmed by numerical simulations. It
s necessary to stress that, while the exact solutions are stable in the framework of the integrable models, they may be
ubject to the structural instability, as a small deviation of the physical model from the integrable form may lead to the
oss of stability of the original exact solutions, or even make them nonexistent, in the rigorous mathematical sense. In
uch cases, the former solutions will suffer slow decay; however, it may often happen that the decay time (or propagation
istance, in optics) will be essentially larger than the actual extension of plausible experiments, hence the approximate
olutions still predict physically relevant states.
4
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The rest of the article is composed of sections which are related by gradually increasing complexity of models presented
n them. Section 2 addresses the basic model, in which the approach outlined above leads to the construction and
anagement of nonautonomous solitons of 1D cubic self-defocusing NLS equations with spatiotemporally modulated
oefficients, that may be transformed into the classical integrable NLS equation. In this setting, matter-wave soliton
olutions are constructed in an analytical form, and it is shown that the instability of those solitons, if any, may be delayed
r completely eliminated by varying the nonlinearity’s strength in time. In Section 3, we continue the presentation by
onsidering engineered nonautonomous matter-wave solitons in BEC with spatially modulated local nonlinearity and a
ime-dependent harmonic-oscillator (HO) potential. The modulational instability (MI) in that setting is considered too. In
ection 4, we proceed to more general nonintegrable models, which are treated by means of the semi-analytical variational
pproximation (VA) and direct numerical simulations. In this case, we address the dynamics of 2D and 3D condensates
ith the nonlinearity strength containing constant and harmonically varying parts, which can be implemented with the
elp of ac magnetic field tuned to FR. In particular, the spatially uniform temporal modulation of the nonlinearity may
eadily play the role of an effective trap that confines the condensate, and sometimes enforces its collapse. Section 5
eals with dynamics of a binary (two-component) condensate in an expulsive time-varying HO potential with the time-
arying attractive interaction. In this case, the condensates in the expulsive time-modulated HO potential may sustain
he stability, while their counterparts in the time-independent potential rapidly decay. In Section 6, we address the
ynamics of matter-wave solitons of coupled GP equations for binary BEC. Strictly speaking, this model does not include
patiotemporal engineering of solitons, but the results are closely related to those produced by means of the engineering.
n particular, the results reported in Section 6 show that, in the absence of the XPM interaction, the solutions maintain
roperties of one-component condensates, such as MI, while in the presence of the interaction between the components,
he solutions exhibit different properties, such as restriction of MI and soliton splitting. Section 7 deals with the soliton
tates in a model based on a set of three coupled GP equations modeling the dynamics of the spinor BEC, with atomic
pin F = 1. Both nonintegrable and integrable versions of the system are considered, and exact soliton solutions are
emonstrated. The stability of the solutions was checked, in most cases, by direct simulations and, in some cases, it was
nvestigated in a more rigorous form, based on linearized Bogoliubov–de Gennes (BdG) equations for small perturbations.
n Section 8, we introduce a new physical setting, considering the motion of bright and dark matter-wave solitons in 1D
EC in the presence of spin–orbit coupling (SOC). We demonstrate that the spin dynamics of the SOC solitons is governed
y a nonlinear Bloch equation and affects the orbital motion of the solitons, leading to SOC effects in the dynamics of
acroscopic quantum objects. Similar to what is mentioned about Section 6, the settings addressed in Sections 7 and 8 do
ot directly include ingredients of the spatiotemporal engineering. Nevertheless, the models addressed in these sections,
s well as methods applied to them and obtained results, are quite similar to those produced by the engineering. In
articular, the macroscopic SOC phenomenology is explained by the fact that an effective time-periodic force produced
y rotation of the soliton’s (pseudo-) spin plays the role of temporal management which affects motion of the same
oliton. Each Section 2 through 8 contains formulation of the underlying model, summary of analytical and numerical
esults, and a conclusion focused in the topic under the consideration, with references to original papers in which those
esults have been reported. Finally, Section 9 concludes the review and mentions perspectives for further work in this
rea.
The presentation has a rather technical form, as the topic surveyed in this article is inherently technical. Nevertheless,

n effort is made, in each section, to highlight the main findings, on top of technical details. The sections include an outline
f physical realizations of the considered theoretical models in BEC (and in some cases, in nonlinear optics). Characteristic
hysical parameters of the respective settings, such as atomic species and particular atomic states, relevant numbers of
toms, the scattering and transverse-confinement lengths, etc., are given too.

. Management of matter-wave solitons in BEC with time modulation of the scattering length and trapping potential

The present section deals with nonautonomous solitons produced by 1D self-defocusing GP equations with the
onlinearity coefficient subject to spatiotemporal modulation and a time-dependent trapping potential. The respective
odel is the basic one in the framework of the topic considered in this review. We start by presenting stable higher-
rder modes in the form of arrays of dark solitons nested in a finite-width background. Then, we show that the dynamics
f those modes from this class which are not stable can be efficiently controlled (attenuated or completely suppressed)
y varying the nonlinearity strength in time.
Results collected in this section are based on original works [66,81–83] and [84].

.1. The model and stationary solitons

.1.1. Formulation of the model
The setting addressed in this section is based on the 1D NLS/GP equation, written in the normalized form:

i
∂ψ

∂ξ
= −

∂2ψ

∂x2
+ g(ξ, x) |ψ |

2 ψ + V (ξ, x)ψ, (1)

where ψ is the mean-field wave function of the quasi-1D (cigar-shaped) BEC if ξ stands for time, x is the axial
coordinate, V ξ, x the time-dependent axial potential, and the strength of the cubic nonlinearity, g , is proportional to
( )

5
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he interatomic s-wave scattering length. The effective 1D equation is derived from the full 3D GP equation if the cigar-
haped configuration is confined, in transverse plane (y, z), by the strong transverse HO potential with frequency ω⊥ and
the respective confinement radius a⊥ =

√
ℏ/(mω⊥), where m is the atomic mass. To this end, the 3D mean-field wave

function is approximately factorized into the product of its axial (1D) counterpart, in which time ξ and coordinate x are
measured in units of 2/ω⊥ and a⊥, and the HO ground-state wave function in the transverse plane [85]:

Ψ (r, ξ ) =
1

√
2πaBa⊥

exp
(

−iω⊥ξ −
y2 + z2

2a2
⊥

)
ψ

(
ω⊥ξ,

x
a⊥

)
, (2)

where aB is the Bohr radius. It is relevant to mention that, for very dense BEC, the 3D → 1D dimension reduction may lead
to more complex effective 1D equations, with nonpolynomial nonlinearities [85,86]. Another caveat is that the reduction
to the 1D GP equation is relevant for a⊥ taking values in the µm range, which is the usual experimental situation. If the
transverse-confinement radius is reduced much deeper, to make it comparable to the effective atomic size, the quasi-1D
BEC transforms into a different quantum state, viz., the Tonks–Girardeau gas [87].

As outlined above, the spatiotemporal modulation may be imposed on the nonlinearity coefficient g(ξ, x) by the FR
technique, controlled by variable magnetic field [10,53,88,89] or by an appropriately shaped optical field [90]. Positive
and negative values of g correspond, respectively, to the repulsive (alias self-defocusing) and attractive (focusing) contact
interactions. In the latter case, the nonlinear self-attraction drives the onset of MI in the condensate [91–93]. Note that
the spatiotemporal modulation may create a sign-changing pattern of g , with alternating self-focusing and defocusing
regions [47].

If ξ is the propagation distance, Eq. (1) governs the propagation of an optical beam in a planar waveguide along
the ξ direction, the external potential being, in this case, generated by a modulation of the local refractive index [94],
while various forms of g(ξ, x) may be realized by means of accordingly designed distributions of nonlinearity-enhancing
dopants [95].

2.1.2. Stationary soliton states for V = V (x) and g = g(x):
First, we address stationary solutions of Eq. (1) with both g and V being functions of coordinate x only. Obviously, in

the general case the respective stationary GP equation is not analytically solvable in the general form. However, there is a
method to select specific forms of g(x) and V (x) which admit exact solutions [66,83,84]. To this end, full soliton solutions
to Eq. (1) were looked for in Ref. [84] as

ψ(ξ, x) = ρ(x)u(X) exp (−iµξ) , (3)

where µ is a real chemical potential (in the application to optics, −µ is the propagation constant). Further, a new
coordinate is identified as

X(x) ≡

∫ x

−∞

ds/ρ2(s), (4)

with real function

ρ(x) =

√
αϕ2

1 + 2βϕ1ϕ2 + γ ϕ2
2 , (5)

where ϕ1,2(x) are two linearly independent solutions of the ordinary differential equation (ODE)

d2ϕ/dx2 + [µ− V (x)]ϕ = 0, (6)

α, β > 0 and γ being real constants satisfying constraint

αγ − β2 > 0 (7)

(these conditions imply that ρ(x) remains real and never vanishes). Inserting expression (3) under conditions (5) and (6)
and defining the nonlinearity coefficient as

g(x) =
F (u)
ρ6(x)

, (8)

where F (u) is another real function, leads to ODE

Eu =
d2u
dX2 + F (u)u3, E =

(
αγ − β2)W 2, (9)

where W = W [ϕ1, ϕ2] = ϕ1dϕ2/dx − ϕ2dϕ1/dx is the constant Wronskian of the pair of solutions ϕ1,2(x). Because
ondition (7) guarantees that ρ(x) does not vanish at all x, the coefficient function g defined by Eq. (8) does not have
singularities. Moreover, condition (7) also secures E > 0 in Eq. (9).

Finally, looking for exact soliton solutions to the underlying equation (1) in the form given by Eqs. (3)–(5) amounts
to finding exact solutions of ODE (9), which may be obtained with various choices of function F (u). As it follows from
q. (8), F (u) is positive or negative in the whole spatial domain for the NLS equation whose nonlinearity is, respectively,
6



E. Kengne, W.-M. Liu and B.A. Malomed Physics Reports 899 (2021) 1–62

d
s
a

w

w
t

w
w

h

p

w

w
a

a
t
t
e
s
n

c
d
o
0

m
e
1
f
f
n
µ
(
s
t
c
m

efocusing (positive) or focusing (negative). In particular, the choice of F (u) = g3 + g5u2, casts Eq. (9) into the following
olvable cubic–quintic ODE: d2u/dX2

+ g3u3
+ g5u5

+
(
β2

− αγ
)
W 2u = 0, where the cubic and quintic coefficients g3

nd g5 with opposite signs, g3g5 < 0, correspond to the competing nonlinearities.
In what follows, we consider exact solutions of Eq. (9) for a more sophisticated choice,

F (u) =
Eu − sin [Eu]

u3 , (10)

hich makes Eq. (9) tantamount to the stationary sine–Gordon equation, d2u/dX2
+ sin (Eu) = 0 [84]. Under condition

E > 0, it represents motion of a pendulum, i.e., either oscillations, with u being a periodic function of X , or the rotation,
ith U linearly growing, on the average. Relevant solutions of Eq. (1) correspond to periodic solutions for u(X). Thus, one
akes

u(X) =
2
E
arcsin

[
q sn

(√
EX, q

)]
, (11)

here sn is the Jacobi’s elliptic sine with modulus q, the respective period of u(X), as given by Eq. (11), being 4K (q)/
√
E,

here K (q) is the complete elliptic integral of the first kind.
Inserting expressions (10) and (11) in Eq. (8), one finds that the nonlinearity coefficient supporting this exact solution

as the defocusing sign, i.e., g(x) > 0. Further, an external axial potential V (x) is needed to confine the solution. The most
physically relevant confining potential is the HO one, V (x) = ω0x2. In this case, solutions ϕ1(x) and ϕ2(x) of ODE (6) can
be expressed in terms of the Whittaker and Watson functions M and W [96], and the Gamma function, Γ , as follows:

ϕ1(x) =
sign (x)

ω
3/4
0

√
|x|

M(x),

ϕ2(x) =
1

4
√
ω0

√
π |x|

[
Γ

(
3ω0 − µ

4ω0

)
W (x) + 2

√
πM(x)

]
, (12)

rovided that

µ ̸= µ̃(ℓ)
≡ (2ℓ+ 1) ω0, ℓ = 0, 1, 2, . . . , (13)

ith µ̃(ℓ) being the ℓ-th HO energy eigenvalue. Because ϕ1(0) = dϕ2/dx|x=0= 0 and dϕ1/dx|x=0= ϕ2(0) = 1, the respective
Wronskian is W = −1.

Here we focus on the basic case of symmetric profiles of the nonlinearity modulation and the corresponding solitons by
setting β = 0 in Eq. (5). To produce a typical example, one can set ω0 = 0.1, α = 61/3, and γ = 1, which makes g(x) ∼ 1
close to the midpoint, x = 0. Then, for given µ, ρ(x) and X(x) can be calculated. To meet the zero boundary conditions
at x = ±∞, which implies the localization of the solution, elliptic modulus q must satisfy a constraint, 2nK (q) =

√
ER,

here n is a positive integer and R ≡
∫

+∞

−∞
ds/ρ2(s). It follows from condition K (q) > π/2 that n is bounded from

bove, n <
√
ER/π , hence there is only a finite number of the exact solutions for given µ. Integer n is the order of the

soliton mode, which features n − 1 density nodes. Further analysis demonstrates that
√
ER/π increases monotonically

s µ increases, while other parameters are fixed, and n takes values up to ℓ + 1 when µ̃(ℓ) < µ < µ̃(ℓ+1) (see Eq. (13)),
here being no solutions at µ < µ̃(0), see Fig. 1. An explanation for this result is that the defocusing nonlinearity pushes
he energy levels up relative to the HO spectrum. Thus, the fundamental solitons (n = 1) exist at µ > µ̃(0), first-order
xcited solitons (n = 2) exist at µ > µ̃(1), and so on. This conclusion coincides with findings reported in Ref. [97] for the
patially homogeneous defocusing nonlinearity. A similar result holds for gap solitons in self-defocusing media: only first
families of the solitons exist when µ lies in the n-th optical-lattice-induced bandgap [98].
In accordance with the above analysis, we show in Fig. 1(a) that only one exact soliton exists when µ = 0.2. The

orresponding single-humped nonlinearity-modulation profile is localized near x = 0, and the exact soliton has a small
ip, because of the self-repulsive sign of the nonlinearity. Stability of the exact soliton solutions was checked by means
f direct simulations of the perturbed evolution in the framework of Eq. (1). In particular, if kicked with initial velocity
.1, the soliton remains stable, featuring periodic oscillations in the trapping, as shown in Fig. 2(a).
With the help of the numerical integration in imaginary time, it was found that the fundamental soliton in the present

odel represents the ground state, which explains its robustness. As the solution parameter µ increases, more and more
xact solitons appear, while the nonlinearity profile develops several peaks. In particular, it is seen from Figs. 1(b) and
(c) that two exact solitons exist in the case of µ = 0.4. Fig. 2(b) demonstrates that, besides the fundamental soliton, the
irst excited-state solution, which looks like a dark soliton nested in a finite-width background, is also stable. However,
or µ = 0.6, the exact first and second excited-state solitons are unstable, see Fig. 3(b) for the former one. While it was
ot easy to analyze the stability of all the solitons corresponding to the excited states, it was possible for larger values of
to generate arrays of nested dark solitons which maintain their stability—in particular, if small spatially homogeneous

Fig. 4(b)) or inhomogeneous (Fig. 4(c)) kicks are applied to them. This finding suggests a new approach to constructing
oliton chains in the form of the Newton’s cradle [99] , and creating supersolitons, i.e., robust localized excitations running
hrough a soliton chain [100] in systems described by the scalar NLS equation. In BEC trapped in a shallow HO potential,
hains of dark solitons supporting the propagation of supersoliton modes, can be readily generated in the experiment by
eans of the phase-imprinting technique (PIT) [84,101–103].
7
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Fig. 1. The relation between the number of exact soliton solutions of Eq. (1), given by Eqs. (3), (4), (5), (8), and (11), and the discrete energy levels
of the harmonic-oscillator potential (the underlying parabola). (a) Modulation profiles of the defocusing nonlinearity g(x) (the solid line), and the
shape of the exact soliton (the dashed line), for µ = 0.2, n = 1, and q = 0.7458. The horizontal axis is coordinate x. Other plots display the same
for (b) µ = 0.4, n = 1, q = 0.9984, (c) µ = 0.4, n = 2, q = 0.8586, (d) µ = 0.6, n = 1, q = 0.9998, (e) µ = 0.6, n = 2, q = 0.9530, and (f) µ = 0.6,

= 3, q = 0.5933. Other parameters are α =
3√6, β = 0, γ = 1, and ω0 = 0.1.

ource: Reproduced from Ref. [84].

Fig. 2. (a) Oscillations of the soliton from Fig. 1(a) which was left-kicked with velocity 0.1, the corresponding initial condition for Eq. (1) being
ρ(x)u[X(x)] exp (−0.05ix). (b) Oscillations of the soliton from Fig. 1(c), which was left-kicked with initial velocity 0.05.
ource: Reproduced from Ref. [84].

Note that, for a fixed chemical potential µ, there is one-to-one correspondence between the exact solution and
onlinearity profile g(x). On the other hand, for fixed g(x), one can always find other numerical soliton solutions, by
arying µ and using the relaxation method. It was checked that, if the exact soliton is stable, its counterparts numerically
ound for the same spatially modulated nonlinearity coefficient g(x) are also stable, provided that the chemical potential
does not vary too much [84]. Further, it was checked that the numerically constructed solitons remain stable too when

he nonlinearity profiles were taken somewhat different from the special form defined by (8). Therefore, higher-order
olitons are physically meaningful objects.

.2. Stability control of nonautonomous solitons

Next, following Ref. [81], we address the model based on Eq. (1) in which V and g are functions of both ξ and
. With specially designed coefficient functions g(ξ, x) and V (ξ , x), exact soliton solutions can be constructed by dint
of a self-similar transformation which reduces the original equation to the standard integrable NLS equation [82]. The
transformation is introduced as

ψ(ξ, x) =
1

√
w(ξ )

Φ(T , Y ) exp
(

−
1
4w

dw
dξ

x2
)
, (14)

here

T ≡

∫ ξ

ds/w2(s), Y ≡ x/w(ξ ). (15)

0

8
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Fig. 3. (a) The profile of the spatially modulated nonlinearity and (b) unstable evolution of the soliton from Fig. 1(e). (c) The spatiotemporal
nonlinearity modulation and (d) the unstable evolution of the soliton, for the same initial conditions as in panel (b), but with the nonlinearity taken
as per Eq. (18), and with half the trapping frequency, ω = ω0/2.
Source: Reproduced from Ref. [84].

Fig. 4. (a) The modulation profile of the defocusing nonlinearity and the corresponding exact soliton (solid and dashed lines, respectively) for µ = 1.6,
= 8, and q = 0.4752. (b,c) The quasi-stable evolution of the soliton. The input for Eq. (1), used to generate panel (b), is ρ(x)u[X(x)] exp (−0.05ix),
hile panel (c) was created by input ρ(x)u[X(x)] exp (−0.05i |x|).
ource: Reproduced from Ref. [84].

nserting expression (14) in Eq. (1) and choosing w as a solution of ODE

d2w
dξ 2

+ 4ω(ξ )w − 4
ω2

0

w3(ξ )
= 0 (16)

ields

i
∂Φ

= −
∂2Φ

+ ω2Y 2Φ + g2(Y ) |Φ|
2Φ, (17)
∂T ∂Y 2 0

9
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f the cubic nonlinearity parameter g and external potential V are chosen as

g(ξ, x) = g1(ξ )g2(Y ), V (ξ, x) = ω(ξ )x2, with g1(ξ ) = 1/w(ξ ). (18)

s seen from Eq. (18), w(ξ ) is the width of the nonlinearity modulation, and determines the soliton’s width.
To produce exact solutions of Eq. (17), the exact stationary soliton solutions displayed in Fig. 1 are used, replacing Y

y x, g2 by g , T by ξ , and Φ by ψ . Moreover, given the functional form of ω(ξ ), such as, e.g., a0 + a1 cos ξ , Eq. (16) for
(ξ ) can be solved. Then, one can construct exact nonstationary soliton solutions of Eq. (1) as per Eq. (14).
The stability of the nonstationary solitons is related to that of the corresponding stationary solution and the functional

orm of w(ξ ). If the stationary soliton of Eq. (17) is stable, the respective nonstationary soliton of Eq. (1), produced by
he transformation of the stable stationary one, is stable too. However, if the stationary soliton is unstable, with the
nstability setting in, say, at T = T0, the instability of the nonstationary soliton may be delayed or even suppressed,
hoosing an appropriate form of w(ξ ). Namely, if T , defined as per Eq. (15), remains smaller than T0, the instability is
ompletely prevented, because the system does not have enough time (propagation distance) to reach the instability
hreshold. Otherwise, the onset of the instability is delayed.

As a typical example, we display the exact soliton corresponding to Fig. 1(e). Without the temporal nonlinearity
odulation, its instability starts at ξ ≈ 40 [see Fig. 3(b)]. If, at ξ = 0, the trapping frequency is abruptly reduced by
alf, and after that the nonlinearity is varied as per Eq. (18) with w(ξ ) =

√
1 + 3 sin2 (ω0ξ) (see Fig. 3(c)), one finds

hat the soliton first experiences exact self-similar evolution in accordance with Eq. (14), and then it starts to develop
nstability at ξ ≈ 81, determined by condition 40 =

∫ ξ
0 ds/w2(s), see Fig. 3(d). Clearly, the instability onset is delayed.

t can be delayed further if one decreases the trapping frequency more, varying the nonlinearity accordingly. It is also
elevant to mention that self-similar dynamical regimes find other important realizations in the mean-field dynamics,
uch as the collapse (blowup) regime [20,104].

.3. Conclusion of the section

The subject of the section is to demonstrate well-known results which play the basic role in the topic of the present
eview, as they are produced by the basic model. These results produce exact soliton solutions to the NLS equation with
he coefficient in front of the cubic nonlinearity and external potential subject to specially designed spatiotemporally
odulation, that allows one to explicitly transform the equation into the classical integrable NLS equation. The number
f solitons is determined by the value of the chemical potential and discrete energy levels of the trapping HO potential.
he existence of stable higher-order modes, built as arrays of dark solitons embedded in the finite-width background, is
emonstrated too. Finally, it is shown how one can control instability of nonstationary solitons, by choosing the temporal
odulation which delays or completely eliminates the onset of the instability.

. Engineering nonautonomous solitons in Bose–Einstein condensates with a spatially modulated scattering length

As a characteristic example of BEC models with a spatially modulated scattering length, diverse versions of which
ave been theoretically elaborated in many works, see a review in Ref. [47], we here consider, first, the corresponding
ubic GP equation, and then the application of PIT to obtain a nonautonomous cubic derivative NLS equation, which
ncludes a time-dependent HO potential. PIT is a relatively new tool used for wave-function engineering in BEC. It may
e extended to control the wave function by means of absorption provided by proximity to a resonance with frequencies
f external laser illumination. The action of PIT onto BEC amounts to modifying the phase pattern in the mean-field
ave function—for example, by exposing the condensate to the action of pulsed, off-resonant laser light with a specially
esigned intensity pattern. As a result, atoms experience the action of a spatially varying light-induced potential, and
hus acquire the corresponding phase. The main advantage of the application of PIT for BECs is that it conserves the total
umber of atoms.
Results collected in this section are based on original works [105–107], and [108]. Some methods presented in the

ection refer to a recently published book [109].

.1. Introduction to the section

In the derivative NLS equation with the spatiotemporal modulation of the contact nonlinear term and time-variable
otential,

i
∂φ(x, t)
∂t

+

[
∂2

∂x2
+ g̃(x, t) |φ(x, t)|2 + Ṽ (x, t)

]
φ(x, t) + ĩβ

∂
(
|φ|

2φ
)

∂x
= 0, (19)

the derivative cubic term represents the delayed nonlinear response of the system. Well-known in plasma physics, Eq. (19)
models the propagation of finite-amplitude Alfvén waves in directions nearly parallel to the external magnetic field in a
plasma with the gas pressure much smaller than the magnetic pressure (low-β plasma) [110]. Other physical realizations
of the derivative NLS equation are provided by convection in binary fluids [111] and propagation of signals in electric
10
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ransmission lines [106]. Furthermore, an equation of type (19) governs the behavior of large-amplitude magnetohydro-
ynamic waves propagating in an arbitrary direction with respect to the magnetic field in high-β plasmas [112], see
lso review [113] . In nonlinear optics, the propagation equation for very short pulses the local Kerr nonlinearity has
o be supplemented by the derivative self-steepening term, which accounts for the nonlinear dispersion of the optical
material [114–117]. If g̃ = const and the external potential is absent, i.e., Ṽ = 0, Eq. (19) reduces to the-well known
ntegrable derivative cubic NLS equation, which can be derived from the usual NLS equation by means of the U(1) gauge
ransformation [118,119]. Two basic questions arise, as concerns equations of this type, in the context of this review: (i)
ow should one introduce a GP model describing the impact of the cubic derivative nonlinearity on the condensates?
ii) How does the derivative cubic term in the GP equation affect the MI in BEC? The main aim of the present section
s to address these questions. To this end, we first demonstrate derivation of the extended NLS equation of type (19),
n the case when PIT [107,108] is applied to the setting modeled by GP equation with the spatiotemporally modulated
ontact-nonlinearity coefficient and time-dependent HO trapping potential.

.2. The cubic inhomogeneous NLS equation

As mentioned above, FRs may be widely used to control the nonlinearity of matter waves, by modulating the
cattering length of inter-atomic collisions temporarily, spatially, or spatiotemporally, which leads to generation of
any novel nonlinear phenomena [5,120,121]. In particular, as outlined in the Introduction, it has been predicted that

ime-dependent modulation of the scattering length can be used to stabilize attractive 2D BECs against the critical
ollapse [54], and to create robust matter-wave breathers in 1D BECs [122]. It has been found too that atomic matter waves
xhibit novel features under the action of a spatially varying scattering length, i.e., with a spatially varying mean-field
onlinearity [47,123–125].
Here, the starting point is the GP equation (1), written as

i
∂u(x, t)
∂t

+

[
∂2

∂x2
+ g(x, t) |u(x, t)|2 + V (x, t)

]
u(x, t) = 0, (20)

with the time-dependent HO potential,

V (x, t) = −α(t)x2. (21)

The strength of the HO trap α(t) may be negative or positive, corresponding to the confining or expulsive potential,
respectively. In most experiments, factor α(t) is typically fixed to a constant value, but adiabatic changes in the strength
of the trap are experimentally feasible too.

In the case of the cigar-shaped BEC, the aforementioned self-consistent reduction of the 3D GP equation to the 1D
form with the external potential can be provided by means of a multiple-scale expansion [109] which exploits a small
parameter δ2 = (Nas/a0)α ≪ 1, where as is the s-wave scattering length. Parameter δ evaluates the relative strength of
the two-body interactions as compared to the kinetic energy of the atoms. In the quasi-1D case, where the dynamics along
the cigar’s axis is of primary interest, the same small parameter δ defines the ratio of the tight transverse confinement
to a characteristic scale along the longitudinal axis, as a⊥/a0 ∼ δ

√
α. For example, for BEC composed of N = 104 of 23Na

toms (with as ≈ 2.75 nm) the characteristic lengths are a0 = 300 µm and a⊥ = 10 µm, which means α = 0.11 and
2

≃ 0.01.
Recall that the rescaled 1D mean-field wave function u(x, t) of the condensate appearing in Eq. (20) is connected to

he underlying 3D order parameter, Ψ (r, t), by relation

Ψ (r, t) =
δ

a⊥

√
as

exp(−iω⊥t) exp
(

−
r2

2a2
⊥

)
u
(
δx
a⊥

,
1
2
δ2ω⊥ t

)
, (22)

here r = (y, z) are coordinates in the transverse plane, and ω⊥ is the confining HO frequency in this plane. Potential
(x, t) appearing in Eq. (20) is measured in units of ℏ2a2

⊥
/8m. Under the above conditions, the sign of the cubic

onlinearity coefficient g(x, t) is opposite to that of as, i.e., g(x, t) is positive and negative for the focusing or defocusing
nonlinearity, respectively. In this section, the spatiotemporal modulation of the interaction coefficient is introduced in the
spatially-linear form:

g(x, t) = x̃g(t) + g̃0(t), (23)

here g̃(t) and g̃0(t) are real functions of time.
In the framework of inhomogeneous NLS equation (20) with the time-varying HO potential (21) and the focusing

ign of the nonlinearity, MI was investigated in Ref. [91], and recently experimentally demonstrated in [92]. The present
ection, following Refs. [107] and [108], addresses MI in the framework of a modified version of the GP equation (20)
ith potential (21) and two cubic terms, including the derivative one. In particular, the linear-stability analysis yields an
nalytical expression for the MI gain of the BEC state.
11
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.2.1. Derivation of the cubic derivative inhomogeneous NLS
To introduce the inhomogeneous cubic derivative NLS equation, one applies PIT to the mean-field wave function u(x, t)

governed by the usual NLS, to generate a new wave function ψ(x, t) [108]:

u(x, t) = ψ(x, t) exp [−iθ (x, t)] , (24a)
∂θ/∂x = −3β(t) |ψ |

2 , (24b)
∂θ/∂t = iβ(t)

(
ψ∂ψ∗/∂x − ψ∗∂ψ/∂x

)
+ 9β2(t) |ψ |

4 . (24c)

In Eqs. (24a)–(24c), θ (x, t) is the imprinted real phase, which is constructed according to Eqs. (24b) and (24c), with a
time-dependent real coefficient β(t). PIT in this form can be realized experimentally by instantaneously exposing BEC,
governed by the GP equation, to the action of a properly designed optical field [107,108], with coefficient β(t) representing
the phase-imprint strength.

Inserting ansatz (24a) in Eq. (20), after straightforward manipulations one arrives at the derivative NLS equation:

i
∂ψ

∂t
+

[
∂2

∂x2
+ V (x, t) + g(x, t) |ψ |

2
]
ψ + 4iβ(t)

∂(|ψ |
2ψ)

∂x
= 0, (25)

ee further technical details in Ref. [108]. Note that the transformation defined by Eqs. (24a)–(24c) conserves the norm
f the wave function, i.e., it does not affect the number N of atoms of the condensate.
Thus far, the PIT scheme which would exactly lead to the setting described by Eq. (25) was not realized experimentally

n BEC. However, a similar experimental result, viz., creation of quasi-1D dark solitons by means of sufficiently strong PIT,
as reported recently [103]

.2.2. Modulational instability in the cubic derivative NLS equation with constant coefficients and without external potential
Before addressing MI for the cubic derivative NLS (25) in its full form, it is relevant, following Refs. [113] and [106], to

ecapitulate results for MI in the equation with constant coefficients and without an external potential:

i
∂ψ

∂t
+

(
∂2

∂x2
+ g0 |ψ |

2
)
ψ + 4iβ

∂
(
|ψ |

2ψ
)

∂x
= 0. (26)

or arbitrary real constants φ0 and q, a continuous-wave (CW), i.e., constant-amplitude, solution of Eq. (26) is

ψ(x, t) = φ0 exp
{
iqx − i[q2 + (4βq − g0) φ2

0 ]t
}

(27)

ollowing the usual scheme of the MI analysis [117], one perturbs solution (27) as follows:

ψ(x, t) = [φ0 + ε(x, t)] exp
(
iqx − i[q2 + (4βq − g0) φ2

0 ]t
)
, (28)

here ε(x, t) is a small complex perturbation, satisfying |ε(x, t)| ≪ |φ0|. Substituting ansatz (28) in Eq. (26), one derives
he BdG equation:

i
∂ε

∂t
+
∂2ε

∂x2
+ 2i

(
q + 4βφ2

0

) ∂ε
∂x

+ 4iβφ2
0
∂ε∗

∂x
+ φ2

0 (g0 − 4βq)
(
ε + ε∗

)
= 0. (29)

ooking for eigenmodes of the perturbation as

ε = U1 exp [i (Qx −Ωt)] + U∗

2 exp
[
−i
(
Qx −Ω∗t

)]
(30)

eads to the dispersion relation connecting wave number Q and frequency Ω of the perturbation:[
Ω − 2Q

(
q + 4βφ2

0

)]2
= Q 2 [φ2

0

(
16β2φ2

0 + 8qβ − 2g0
)
+ Q 2] . (31)

s one can see from Eq. (31), the MI occurs when the perturbation wave numbers Q satisfies condition

Q 2 < 2φ2
0

(
g0 − 8β2φ2

0 − 4qβ
)
, (32)

hich may hold for both focusing and defocusing signs of th nonlinearities. In fact, condition (32) is valid for values of β
elonging to interval

Dβ ≡

(
−2q − 2

√
q2 + 2g0φ2

0

)
/8φ2

0 < β <

(
−2q + 2

√
q2 + 2g0φ2

0

)
/8φ2

0 . (33)

his condition implies

q2 + 2g0φ2
0 > 0, (34)

hich is identically satisfied for the focusing nonlinearity (g0 = +1); in the case of the defocusing nonlinearity, (g0 = −1),
nequality (34) holds only for q and φ0 that satisfy constraint q2 − 2φ2

0 > 0. Thus, Eq. (34) is the necessary condition for
I of the CW solutions of the cubic derivative NLS equation with constant coefficients in the free space. At β = 0, MI in

he framework of the usual cubic NLS equation is the classical result by Benjamin and Feir [126].
12
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I

Fig. 5. The MI gain as produced by Eq. (35) for three values of the imprint parameter β , with φ0 = 1 and q = 2. The top panel includes three values
of β > βc = −0.5: β = −0.4, 0.3, and 0.2 (the blue, red, and green lines, respectively). The bottom panel includes three values of β < βc = −0.5:
β = −0.8, 0.7, and 0.6 (the blue, red, and green lines, respectively). The left and right panels correspond to the focusing and defocusing nonlinearities,
respectively.
Source: The figure reproduces known results for MI produced by the derivative NLS equation with constant coefficients [113].

Under condition (32), the growth rate (gain) of the MI for the derivative NLS equation in the free space is

|ImΩ| = |Q |

√(
2g0 − 16β2φ2

0 − 8qβ
)
φ2
0 − Q 2. (35)

t is evident that function B(β) = 2g0 − 16β2φ2
0 − 8qβ reaches its maximum at the critical point βc = −q/

(
4φ2

0

)
, which

does not depend on g0. The presence of the imprint parameter β significantly modifies the instability domain and brings
new effects. In particular, it allows MI in the case of the defocusing nonlinearity (g0 = −1). In Fig. 5 we plot the MI gain,
defined as per Eq. (35), for different values of β with φ0 = 1 and q = 2. According to this figure, there are two scenarios,
depending on whether β , belonging to interval (33), is above or below the critical value (β ≥ βc or β ≤ βc). In the top
panel of Fig. 5, which corresponds to β ≥ βc , the gain decreases with |β|, while in the bottom panel, with β ≤ βc , the
gain increases when |β| decreases. Thus, the imprint parameter β , when taken above βc , softens MI, and, on the other
hand, MI enhances when β falls below βc . Comparing the left panel of Fig. 5 (for the focusing nonlinearity) with the right
one (the defocusing nonlinearity), it appears that, quite naturally, MI is stronger in the case of the focusing nonlinearity.

3.2.3. Modulational instability in the inhomogeneous cubic derivative NLS equation with the HO potential
To examine MI in the general case of Eq. (25), Ref. [108] made use of the modified lens transformation (LT),

ψ(x, t) =
1
ℓ(t)

φ(X, T ) exp[if (t)x2 + η(t)], (36)

where T = T (t), ℓ(t), η(t), and f (t) are real functions of time, and X(x, t) = xℓ−1(t). Originally, LT was introduced by
Talanov [127] as an invariant transformation for the 2D NLS equation, which changes the scale of the coordinates and
adds the radial chirp (a phase term quadratic in the radial coordinate) to the wave function. The action of LT on the wave
function is similar to the result of the ray propagation of the field governed by geometric optics. The significance of LT
is stressed by its compatibility with adiabatic variation of the wave function governed by the cubic NLS equation, and
with the dynamics driven by the critical collapse in 2D [20,128]. Furthermore, LT applies as well to the 2D NLS equation
including the isotropic HO potential [128].

To preserve the scaling of Eq. (25) we set

dT
=

1
. (37)
dt ℓ2(t)
13
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emanding that

df
dt

+ 4f 2 + α = 0, (38a)

4f (t) −
1
ℓ

dℓ
dt

= 0, (38b)

dη
dt

+ 2f (t) −
1
ℓ

dℓ
dt

= 0, (38c)

β(t) = g̃(t)f −1(t)/8, (38d)

and inserting ansatz (36) in Eq. (25) leads to

i
∂φ

∂T
+
∂2φ

∂X2 + λ0(T ) |φ|
2 φ + iλ(T )

∂(|φ|
2φ)

∂X
= 0, (39)

here real functions of time are

λ0(T ) = g̃0(t) exp[2η(t)], λ(T ) = 4
β(t)
ℓ(t)

exp[2η(t)]. (40)

hus, the invariance of the inhomogeneous cubic derivative NLS equation with respect to LT is maintained.
Solving Eqs. (38b), (37) and (38c) in terms of f (t) yields

ℓ(t) = ℓ(0) exp
(
4
∫ t

0
f (υ) dυ

)
, (41a)

η(t) = 2
∫ t

0
f (υ) dυ + η(0), (41b)

T (t) = ℓ−2(0)
∫ t

0
exp

(
−8

∫ s

0
f (υ) dυ

)
ds + T (0). (41c)

hus, the problem of finding time-dependent parameters ℓ(t), η(t), and T (t) is reduced to solving the Riccati equa-
ion (38a).

According to ansatz (36) η(t) affects the total number of atoms (the norm of the wave function), N =
∫
R |ψ |

2 dx =

ℓ−1(t) exp[η(t)]
∫
R |φ|

2 dX , if ℓ−1(t) exp[η(t)] ̸= constant. According to Eq. (41b), exp[η(t)] = exp[2
∫ t
0 f (υ) dυ + η(0)],

hich means that N exponentially grows if f (t), the solution of the Riccati equation (38a), is positive, and exponentially
ecays if f (t) is negative. In other words, positive f (t) represents the feeding of atoms into the condensate, while negative
(t) implies loss of atoms. While f (t) depends on the strength of the HO trap, α(t), its sign is independent of the sign of
(t). For example, if α = −α4

0 is a negative constant (which corresponds to the confining HO potential), then f = ±α2
0/2

re two particular solutions of the Riccati equation (38a).
To investigate MI for the derivative NLS equation (39) with variable coefficients, Ref. [108] introduced perturbed

olutions as

φ = [φ0 + ε(X, T )] exp
[
−iQX − i

∫ T

0
Ω(υ) dυ

]
, (42)

here Ω(T ) is a real time-dependent function representing the nonlinear frequency shift, φ0 is a real constant, Q is the
ave number of the carrier, and ε(X, T ) is a small perturbation. Substituting ansatz (42) into Eq. (39), linearizing it with
espect to the small perturbation, and substituting

Ω(T ) = Q 2
− λ0(t)φ2

0 − Qφ2
0λ(t), (43)

ne obtains

i
∂ε

∂T
+
∂2ε

∂X2 + 2i
(
λφ2

0 − Q
) ∂ε
∂X

+ iλφ2
0
∂ε∗

∂X
+ φ2

0 (λ0 + λQ )
(
ε + ε∗

)
, (44)

here ∗ stands for the complex conjugation. Solutions to Eq. (44) are sought for as

ε = U1 exp
(
iKX − i

∫ T

0
ω(υ) dυ

)
+ U∗

2 exp
(

−iKX + i
∫ T

0
ω∗(υ) dυ

)
, (45)

here KX −
∫ T
0 ω(υ) dυ is the modulation phase in which K and ω are the wavenumber and the complex frequency

f the perturbation, U1,2 being complex amplitudes. MI sets in if frequency ω has a nonzero imaginary part. Inserting
xpression (45) into Eq. (44) yields the time-dependent dispersion relation,[

ω − 2K
(
λφ2

− Q
)]2

− K 2 [K 2
+ φ2 (λ2φ2

− 2Qλ− 2λ
)]

= 0. (46)
0 0 0 0

14
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Fig. 6. The MI gain produced by Eq. (52) for three positive and three negative values of the imprint parameter λ(β). (a): λ(β) = −0.5 (the solid
ine), λ(β) = −0.25 (the dashed line), and λ(β) = −0.125 (the dotted–dashed line); (b): λ(β) = 0.125 (the solid line), λ(β) = 0.25 (the dashed line),
nd λ(β) = 0.50 (the dotted–dashed line). Other parameters are Q = 1, φ0 = 1, and λ0 = 3/2.
ource: The results are reproduced from Ref. [108].

or ω to have a nonzero imaginary part, it is necessary and sufficient to have

K 2
+ φ2

0

(
λ2φ2

0 − 2Qλ− 2λ0
)
< 0. (47)

nequality (47) is the MI criterion for the cubic derivative NLS equation (39). If the criterion holds, the local MI gain is
iven by

|Imω(t)| = |K |

√
φ2
0

[
2Qλ(t) + 2λ0(t) − λ2(t)φ2

0

]
− K 2. (48)

A particularly simple and interesting case is one with constant λ0 and λ. Then it follows from Eqs. (37)–(38d) that β
s constant, while α(t) and g̃0(t) satisfy the nonlinear second-order ODE,

g̃0
d2̃g0
dt2

− 2
(
d̃g0
dt

)2

− 4αg̃2
0 = 0. (49)

hus, in the special case of constant λ0, λ and β , the problem of finding ℓ(t), η(t), and T (t) amounts to solving Eq. (49). The
implest possibility is to solve it for α(t) if g̃0(t) is known. For instance, g̃0(t) = ã0 exp

(̃
λt
)
produces constant α = −λ̃2/4.

Following Ref. [91], one of the most interesting cases in the setting with the HO potential is the one with

α(t) = A(t + t∗)−2, (50)

or real constants A and t∗ in Eq. (21), which determine, respectively, the strength of the potential and its width at t = 0.
nserting expression (50) in Eq. (49) yields

g̃0(t) =
4λ0β
λℓ(0)

(
t + t∗

t∗

)m

, m =
−1 ±

√
1 − 16A
2

. (51)

or g̃0(t) to be a real function of time t , strength A of the magnetic trap α(t), defined by Eq. (50), must satisfy condition
< 1/16, which allows one to investigate MI for both the confining and expulsive potentials (A < 0 and A > 0,

respectively). Note that t∗ < 0 describes BEC in a shrinking trap, while t∗ > 0 corresponds to a broadening condensate.
Inserting expressions (51) in the system of Eqs. (38a)–(38d) determines all time-dependent parameters; in particular,
T (t) = t∗ (2m + 1)−1 ℓ−2(0)

[
(t/t∗ + 1)2m+1

− 1
]
. To secure the variation of T from zero to infinity, it is necessary to take

= (−1 +
√
1 − 16A )/2 and m = (−1 −

√
1 − 16A)/2 in the cases of the broadening and shrinking trap, respectively.

In the latter case, we focus on t varying from 0 to −t∗, to provide the variation of T from 0 to +∞.
In the case of constant λ0 and λ, the MI gain is time-independent, but it depends on the phase-imprint parameter β:

|Imω(β)| = |K |

√
φ2
0

[
−λ2(β)φ2

0 + 2Qλ(β) + 2λ0
]
− K 2. (52)

t is evident that the variation of the gain, controlled by β , may significantly modify the instability domain and bring
ew effects. In fact, to different values of β there correspond different instability diagrams, depending on whether λ(β)
s positive or negative. Negative λ(β) softens the instability, while λ(β) > 0 enhances it. This behavior is shown in Fig. 6,
hich displays the MI gain provided by Eq. (52) as a function of perturbation wavenumber K , for three values of λ(β) < 0
plot (a)), and three values of λ(β) > 0 (plot (b)). In Fig. 6(a) corresponding to λ(β) < 0, it is easy to see that the gain
ecreases with the growth of parameter λ, while in Fig. 6(b), with λ(β) > 0, the gain increases with the growth of λ.
The results for constant λ0 and λ can be summarized as follows. For the occurrence of MI of CW solutions φ =

exp
(
−iQX − i

[
Q 2

− λ φ2
− Qφ2λ

]
T
)
, it is necessary and sufficient for wavenumber K of the modulation perturbation
0 0 0 0
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Fig. 7. The MI gain produced by Eq. (48) for three positive and three negative values of t∗ at time t = 0. (a): The case of the shrinking trap with
∗

= −0.6, −0.4, and −0.2 (the solid, dashed, and dotted–dashed lines, respectively). (b) The case of the broadening trap with t∗ = 0.1, 0.2, 0.4
the solid, dashed, and dotted–dashed lines, respectively). Other parameters are Q = 1, φ0 = 1, A = −1, ℓ(0) = 1, η(0) = 0, g̃0(t) = 2 exp (0.5t),
g(t) = 2 exp (−t), B = (1 +

√
17 )/8 for plots (a), and B = (1 −

√
17 )/8 for (b).

Source: The results are reproduced from Ref. [108].

to satisfy the MI criterion (47). Moreover, for given φ0, Q , and λ0, the imprint parameter β should be chosen such that
λ2(β)φ2

0 − 2Qλ(β) − 2λ0 < 0.
Next, it is relevant to look at the case when at least either λ0 or λ is not constant. As in the previous case, if the HO

potential is considered with the same time dependence of the strength as in Eq. (50) with A < 1/16, one can find a
particular solution of Riccati equation (38a) in the form of

f (t) = B(t + t∗)−1, B =
1 ±

√
1 − 16A
8

. (53)

ith expression (53), the corresponding solution of Eq. (38a) reads

f (t) =
1 − 4B + CB (1 − 8B) (t + t∗)8B−1

C (1 − 8B) (t + t∗)8B + 4(t + t∗)
, (54)

here C = [1 − 4B − 4f (0)t∗] /
[
f (0) (1 − 8B) (t∗)8B − B (1 − 8B) (t∗)8B−1

]
. Using Eqs. (50) and (53), one obtains the

ollowing time dependence of the parameters, cf. Eqs. (38a)–(38d):

ℓ(t) = ℓ(0)
(
t + t∗

t∗

)4B

, (55a)

η(t) = 2B ln
⏐⏐⏐⏐ t + t∗

t∗

⏐⏐⏐⏐+ η(0), (55b)

β(t) =
g̃(t)(t + t∗)

8B
, (55c)

T (t) =
1

ℓ(0) (1 − 4B)

[(
t + t∗

) ( t∗

t + t∗

)4B

− t∗
]
. (55d)

t follows from Eqs. (55a)–(55d) that β(t) is no longer a free parameter, as it depends of g̃(t). In the case of t∗ > 0
broadening condensate), it is reasonable to take B < 1/4; a proper choice of ℓ(0) then ensures the variation of T (t) from
to +∞. For BECs in the shrinking trap (t∗ < 0), the appropriate choice of ℓ(0) and B > 1/4 demonstrates that the

variation of t in interval 0 ≤ t < t∗ corresponds to 0 < T (t) < +∞.
In the case when, at least, either λ0 or λ is not constant, the MI gain given by Eq. (48) is time-dependent. In this

situation, the variation of the gain, related to the sign of t∗ (recall that t∗ < 0 or t∗ > 0 determines, respectively, the
shrinking or expanding trap), may significantly affect the MI domain and introduce new effects. The instability is enhanced
or attenuated by t∗ < 0 or t∗ > 0, respectively, as shown in Fig. 7. The figure displays the MI gain produced by Eq. (48),
as a function of perturbation wavenumber K , for three negative and three positive values of t∗, in plots 7(a) and (b),
respectively. In Fig. 7(a), corresponding to the shrinking trap (t∗ < 0), one easily sees that the gain indeed increases with
t∗, while in Fig. 7(b), obtained for the broadening trap (t∗ > 0), the gain decreases as t∗ increases. The plots in this figure
are produced with g̃0(t) = 2 exp (0.5t) and g̃(t) = 2 exp (−t).

The analysis makes it clear that the simplest and most interesting case in the setting with the time-dependent HO
potential is the one with the inverse-square time dependence of the trap strength, as defined by Eq. (50) with A < 1/16.
In this case, the modified LT demonstrates the equivalence of the setting to the cubic derivative NLS equation. In this case,
the coefficients of the cubic derivative NLS equation are either constant or time dependent, suggesting that frequencies
of eigenmodes of the modulational perturbations are either constant or effectively time-dependent.
16
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.3. Matter-wave solitons of the cubic inhomogeneous NLS equation (20) with the spatiotemporal HO potential (21)

As said above, the condition of the transformability to the cubic derivative NLS with constant coefficients, where the MI
nalysis has been performed in the complete form, makes it most relevant to consider in Eq. (20) with the spatiotemporal
otential (21), taken with α(t) = A(t + t∗)−2 and A < 1/16. The present subsection, following Ref. [108], addresses this
ase in the analytical form under the assumption that λ0 and λ in Eq. (40) are constant.
The starting point is the CW solution of Eq. (39),

φ(X, T ) = φ0 exp
[
−ik0X + i

(
λ0φ

2
0 + k0λφ2

0 − k20
)
T
]
. (56)

riting a solution of Eq. (39) in the Madelung form,

φ(X, T ) = R(X, T ) exp [iΦ(X, T )] , (57)

ne arrives at the following system of equations for the real amplitude and phase:{
−R∂Φ/∂T + ∂2R/∂X2

− R (∂Φ/∂X)2 − λR3∂Φ/∂X + λ0R3
= 0,

∂R/∂T + 2 (∂Φ/∂X) (∂R/∂X)+ R∂2Φ/∂X2
+ 3λR2∂R/∂X = 0.

(58)

Further, the CW solution (56) suggests to look for a solution to Eqs. (58) in the following traveling-wave form:{
R(X, T ) = φ0 + ρ(z = X − υT ),
Φ(X, T ) = −k0z + ϕ(z) +

(
λ0φ

2
0 + λk0φ2

0 − k20 − k0υ
)
T , (59)

with arbitrary velocity υ . Inserting ansatz (59) in the system of Eqs. (58), and integrating the second equation yields
dϕ
dz

=
C0

(φ0 + ρ)2
+
(υ + 2k0)

2
−

3λ
4
(φ0 + ρ)2 , (60)

here C0 is a constant of integration. Inserting this expression for dϕ/dz into the first equation yields(
dζ
dz

)2

= α̃ζ 4 + 4β̃ζ 3 + 6γ̃ ζ 2 + 4̃δζ + ϵ̃ ≡ f (ζ ), (61)

where
ζ (z) = (φ0 + ρ(z))2 , α̃ = −λ2, β̃ = (λυ − 2λ0) /4, ϵ̃ = −4C2

0 ,

γ̃ =
[
4λ0φ2

0 + 2λ
(
2k0φ2

0 − C0
)
− 4υk0 − υ2

− 4k20
]
/6,

(62)

δ and C0 being two arbitrary real constants of integration. The general solution of Eq. (61) with coefficients (62) can be
obtained in terms of the Weierstrass’ elliptic function ℘(z; g2, g3) [129,130]:

ζ (z) = ζ0 +

√
f (ζ0) d

dz℘(z; g2, g3) +
1
2 f

′(ζ0)
[
℘(z; g2, g3) −

1
24 f

′′(ζ0)
]
+

1
24 f (ζ0)f

′′′(ζ0)

2
[
℘(z; g2, g3) −

1
24 f

′′(ζ0)
]2

−
1
48 f (ζ0)f

(IV )(ζ0)
, (63)

where ζ0 is an arbitrary real constant, and the prime stands for d/dz (recall f (ζ ) is defined in Eq. (61)). Invariants g2 and
g3 of function ℘(z; g2, g3) are related to coefficients of f (ζ ) as [129]

g2 = α̃̃ϵ − 4β̃δ̃ + 3γ̃ 2, g3 = α̃γ̃ ϵ̃ + 2β̃γ̃ δ̃ − α̃̃δ2 − γ̃ 3
− ϵ̃β̃2. (64)

The discriminant ∆ of the Weierstrass’ elliptic function ℘(z; g2, g3),

∆ = g3
2 − 27g2

3 , (65)

is suitable to classify the behavior of the solution ζ (ξ ) and to discriminate between periodic and solitary-wave solu-
tions [130]. If ∆ = 0, g2 ≥ 0, and g3 ≤ 0, ζ (ξ ) is a solitary wave given by

ζ (z) = ζ0 +
f ′(ζ0)

4
[
e1 −

1
24 f

′′(ζ0) + 3e1cosech2 (√3e1 z
)] , (66)

here e1 = (−g3)1/3. Below, for simplicity, constants of integration are set as δ̃ = ϵ̃ = 0. In this case, g2 = 3γ̃ 2, g3 =

−γ̃ 3, and ∆ = 0. Then Eq. (66) defines solitary-wave solutions if and only if γ̃ > 0 and 2β̃2
− 3α̃γ̃ ≥ 0. The physical

solution (66) must be nonnegative and bounded. Considering properties of f (ζ ) [105], one obtains conditions, expressed
in terms of coefficients of the basic equation, that determine the existence of the physical solutions, see Fig. 8 borrowed
from Ref. [105], which shows phase diagrams associated to the physical solutions for δ̃ = ϵ̃ = 0.

According to Ref. [105], solitary-wave solutions generated by Eq. (66) can be cast in the form of

ζ±(z) =

γ̃

[
2β̃ ±

√
4β̃2 − 6α̃γ̃

] [
3γ̃ 2

+
(
γ̃ 2

− 1
)
cosh2

(√
3
2 γ̃

3 z
)]

[
−3α̃γ̃ 3 +

(
4β̃2 ± 2

√
4β̃2 − 6α̃γ̃ − α̃γ̃ (5 + γ̃ )2

)
cosh2

(√
3 γ̃ 3 z

)] . (67)
2
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Fig. 8. Phase diagrams associated with real bounded solutions, given by Eqs. (61) and (63), with either δ̃ = ϵ̃ = 0 (see also Eq. (67) for this case)
r δ̃ ̸= 0, ϵ̃ < 0, and g2 = g3 = 0. Further details can be found in Refs. [131] and [105] for the right and left plots, respectively.

hese solutions correspond to two simple roots of the polynomial f (ζ ) (provided that 4β̃2
−6α̃γ̃ > 0), and are represented

y phase diagrams (b), (c), (d), (f), (g), and (h) in Fig. 8 (see further details in Ref. [105]).
It is necessary to address the condition of the non-negativeness of solutions (67). Here, two cases should be

istinguished, namely, γ̃ = 1, which corresponds to a bright solitary-wave solution, and 0 < γ̃ ̸= 1, corresponding
o both dark and bright solitary waves.

(A): If γ̃ = 1, solutions (67) are nonnegative if and only if

α̃

(
2β̃2

±

√
4β̃2 − 6α̃ − 18α̃

)−1

< 2/3 (68)

and (
2β̃ ±

√
4β̃2 − 6α̃

)(
2β̃2

±

√
4β̃2 − 6α̃ − 18α̃

)
> 0. (69)

An example of the bright solitary-wave solution is obtained with parameters λ0 = 1, φ0 = 1, υ = 0.5, k0 = 1,
and λ = 2.0625. With this set of parameters, ζ+(z) satisfies all the needed conditions (reality, boundedness and
non-negativeness). Figs. 9, 10, and 11, respectively, show effects of t∗, A and β on the density profile of the solitary-
wave solution, |u(x, t)|2, at x = 3; here, ℓ(0) = 1 is set. In these three figures, left and right panels correspond,
respectively, to the broadening and shrinking traps (t∗ > 0 and t∗ < 0, respectively), while top and bottom panels
correspond to the confining and expulsive potentials (A < 0 and A > 0, respectively). At x = 3, Fig. 9 shows the
time evolution of density |u(x, t)|2 for three different values of t∗. As seen in the figure, in the case of the confining
potential, the amplitude of the density profile decreases as t∗ increases for the broadening trap, and increases with
the growth of t∗ for the shrinking trap. In the case of the expulsive potential, the profile’s amplitude increases with
t∗ for both broadening and shrinking traps. Fig. 10 depicts density |u(x, t)|2 at x = 3 for three different values of A.
This figure shows that, for both the confining and expulsive potentials (the top and bottom plots, respectively), the
profile’s amplitude decreases as A increases, which happens for both the broadening and shrinking BEC traps (left
and right plots, respectively). It is seen from Fig. 11, where density |u(x, t)|2 at x = 3 is depicted for different values
of β , that, irrespective of the sign of A (the confining or expulsive potential) and the sign of t∗ (the broadening or
shrinking trap), the density-profile’s amplitude decreases with the increase of the imprint parameter β .

(B): If 0 < γ̃ ̸= 1, solutions (67) are nonnegative if and only if the following three conditions are simultaneously

satisfied: (i) 3γ̃ 2
(
1 − γ̃ 2

)−1
≤ 1, (ii) 3α̃γ̃ 3

(
4β̃2

± 2
√
4β̃2 − 6α̃γ̃ − α̃γ̃ (5 + γ̃ )2

)−1
< 1, and (iii)

γ̃
(
γ̃ 2

− 1
) (

2β̃ ±

√
4β̃2 − 6α̃γ̃

)(
4β̃2

− α̃γ̃ (5 + γ̃ )2 ± 2
√
4β̃2 − 6α̃γ̃

)
> 0. (70)

With parameters λ0 = 1, φ0 = 1, υ = 0.5, λ = 3.5625, and k0 = 1, conditions (i)–(iii) are simultaneously satisfied
for ζ (z), providing an example of a dark solitary-wave solution to Eq. (61). For this set of parameters, density
+
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Fig. 9. Density plots |u(x, t)|2 of solitary-wave solutions to Eq. (20) at x = 3 for three values of parameter t∗ in potential (50), given by expression
(67) for ζ+ . The top and bottom panels correspond to the confining potential (with A = −2) and expulsive one (with A = 1/17), respectively, while
he left and right panels correspond to broadening shrinking traps, respectively. Values of other parameters are given in the text.
ource: The results are reproduced from Ref. [108].

|u (x, t)|2, associated with the solitary-wave solution (67), is depicted at x = 3 in Figs. 9, 10, and 11, and at t = 4 in
Figs. 12, 13, and 14, to show the effect of t∗, A, and β on the solitary-wave shape. Here, ℓ(0) = 1 is used. In these
figures, left and right panels correspond to the broadening and shrinking traps (t∗ > 0 and t∗ < 0, respectively),
while top and bottom panels correspond to the confining and expulsive potential (A < 0 and A > 0, respectively).
In particular, Fig. 12 shows, at time t = 4, the spatial evolution of density |u(x, t)|2 for three different values of t∗.
As seen in the figure, the peak density in the case of confining potential decreases as t∗ increases for the broadening
trap (the top panels), and increases with t∗ for the shrinking trap. In the case of the expulsive potential (the bottom
panels), the peak density increases with t∗ for both the broadening and shrinking traps. Fig. 13 depicts density
|u(x, t)|2 at t = 4 for three different values of A. The figure demonstrates that, for both the confining and expulsive
potentials, the peak density decreases as A increases, which happens for both the broadening and shrinking traps.
Fig. 14, where density |u(x, t)|2 is displayed at t = 4 for different values of β , shows that, irrespective of the sign
of A (the confining or expulsive potential) and the sign of t∗ (the broadening or shrinking trap), the peak density
decreases with the increase of imprint parameter β .

.4. Conclusion of the section

In this section, MI of CW states is surveyed in the context of the inhomogeneous cubic NLS equations with the external
otential. The motivation for this study was its link to BEC with the spatially modulated local nonlinearity. To make the
nvestigation of MI possible for both attractive and repulsive nonlinearities, the inhomogeneous cubic NLS equation is
irst transformed into the inhomogeneous cubic derivative NLS equation, by means of the suitably designed PIT, applied
o the wave function of the original cubic NLS equation. A modified LT is then used to cast the problem in the form in
hich the cubic derivative NLS equation has constant coefficients. For the strength of the magnetic trap modulated in
ime ∼ (t + t∗)−2 and the local time-dependent nonlinearity coefficient being a linear function of x, the resulting MI gain
s either constant or time varying. The impact of both the PIT imprint parameter and trap parameter t∗ on the MI gain
s considered. In the case of the constant MI gain, analytical matter-wave solitons of the inhomogeneous NLS equation
nder the consideration are presented, and the effect of the above-mentioned parameters on their shape is considered.

. Collapse management for BEC with time-modulated nonlinearity

In this section we address the dynamics of 2D and 3D condensates with the nonlinearity coefficient, i.e., the scattering
ength of inter-atomic collision, subject to the time modulation imposed by the FR, which makes the coefficient a sum
f constant and periodically oscillating terms. The respective results were obtained by means of VA and systematic
irect simulations of the GP equation [54–57]. An averaging method can be used too, in the case of the rapid time
odulation [132]. In the 2D case, all these methods reveal the existence of stable self-confined states in the free space
19
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o
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Fig. 10. The same as in Fig. 9, but for three different values of parameter A in potential (50). The top and bottom panels correspond to the confining
and expulsive potential, respectively, while the left and right panels are associated, severally, with the broadening trap (for t∗ = 10) and the shrinking
ne (for t∗ = −10). Typical values of other parameters are given in the text.
ource: The results are reproduced from Ref. [108].

Fig. 11. The same as in Figs. 9 and 10, but for three different values of the imprint parameter β in Eq. (24b). The top and bottom panels correspond
to the confining potential (with A = −2) and expulsive one (with A = 1/17), respectively, while the left and right panels are associated, severally,
with the broadening trap (for t∗ = 10) and the shrinking one (for t∗ = −10). Typical values of other parameters are given in the text.
Source: The results are reproduced from Ref. [108].

(without an external trap), in agreement with similar results originally reported for (2+1)D spatial solitons in nonlinear
optics [18]. In the 3D free space, the VA also predicts the existence of self-confined state without a trap [133] . In this case,
direct simulations demonstrate that the stability is limited in time, eventually switching into collapse. Thus, a spatially
uniform ac magnetic field, resonantly tuned to drive the periodic temporal modulation of the scattering length by means
of FR, may play the role of an effective trap confining the condensate, and sometimes causing its collapse.

Results collected in this section are chiefly based on original works [18,54], and [132]. Although these works were
published quite some time ago, the findings reported in them are highly relevant to the topic of the present review
article.
20



E. Kengne, W.-M. Liu and B.A. Malomed Physics Reports 899 (2021) 1–62

b
a
S

c

Fig. 12. Density |u(x, t)|2 at t = 4, as given by solution (67), for three different values of parameter t∗ appearing in potential (50). The top and
ottom panels correspond, severally, to the confining potential (with A = −2) and the expulsive one (with A = 1/17), while the left and right panels
re associated with the broadening and shrinking trap, respectively. Typical values of other parameters are given in the text.
ource: The results are reproduced from Ref. [108].

Fig. 13. The same as in Fig. 12, but for three different values of parameter A in potential (50). The top and bottom panels correspond to the
onfining and expulsive potentials, respectively, while the left and right panels are associated, severally, with the broadening trap (for t∗ = 10) and
the shrinking one (for t∗ = −10), respectively. Values of other parameters are given in the text.
Source: The results are reproduced from Ref. [108].

4.1. The model and VA (variational approximation)

The starting point is the mean-field GP equation for the single-particle wave function in its usual form, cf. Eq. (1):

ih̄
∂ψ(r,t)
∂t

=

[
−

h̄2

2m
∇

2
+ g |ψ(r,t)|2

]
ψ(r,t) (71)

with g = 4π h̄2as/m, where as and m are the atomic scattering length and mass. Throughout this section, its is assumed
the scattering length to be modulated in time, so that the nonlinearity coefficient in Eq. (71) takes the form of g =

g + g sin χ t , where g and g are the amplitudes of the dc and ac parts, and χ is the ac-modulation frequency.
0 1 ( ) 0 1
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Fig. 14. The same as in Figs. 12 and 13, but for three different values of the imprint parameter β in transformation (24b). The upper and lower
anels correspond to the confining potential (with A = −2) and the expulsive one (with A = 1/17), respectively, while the left and right panels are
ssociated, severally, with yjr broadening trap (for t∗ = 10) and the shrinking one (for t∗ = −10),. Typical values of other parameters are given in
he text.

To stabilize the condensate, an external trapping potential is usually included. Nevertheless, it is omitted in Eq. (71)
ecause it does not play an essential role in the present context. This is also the case in many other situations — for
xample, the formation of stable Skyrmions in two-component condensates is possible in the free space [134]. Indeed, it
s demonstrated in some detail below that the temporal modulation of the nonlinearity coefficient, combining the dc and
c parts as in Eq. (72), may, in a certain sense, replace the trapping potential.
Eq. (71) is cast in a normalized form by introducing a typical frequency, Ω = 2gn0/h̄, where n0 is the largest value of

he condensate density, and rescaling the time and space variables as t ′ = Ωt , r′ = r
√
2mΩ/h̄. This leads to the scaled

equation for isotropic states (in which only the radial coordinate is kept, and the primes are omitted):

i
∂ψ(r,t)
∂t

= −

(
∂2

∂r2
+

D − 1
r

∂

∂r

)
ψ(r, t) − [λ0 + λ1 sin (ωt)] |ψ(r, t)|2 ψ(r, t). (72)

Here D = 2 or 3 is the spatial dimension, and λ0,1 ≡ −g0,1/(Ω h̄), ω ≡ χ/Ω . Note that λ0 > 0 and λ0 < 0 in Eq. (72)
orrespond to the self-focusing and self-defocusing nonlinearity, respectively. Additionally rescaling field ψ , |λ0| = 1 is
et, so that λ0 remains a sign-defining parameter.
As the next step, one applies VA to Eq. (72). This approximation was originally proposed by Anderson et al.

115,135,136] for 1D temporal solitons, then for matter-wave solitons in BEC [137], and later developed for multidimen-
ional models [18,54,138]. To apply the VA in the present case, one should use the Lagrangian density generating Eq. (72),

L (ψ) =
i
2

(
∂ψ

∂t
ψ∗

−
∂ψ∗

∂t
ψ

)
−

⏐⏐⏐⏐∂ψ∂r
⏐⏐⏐⏐2 +

1
2
λ(t) |ψ |

4 , (73)

where λ(t) = λ0 + λ1 sin (ωt), and the asterisk stands for the complex conjugation. The variational ansatz for the wave
function is chosen as the Gaussian [115]:

ψG(r, t) = A(t) exp
[
−

r2

2a2(t)
+

1
2
ib(t)r2 + iδ(t),

]
(74)

here A, a, b, and δ are, respectively, the amplitude, width, chirp, and overall phase, which are assumed to be real functions
f t . In fact, the Gaussian is the single type of the trial wave function which makes it possible to develop VA in the fully
nalytical form. A caveat is that, if the frequency of the ac drive resonates with a transition between the ground state of
he condensate and a possible excited one (it definitely exists if the model includes a trapping potential), the single GP
quation should be replaced by a system of coupled ones for the resonantly interacting states.
Following Ref. [136], one inserts the ansatz in the Lagrangian density (73) and calculates the respective effective

agrangian,

Leff = CD

∫
∞

L
(
ψg
)
rD−1dr, (75)
0
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here CD = 2π or 4π in the 2D or 3D cases, respectively. Finally, the evolution equations for the time-dependent
arameters of ansatz (74) are derived from Leff using the corresponding Euler–Lagrange equations. Subsequent analysis,
s well as the results of direct numerical simulations, is presented separately for the 2D and 3D cases.

.2. The two-dimensional case

We start the consideration with the 2D case, presenting, consecutively, results produced by VA, application of the
veraging method to the GP equation, and results produced by numerical simulations. In particular, in the case of the high-
requency modulation, it is possible to apply the averaging method to the 2D equation (72), without using VA [6,54,132].
he averaging method may also be applied to the 2D NLS equation with a potential rapidly varying in space, rather than
n time, the main result being renormalization of parameters of the equation and a shift of the collapse threshold [139].
s shown below, rapid temporal modulation of the nonlinearity coefficient in the GP equation leads to nontrivial effects,
uch as generation of additional nonlinear-dispersive and higher-order nonlinear terms in the corresponding effective NLS
quation, see, Eq. (92) below. These terms may essentially affect the dynamics of the collapsing condensate.

.2.1. The variational approximation
The calculation of the effective Lagrangian (75) for the 2D GP equation yields

L(2D)eff = π

(
−

1
2
a4A2 db

dt
− a2A2 dδ

dt
− A2

− a4A2b2 +
1
4
λ(t)a2A4

)
. (76)

he Euler–Lagrange equations following from this Lagrangian yield the conservation of the total number of atoms N in
he condensate (represented by norm N of the mean-field wave function),

πa2A2
≡ N = const, (77)

xpressions for the chirp and width,
da
dt

= 2ab,
db
dt

=
2
a4

− 2b2 −
λ(t)N
2πa4

, (78)

nd a closed-form evolution equation for the width:

d2a
dt2

=
2 (2 − λ(t)N/2π)

a3
, (79)

hich may be rewritten as

d2a
dt2

=
−Λ+ ϵ sin (ωt)

a3
, (80)

here

Λ ≡ 2 [λ0N/(2π ) − 2] , ϵ = −λ1N/π. (81)

In the absence of the ac component, i.e., ϵ = 0, Eq. (80) conserves the energy, E2D = (1/2)
[
(da/dt)2 −Λa−2

]
.

Obviously, E2D → −∞ as a → 0, if Λ > 0, and E2D → +∞ as a → 0, if Λ < 0. This means that, in the absence of the ac
component, the 2D pulse is expected to collapse at Λ > 0, and spread out at Λ < 0. The case of Λ = 0 corresponds to
the critical norm, realized by the above-mentioned TS [19]. Note that a numerically exact value of the critical norm is (in
the present notation) N = 1.862 [20], while the variational equation (81) yields N = 2 (if λ0 = +1) [135].

If the ac component of the nonlinearity coefficient oscillates at a high frequency, one can set a(t) = a + δa, with
δa| ≪ |a|, where, a varies on a slow time scale and δa is a rapidly varying function with zero mean value. Then, Eq. (80)
an be treated analytically by means of the Kapitsa averaging method [6,54,132]. After straightforward manipulations, an
DE system is derived for the slow and rapid variables:

d2a
dt2

= −Λ
(
a−3

+ 6a−5
⟨δa2⟩

)
− 3ϵ⟨δa sin (ωt)⟩a−4

, (82a)

d2

dt2
δa = 3δaΛa−4

+ ϵ sin (ωt) a−3
, (82b)

where ⟨· · ·⟩ stands for averaging over period 2π/ω. Eq. (82b) admits an obvious solution,

δa(t) = −
ϵ sin (ωt)

a3
(
ω2 + 3a−4

Λ
) . (83)

ubstituting Eq. (83) into Eq. (82a) yields the following final evolution equation for the slow variable:

d2a
dt2

= a−3

[
−Λ−

3Λϵ2(
2 4 )2 +

3
2

ϵ2

ω2a4 + 3Λ

]
. (84)
ω a + 3Λ
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To examine whether the collapse is enforced or inhibited by the ac component of the nonlinearity, one may look at
q. (84) in the limit of a → 0, reducing the equation to

d2a
dt2

=

(
−Λ+

ϵ2

6Λ

)
a−3

. (85)

t follows from Eq. (85) that, if the amplitude of the high-frequency ac component is large enough, viz., ϵ > 6Λ2, the
ehavior of the condensate (in the limit of small a) is exactly opposite to that which would be expected in the presence
f the dc component only: in the case Λ > 0, rebound occurs rather than the collapse, and vice versa in the case Λ < 0.
On the other hand, in the limit of large a, Eq. (84) takes the asymptotic form of d2a/dt2 = −Λa−3, which shows that

he condensate remains self-confined in the case of Λ > 0, i.e., if the norm exceeds the critical value. This consideration
s relevant if a, although being large, remains smaller than the limit imposed by an external trapping potential, should
it be added to the model. Thus, these asymptotic results guarantee that Eq. (84) gives rise to a stable behavior of the
condensate, the collapse and decay (spreading out) being ruled out if

ϵ >
√
6Λ > 0. (86)

To illustrate the above results in terms of the experimentally relevant setting – for example, for the condensate of
7Li with the critical number ∼ 1500 atoms – one concludes that, for 1800 atoms (i.e., N/2π = 2.2) the stabilization
requires to add the periodic modulation with amplitude ϵ = 0.98 (see Eq. (81) to the constant coefficient λ0 = 1. In fact,
conditions (86) ensure that the right-hand side of Eq. (84) is positive for small a and negative for large a, hence Eq. (84)
must give rise to a stable fixed point. Indeed, when conditions (86) hold, the right-hand side of Eq. (84) vanishes at exactly
one fixed point,

ω2a4 =
3ϵ2

4Λ
+

√
3
(

3ϵ4

16Λ2 − 1
)

− 3Λ, (87)

hich can be easily checked to be stable through the calculation of an eigenfrequency of small oscillations around it.
Direct numerical simulations of Eq. (80) produce results that are in exact agreement with those provided by the

veraging method, i.e., a stable state with α(t) performing small oscillations around point (87) [6,54]. However, the 3D
situation shows a drastic difference, see below.

For the sake of comparison with the results obtained in the 3D case, one also needs an approximate form of Eq. (84)
valid in the limit of small Λ (i.e., when norm is close to the critical value) and very large ω:

d2a
dt2

= −
Λ

a3
+

3
2
ϵ2

ω2a7
. (88)

To estimate the value of the amplitude of the high-frequency ac component necessary to stop the collapse, note that a
characteristic trap frequency is Ω ∼ 100 Hz, in physical units. Then, for a typical high modulation frequency ∼ 3 kHz, the
scaled one is ω ≃ 30. If the norm is, for instance, N/2π = 2.2, so that, according to Eq. (81), Λ = 0.4 (this corresponds to
the condensate of 7Li with ≃ 1800 atoms, the critical number being ≃ 1500), and the modulation parameters are λ0 = 1,
λ1 = 2.3, ϵ = 10, then the stationary value of the condensate’s width, as obtained from Eq. (87), is ast = 0.8l, where
l =

√
mΩ/h̄ is the healing length.

Thus the analytical approach, based on VA and the assumption that the norm slightly exceeds the critical value, leads
to an important prediction: in the case of the 2D GP equation, the ac component of the nonlinearity, acting jointly with
the dc one corresponding to the attraction, may replace the collapse by a stable soliton-like oscillatory state that confines
itself without the trapping potential. It is relevant to mention, once again, that a qualitatively similar result, viz., the
xistence of stable periodically oscillating spatial cylindrical solitons in a bulk nonlinear-optical medium consisting of
lternating layers with opposite signs of the Kerr coefficient, was reported in Ref. [18], where this result was obtained in
completely analytical form on the basis of the variational approximation, and was confirmed by direct simulations.

.2.2. Averaging of the 2D GP (Gross–Pitaevskii) equation and Hamiltonian
Here, it is assumed that the ac frequency ω is large, and the 2D GP equation (72) is rewritten in the following form,

i
∂ψ

∂t
+ ∇

2ψ + λ(ωt) |ψ |
2 ψ = 0. (89)

To derive an equation governing the slow variations of the field, one can use the multiscale approach, writing the solution
as an expansion in powers of 1/ω and introducing slow temporal variables, Tk ≡ ω−kt , k = 0, 1, 2, ..., while the fast time
is ζ = ωt . Thus, the solution is sought for as

ψ(r, t) = A(r, Tk) + ω−1u1(ζ , A) + ω−2u2(ζ , A) + · · · , (90)

ith ⟨uk⟩ = 0, where ⟨· · ·⟩ stands for the average over the period of the rapid modulation, and λ0 = 1 is assumes (i.e., the
dc part of the nonlinearity coefficient corresponds to attraction between the atoms).
24
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Following the procedure developed in Ref. [140], one first finds the first and second corrections,

u1 = −i (µ1 − ⟨µ1⟩) |A|
2 A, µ1 ≡

∫ ζ

0
[λ(τ ) − ⟨λ1⟩] dτ ,

u2 = (µ2 − ⟨µ2⟩)
[
2i |A|

2 At + iA2A∗

t + ∇
2(|A|

2 A)
]

(91)

− |A|
4 A
{
1
2

[
(µ1 − ⟨µ1⟩)

2
− 2M

]
+ ⟨λ⟩ (µ2 − ⟨µ2⟩)

}
.

In Eq. (91), µ2 ≡
∫ ζ
0 (µ1 − ⟨µ1⟩) ds, and M = (1/2)

(
⟨µ2

1⟩ − ⟨µ1⟩
2
)

= (1/2)
(
⟨λ2⟩ − 1

)
(recall λ0 = 1 was set). Using these

results, one obtains the following evolution equation for the slowly varying field A(x, T0), derived at order ω−2
:

i
∂A
∂t

+ ∇
2A + |A|

2 A + 2M
( ϵ
ω

)2 (
|A|

6 A − 3 |A|
4
∇

2A
)
+ 2 |A|

2
∇

2 (
|A|

2 A
)
+ A2

∇
2 (

|A|
2 A∗

)
= 0, (92)

where ϵ is the same amplitude of the ac component as in Eq. (81). Note that Eq. (92) is valid in both 2D and 3D cases. In
either case, it can be represented in the quasi-Hamiltonian form[

1 + 6M
( ϵ
ω

)2
|A|

4
]
∂A
∂t

= −i
δHq

δA∗
, (93)

Hq =

∫
dV
[
|∇A|

2
− 2M

( ϵ
ω

)2
|A|

8
−

1
2

|A|
4
+ 4M

( ϵ
ω

)2 ⏐⏐∇ (|A|
2 A
)⏐⏐] , (94)

where dV is the infinitesimal volume in the 2D or 3D space. It immediately follows from Eq. (93) and the reality of the
(quasi-)Hamiltonian (94) that it is a dynamical invariant, i.e., dHq/dt = 0.

For further analysis of the 2D case, it is relevant apply the modulation theory developed in Ref. [141], according to
which the solution is searched for in the form of a modulated TS. The above-mentioned TS is a solution of the 2D NLS
equation in the form of ψ(r, t) = exp (it) RT (r), where function RT (r) is the solution of the boundary-value problem,

d2RT

dr2
+

1
r
dRT

dr
− RT + R3

T = 0,
dRT

dr

⏐⏐⏐⏐
r=0

= 0, RT (r)|r=∞ = 0. (95)

or this solution, norm N and the Hamiltonian H take the well-known values,

NT ≡

∫
∞

0
R2
T (r|)rdr = Nc ≈ 1.862,

HT =

∫
∞

0

[(
dRT

dr

)2

−
1
2
R4
T (r)

]
rdr = 0. (96)

he averaged variational equation (92) indicates an increase of the critical norm for the collapse, as opposed to the classical
alue in Eq. (96). Using relation (90), we find

Ncrit =

∫
∞

0
|ψ |

2 rdr = NT + 2IM
( ϵ
ω

)2
, (97)

here I = 11.178. This increase of the critical norm is similar to the well-known energy enhancement of dispersion-
anaged solitons in optical fibers with periodically modulated dispersion [142].
Another nontrivial perturbative effect is the appearance of a nonzero value of the phase chirp in the soliton. The mean

alue of the chirp is defined as

b =

∫
∞

0 Im [(∂ψ/∂r) ψ∗] rdr∫
∞

0 r2dr |ψ |
2 . (98)

Making use of expression (91) for the first correction leads to

b = − (ϵ/ω) BM (µ1 − ⟨µ1⟩) , (99)

B ≡ 3

∫
∞

0 rdrR2(R′)2 − (1/4)
∫

∞

0 drR4∫
∞

0 r2drR2
≈ 0.596. (100)

To develop a general analysis, it is assumed that the solution with the norm close to the critical value may be
pproximated as a modulated TS, i.e.,

A(r, t) ≈ [a(t)]−1 RT [r/a(t)] exp (iS) , S = σ (t) +
r2

4a
da
dt
,

dσ
dt

= a−2 (101)

ith some function a(t). If the initial norm is close to the critical value, i.e., when |N − Nc | ≪ Nc , the method worked out
n Ref. [141] makes it possible to derive an evolution equation for a(t), starting from approximation (101). The evolution
25
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quation for the width is

a3att = −β0 +
ϵ2

4M0ω2 f1(t), (102)

here

β0 = β(0) −
ϵ2

4M0ω2 f1(0), β(0) =
N − Nc

M0
, M0 ≡

1
4

∫
∞

0
r3drR2

T ≈ 0.55, (103)

ith an auxiliary function

f1(t) = 2a(t)Re
[

1
2π

∫∫
dxdyF (AT ) exp [−iS] {RT + ρ∇RR(ρ)}

]
. (104)

or the harmonic modulation, the equation in the lowest-order approximation takes the form of

d2a
dt2

= −
Λ1

a3
+

Cϵ2

ω2a7
, (105)

where Λ1 = (N − Nc) /M0 − Cϵ2/(ω2a40) and C is defined as [54]

C ≡
3
M0

∫
∞

0
dρ
[
2ρR4

T

(
R′

T

)2
− ρ2R3

T

(
R′

T

)3
−

1
8
ρR8

T

]
≈ 39. (106)

hus the averaged equation predicts the arrest of the collapse by the rapid modulations of the nonlinear term in the
D GP equation. The comparison of Eq. (105) with its counterpart (88), which was derived by means of averaging the
A-generated equation (80), shows that both approaches lead to the same behavior near the collapse threshold, numerical
oefficients in the second terms being different due to the different profiles of the Gaussian and TS.
It is relevant to estimate the fixed point as per numerical simulations performed in Ref. [143]. In that work, the stable

ropagation of solitons has been observed for two-step modulation of the nonlinearity coefficient in the 2D NLS equation:
= 1 + ϵ at 0 < t < T , and λ = 1 − ϵ at T < t < 2T . The parameters in the numerical simulations were taken as
= ϵ = 0.1, N/(2π ) = 11.726/(2π ), with the critical number Nc = 11.68/(2π ). For these values, one has ac = 0.49,
hich agrees with the value ac ≈ 0.56 produced by numerical simulations.
Instead of averaging Eq. (72), one can apply the averaging procedure, also based on representation (90) for the wave

unction, directly to the Hamiltonian of Eq. (72). As a result, the averaged Hamiltonian is found in the form of

H =

∫∫
dxdy

[
|∇A|

2
+ 2M

( ϵ
ω

)2 ⏐⏐∇ (|A|
2 A
)⏐⏐2 −

1
2

|A|
4
− 6M

( ϵ
ω

)2
|A|

8
]
. (107)

A possibility to arrest the collapse, in the presence of the rapid periodic modulation of the nonlinearity strength, can be
explained with the help of this Hamiltonian. To this end, following the pattern of the virial estimates [144], one notes
that, if a given field configuration has compressed itself to a spot with size ρ, where the amplitude of the A field is ∼ ℵ,
the conservation of norm N (which may be applied to field A through relation (90)) yields relation

ℵ
2ρD

∼ N, (108)

D being the space dimension. On the other hand, the same estimate for the strongest collapse-driving and collapse-
arresting terms (the fourth and second terms, respectively, in expression (107)), H− and H+, in the Hamiltonian yields

H− ∼ −

( ϵ
ω

)2
ℵ

8ρD, H+ ∼

( ϵ
ω

)2
ℵ

6ρD−2. (109)

Eliminating the amplitude from Eqs. (109) by means of relation (108), one concludes that, in the case of the catastrophic
self-compression of the field in the 2D space, ρ → 0, both terms H± asymptotically scale as ρ−5, hence the collapse may
be arrested, depending on details of the configuration. However, in the 3D case the collapse-driving term diverges as ρ−9,
while the collapse-arresting one scales ∼ ρ−8 at ρ → 0, hence in this case the collapse cannot be prevented.

Lastly, it is relevant to mention that, although the quasi-Hamiltonian (94) is not identical to the averaged Hamiltonian
(107), the virial estimate applied to Hq yields exactly the same result: the collapse can be arrested in the 2D case, but not
in the 3D one.

4.2.3. Numerical simulations
The existence of stable self-confined soliton-like oscillating states, predicted by means of the analytical approximations

in region (86), when the dc part of the nonlinearity corresponds to self-attraction, and the amplitude of the ac component
is not too small, was checked by simulations of the 2D equation (72). It was quite easy to confirm this prediction (in the
case λ0 = −1, i.e., when the dc component of the nonlinearity corresponds to repulsion, the direct simulations always
show a decay (spreading out) of the condensate, which also agrees with the above predictions). A typical example of
the formation of a self-confined state, supported by the combination of the self-focusing dc and sufficiently strong ac
components of the nonlinearity in the absence of an external trap, is displayed in Fig. 15. The left panel shows the radial
26
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Fig. 15. A typical example of the formation of a self-confined condensate in simulations of the 2D equation (72). Panel (a) shows the collapsing
state in the absence of the ac modulation at t ≈ 0.3. Panel (b) shows the radial profile of the stable state formed by the same input at t ≈ 0.6, in
the presence of the ac term in the nonlinearity coefficient. The parameters are λ0 = 2.4, λ1 = 0.85, ω = 100π , and N = 5.
Source: The results are reproduced from Ref. [54].

profile of a collapsing state at t ≈ 0.3 in the absence of the ac term. In the presence of this term, the right panel shows
that the pulse is stabilized for about 40 ac-modulation periods, after which it decays (possible eventual decay on a very
long time scale was numerically investigated, in a detailed form, in Ref. [57]). Note the generation of radiation, attached
to the main body as a tail, which is a result of self-adjustment of the input to the modulation.

4.3. The 3D GP model

To address the situation in the case of the 3D equation (72), it is relevant, similar to the 2D case, to separately consider
results produced by the analytical approximations, i.e., VA and averaging, and by direct simulations.

4.3.1. VA and averaging
Calculating effective Lagrangian (75) in the case of the 3D GP equation yields

L(3D)eff =
1
2
π

3
2 A2a3

[
−

3
2
a2

db
dt

− 2
dδ
dt

+
1

2
√
2
λ(t)A2

−
3
a2

− 3b2a2
]
. (110)

The Euler–Lagrange equations produced by this Lagrangian yield the norm conservation,

π
3
2 A2a3 ≡ N = const, (111)

elations including the chirp,
da
dt

= 2ab,
db
dt

=
2
a4

− 2b2 −
λ(t)N

2
√
2π

3
2 a5

, (112)

nd the evolution equation for the width of the condensate,

d2a
dt2

=
4
a3

−
λ(t)

2
√
2π

3
2

N
a4
, (113)

hich is different from its counterpart (79) corresponding to the 2D case.
Proceeding as in the 2D case, one renormalizes the amplitudes of the dc and ac components of the nonlinearity as
≡ λ0N/

√
2π3 and ϵ ≡ −λ1N/

√
2π3, and cast Eq. (113) in the scaled form

d2a
dt2

=
4
a3

+
−Λ+ ϵ sin (ωt)

a4
. (114)

n the absence of the ac term, i.e., ϵ = 0, Eq. (114) conserves the energy

E3D =
1
2

(
da
dt

)2

+ 2a−2
−

1
3
Λa−3. (115)

This expression shows that E3D → −∞ as a → 0, if Λ > 0, and E3D → +∞ as a → 0 if Λ < 0, which corresponds to
the collapse or decay of the pulse, respectively.

Prior to applying the averaging procedure, Eq. (114) can be solved numerically, without averaging, to show that
there is a region in the parameter space where the condensate, which would decay under the action of the repulsive
27
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Fig. 16. The Poincaré section in the plane of (a, da/dt) for Λ = −1, ϵ = 100, ω = 104π , generated by the numerical solution of the variational
quation (114) with different initial conditions (see the text).
ource: The results are reproduced from Ref. [54].

Fig. 17. The region in the (ϵ, ω/π ) parameter plane where the numerical solution of Eq. (114) with Λ = −1 predicts stable quasiperiodic solutions
in the 3D case. Crosses mark points where stable solutions were actually obtained. Stars correspond to minimum values of the ac-component’s
amplitude ϵ eventually leading to the collapse of the solution of the full partial differential equation (72) with Λ = −1.
ource: The results are reproduced from Ref. [54].

c nonlinearity (Λ < 0), may be stabilized by the ac component, provided that its amplitude is sufficiently large. The
ehavior of the solutions is displayed in Fig. 16, by means of the Poincaré section in the phase plane of (a, da/dt), for
Λ = −1, ϵ = 100, ω = 104π , and initial conditions a(t = 0) = 0.3, 0.2, or 0.13 and da/dt(t = 0) = 0. As seen in Fig. 16,
in all the cases the solution remains bounded with quasiperiodic oscillations, avoiding the collapse or decay.

In fact, the corresponding stability region in the parameter plane (ω/π, ϵ) is small, see Fig. 17. It is also seen that the
frequency and amplitude of the ac component need to be large enough to maintain the stability. Note that, for frequencies
larger than 106π , the width of the condensate a(t) assumes very small values in the course of the evolution (as predicted
by VA), suggesting that the collapse may occur in the solution of the full 3D equation (72). The stability is predicted by
VA only for Λ < 9, i.e., for the repulsive dc component of the nonlinearity coefficient. In the opposite case, VA predicts
solely the collapse.

As ω is large enough in the stability region shown in Fig. 17, it seems natural to apply the averaging method to this
case too. Similar to how it is outlined above in the 2D case, the rapidly oscillating correction δa(t) to the solution can be
found, cf. Eq. (83):

δa = −
ϵ sin [ωt] a

ω2a5 − 12a + 4Λ
, (116)

nd the resulting evolution equation for the slow variable a(t) is

d2a
dt2

= a−4

[
4a4 −Λ+

2ϵ2

ω2a5 − 12a + 4Λ
+ ϵ2

6a − 5Λ(
2 5 )2

]
. (117)
ω a − 12a + 4Λ
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Fig. 18. The evolution of the density radial profile, |u(r)|2 , in the presence of the strong and fast ac modulation (ω = 104π , ϵ = 90). The profiles
f |u(r)|2 are shown at different times: t = 0.007 (a), 0.01 (b), and 0.015 (c).
ource: The results are reproduced from Ref. [54].

n the limit a → 0, Eq. (117) takes the form of

d2a
dt2

=

[
−Λ+

3ϵ2

16Λ

]
a−4

. (118)

q. (118) predicts one property of the 3D model correctly, viz., in the case Λ < 0 and with a sufficiently large amplitude of
he ac component (ϵ > (4/

√
3) |Λ|), it follows from Eq. (118) that collapse takes place instead of spreading out. However,

other results following from the averaged equation (117) are wrong, as compared to those produced by simulations of
the full variational equation (114), which are displayed above (see Figs. 16 and 17). In particular, detailed analysis of the
right-hand side of Eq. (117) shows that it does not predict a stable fixed point for Λ < 0, and does predict it for Λ > 0,
xactly opposite to what is revealed by the simulations of Eq. (114). The failure of the averaging approach in this case
ay be explained by the existence of singular points in Eqs. (116) and (117) (for both Λ > 0 and Λ < 0), at which the
enominator ω2a5 − 12a + 4Λ vanishes. Note that, in the 2D case with Λ > 0, for which the stable state was found (see
q. (86)), the corresponding Eq. (84) did not have singularities.

.3.2. Direct simulations of the GP equation in the 3D case
Comparison of the results produced by VA with direct simulations of the 3D version of the radial equation (72) is

ecessary.
In the absence of the ac component, i.e., ϵ = 0 and under the condition Λ < 0, the simulations show straightforward

ecay. If an ac component with a sufficiently large amplitude is added, transient stabilization of the condensate takes
lace, roughly similar to how it is predicted by the solution of the variational equation (114). However, the stabilization
s not permanent: the wave function begins to develop small-amplitude short-scale variations around the center, and
fter about 50 periods of the ac modulation, the collapse takes place.
An example of this behavior is displayed in Fig. 18, for N = 1, Λ = −1, and ω = 104π . Fig. 18 shows radial density

rofiles |u(r)|2 at different instants of time. Results presented in Fig. 18 is typical for the 3D case with Λ < 0. The
ventual collapse that takes place in this case is a nontrivial finding, as it occurs despite the fact that the dc part of the
onlinearity drives the condensate towards spreading out. Therefore, a basic characteristic of the system is a dependence
f the minimum ac amplitude ϵ, which gives rise to the collapse at fixed Λ = −1, versus ac frequency ω. Several points
arked by stars show this dependence in Fig. 17. It is natural that the minimum value of ϵ necessary for the collapse
rows with ω. On the other hand, for ω not too large, this minimum value is small, as even small ϵ is sufficient to push
he state into the collapse during the relatively long half-period when the sign of the net nonlinearity coefficient λ(t) is
ositive, see Eq. (89).
In the case of Λ > 0 the collapse cannot be predicted, in agreement with the analysis developed above on the basis

f the Hamiltonian of the averaged version of the GP equation, which showed that the collapse could not be arrested
n the 3D case, provided that the amplitude of the ac component was large enough. This result also accords with the
indings of direct simulations of the propagation of localized 3D spatiotemporal pulses in the above-mentioned model of
he nonlinear-optical medium consisting of alternating layers with opposite signs of the Kerr coefficient: on the contrary
o the stable 2D spatial solitons, the 3D “light bullets” can never be stable in that model.

.4. Conclusion of the section

The dynamics of both 2D and 3D BEC is considered in the case when the nonlinearity coefficient in the GP equation
ontains constant (dc) and time-variable (ac) parts. This may be achieved in the experiment by means of a resonantly
uned ac magnetic field, through FR. Using VA, directly simulating the GP equation, and applying the averaging procedure

o it without the use of VA, one concludes that, in the 2D case, the ac component of the nonlinearity makes it possible to
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aintain the condensate in a stable self-confined state without an external trap, which agrees with known results reported
or spatial solitons in nonlinear optics. In the 3D case, VA also predicts a stable self-confined state of the condensate
ithout a trap, provided that the constant part of the nonlinearity corresponds to repulsion between atoms. However, in
his case direct simulations reveal that the stability of the self-confined condensate is limited in time. Eventually, collapse
akes place, despite the fact that the dc component of the nonlinearity is repulsive. Thus, the conclusion is that the spatially
niform ac magnetic field, resonantly tuned to affect the scattering length via FR, may readily play the role of an effective
rap that confines the condensate, and sometimes enforces its collapse.

. Soliton stability in two-component BEC under temporal modulation

In the present section, we address the dynamics of a binary condensate in an expulsive time-varying HO potential
ith time-varying intrinsic attractive interactions, governed by an integrable system of two 1D GP equations. In this
odel, the strength of the attractive nonlinearity exponentially decays with time, hence solitons are also subject to
ecay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced, making their lifetime longer,
y matching the time dependence of the interaction strength to the time modulation of the strength of the HO potential.
he nonlinearity coefficient can be made time-dependent through FR, which helps to choose the time-modulation pattern
orresponding to the integrable system. A conclusion is that the expulsive time-modulated HO potential, combined with
he modulated nonlinearity, may sustain stable BEC, while it quickly decays in the time-independent potential. The
nalytical results predicting this behavior are confirmed by numerical simulations. Furthermore, it is demonstrated that
he addition of noise does not impact the BEC stability in the expulsive time-dependent potential.

Results presented in this section are based on Ref. [71].

.1. The physical model and the Lax pair

The model to be studied in this section pertains to two-component BEC, with equal atomic masses and attractive
nteractions in both components (such as the condensate composed of two hyperfine states of 7Li [36] or 85Rb [145]
toms), trapped in the HO potential. The mean-field evolution of the setting is governed by coupled 1D GP equations,
ritten in the scaled form as

i
∂ψj

∂t
=

(
−

1
2
∂2

∂x2
+ bjj

⏐⏐ψj
⏐⏐2 + bj3−j

⏐⏐ψ3−j
⏐⏐2 +

1
2
Ω2

j (t)x
2
)
ψj = 0, j = 1, 2, (119)

where ψj is the mean-field wave function of the j-th component subject to the normalization condition
∫

+∞

−∞
|ψ1|

2 dx = 1
and

∫
+∞

−∞
|ψ2|

2 dx = N2/N1. The intrinsic interactions in Eq. (119) are controlled by the SPM and XPM coefficients,
jj = 4ajjNi/r⊥ and bjk = 4ajkNi/r⊥, where ajj and ajk are the respective scattering lengths, and r⊥ is the transverse-
omponent radius. In the section, the symmetric system is considered, with b11 = b22 = b21 = b12 ≡ −g , and
2
j (t) = ω2

j (t)/ω
2
⊥
, where ωj and ω⊥ represent, respectively, frequencies of the trapping potential in the longitudinal

nd transverse directions. Time t and coordinate x are measured in units of 2/ω⊥ and r⊥ =
√
h̄/(mω⊥), respectively.

Further, assuming Ω2
1 (t) = Ω2

2 (t) ≡ −λ2(t) (i.e., the confining and expulsive signs of the potential correspond to
λ2 < 0 and λ2 > 0, respectively), and allowing the interaction coefficient g(t) and potential strength λ2(t) to vary in
time, Eq. (119) takes the following form (with additional rescaling t → 2t):

i
∂ψj

∂t
+
∂2ψj

∂x2
+ 2g(t)

(⏐⏐ψj
⏐⏐2 +

⏐⏐ψ3−j
⏐⏐2)ψj + λ2(t)x2ψj = 0, j = 1, 2. (120)

In this system the nonlinearity takes the Manakov’s form [77], which is a well-known necessary condition for the
integrability of the system. In what follows, we consider the case of g(t) > 0, which corresponds to the attractive sign of
the SPM and XPM interactions. Under the special integrability condition imposed on g(t) and λ(t), system (120) admits a
representation in the form of the Lax pair,

Φx + UΦ = 0,
Φt + VΦ = 0, (121)

where Φ = (φ1, φ2, φ3)T is the three-component Jost function, and the operators are

U =

( iζ (t) Q1 Q2
−Q ∗

1 −iζ (t) 0
−Q ∗

2 0 −iζ (t)

)
, (122a)

V =

(
v11 v12 v13
v21 v22 v23
v31 v32 v33

)
, (122b)

with

v11 = −iζ 2(t) + iΓ (t)xζ (t) +
i
Q1Q ∗

+
i
Q2Q ∗, (123)
2 1 2 2
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v12 = Γ (t)xQ1 − ζ (t)Q1 +
i
2
∂Q1

∂x
, (124)

v13 = Γ (t)xQ2 − ζ (t)Q2 +
i
2
∂Q2

∂x
, (125)

v21 = Γ (t)xQ ∗

1 + ζ (t)Q ∗

1 +
i
2
∂Q ∗

1

∂x
, (126)

v22 = iζ 2(t) − iΓ (t)xζ (t) −
i
2
Q1Q ∗

1 , (127)

v23 = −
i
2
Q2Q ∗

1 , (128)

v31 = −Γ (t)xQ ∗

2 + ζ (t)Q ∗

2 +
i
2
∂Q ∗

2

∂x
, (129)

v32 = −
i
2
Q1Q ∗

2 , (130)

v33 = iζ 2(t) − iΓ (t)xζ (t) −
i
2
Q2Q ∗

2 , (131)

Q1 =
1

√
g(t)

ψ1(x, t) exp
(

i
2
Γ (t)x2

)
, (132)

Q2 =
1

√
g(t)

ψ2(x, t) exp
(

i
2
Γ (t)x2

)
. (133)

The compatibility condition, (Φx)t = (Φt )x, leads to the zero-curvature equation, Ut −Vx+[U, V ] = 0, which is tantamount
to the integrable system (120), provided that the spectral parameter ζ (t) obeys the following nonisospectral condition:

ζ (t) = µ exp
(

−

∫
Γ (t)dt

)
, (134)

where µ is a hidden complex constant and Γ (t) is an arbitrary function of time, which is related to the trap’s strength:

λ2(t) = Γ 2(t) −
dΓ
dt
, (135)

nd λ(t) is related to the variable interaction strength g(t) by the integrability condition:

λ2(t)g2(t) = 2
(
dg
dt

)2

− g(t)
d2g
dt2

. (136)

hus, the system of GP Eqs. (120) is integrable if λ(t) and g(t) satisfy the integrability condition (136). For the time-
ndependent trap, λ(t) =const ≡ c1, Eq. (136) yields g(t) = exp (c1t). In what follows, we focus on the consideration of
the integrable system satisfying this condition. If the rigorous integrability condition is slightly broken, the result depends
on the accumulation of the deviation from the integrability over a characteristic time scale, T , of the dynamical regime.
Namely, if the deviation from the integrability is characterized by difference ∆λ(t) from the value imposed by Eq. (136),
he condition for the system to remain close to the integrability is⏐⏐⏐⏐∫ T

0
∆λ(t)dt

⏐⏐⏐⏐ ≪ 1. (137)

It is important to mention that one can convert the integrable system of the coupled GP equations, defined by Eqs. (120)
nd (136), into the usual Manakov’s model with constant coefficients (120) by a suitable transformation. Nevertheless, the
irect formulation of the integrability formalism in the form of Eqs. (122a), (122b), and (136) is quite useful, as it makes
t possible to apply the gauge-transformation method for generating multisoliton solutions, and it may also be used for
he search of more general integrable systems.

.2. Analytical and numerical results for two-component bright solitons in the integrable system

With the help of the gauge-transformation approach, bright solitons of the system of GP Eqs. (120), subject to the
ntegrability condition (136), can be looked for as

ψ
(1)
1 =

2
√
g(t)

ε
(1)
1

β1(t)
cosh θ1

exp
[
i
(
−ξ1 + Γ (t)x2/2

)]
, (138a)

ψ
(1)
2 =

2
√ ε

(1)
2

β2(t) exp
[
i
(
−ξ1 + Γ (t)x2/2

)]
, (138b)
g(t) cosh θ1
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Fig. 19. (a,b): The analytical soliton solution of Eqs. (120) under the integrability condition (136), with g(t) taken as per Eq. (141) (and λ2 = 1/16).
(c,d): The numerically generated counterpart of the same solution.
Source: The results are reproduced from Ref. [71].

where

θ1 = 2β1x + 4
∫
α1β1dt − 2δ1, (139)

ξ1 = 2α1x + 2
∫

(α2
1 − β2

1 )dt − 2χ1, (140)

with α1 = α10 exp
[∫
Γ (t)dt

]
, β1 = β10 exp

[∫
Γ (t)dt

]
, while δ1 and χ1 are arbitrary parameters, and ε(1)1,2 are coupling

coefficients, which are subject to constraint
⏐⏐⏐ε(1)1

⏐⏐⏐2 +

⏐⏐⏐ε(1)2

⏐⏐⏐2 = 1.
To start the analysis of particular solutions relevant for the physical realization of the system, one can switch off the

time dependence of the HO trap and adopt the dependence of the nonlinearity coefficient in the form of

g(t) = 0.5 exp (−0.25t) , (141)

for which Eq. (136) renders the HO potential time-independent and expulsive, with λ2 = 1/16 > 0. The corresponding
density profile of the analytical solution, given by Eqs. (135) and (138a), (138b), is displayed in Figs. 19(a,b). Its
counterpart produced by numerical simulations of Eq. (120) is shown in Figs. 19(c,d). In these figures one observes perfect
agreement between the analytical and numerical solutions, which also implies stability of the analytical solution. If the
time-modulated interaction strength (141) is replaced by

g(t) = 0.5 exp (−0.5t) , (142)

for which Eq. (136) yields a stronger expulsive potential, with λ2 = 1/4, the condensate quickly spreads out, as shown
by the analytical solution in Figs. 20(a,b), and its numerical counterpart in Figs. 20(c,d). As seen in Fig. 21, this trend
(including the stability of the analytical solution) continues if the time dependence (142) is replaced by

g(t) = 0.5 exp (−0.9t) , (143)

for which Eq. (136) yields λ2 = 0.81.
To enhance the stability of the condensates, one can switch on the time dependence of the HO strength, taking

g(t) = 0.5 exp
(
−0.125t2

)
, (144)

for which Eq. (136) yields the expulsive potential with strength

λ2 = 1/4 + t2/16. (145)
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Fig. 20. The same as in Fig. 19, but g(t) given by Eq. (142), with λ2 = 1/4.
Source: The results are reproduced from Ref. [71].

Fig. 21. The same as in Fig. 19, but for g(t) given by Eq. (143), with λ2 = 0.81.
Source: The figure is borrowed from Ref. [71].

he corresponding analytical solution, generated by Eqs. (138a) and (138b) is displayed in Figs. 22(a,b). The correctness
nd stability of the analytical solution is corroborated by its numerical counterpart, as shown in Figs. 22(c,d). Further, for
he much steeper modulation of the interaction coefficient, with

g(t) = 0.5 exp
(
−2.5t2

)
, (146)

he integrability condition (136) yields

λ2 = 5 + 25t2. (147)
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Fig. 22. (a,b): The analytical soliton solution of Eqs. (120), given by Eqs. (138a) and (138b), with g(t) and λ2(t) taken as per Eqs. (144) and (145).
(c,d): The numerically generated counterpart of the same solution.
Source: The results are reproduced from Ref. [71].

Fig. 23. The same as in Fig. 22, but for g(t) and λ2(t) taken as per Eqs. (146) and (147). Note the essential difference of the spatiotemporal shape
f the solution in comparison with that displayed in Fig. 22.
ource: The results are reproduced from Ref. [71].

he corresponding analytical solution, given by Eqs. (138a) and (138b), and its numerical counterpart are displayed in
ig. 23. Note that this solution demonstrates non-monotonous evolution in time: the soliton’s wave fields shrink and
hen expand.

A still steeper modulation of the interaction coefficient, with

g(t) = 0.5 exp
(
−12.5t2

)
, (148)
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Fig. 24. The same as in Fig. 23, but for g(t) and λ2(t) given by Eqs. (148) and (149).
Source: The results are reproduced from Ref. [71].

and

λ2 = 5 + 25t2, (149)

given by integrability relation (17), leads to the exact solution displayed in Fig. 24, whose shape remains qualitatively
similar to that in Fig. 23.

Thus, the two-component BEC with attractive interactions in the time-dependent expulsive trap, adjusted to the
integrable system based on Eqs. (120) and (136), is more long-lived, as its lifetime can be increased by means of the
FR management, in comparison with the condensates in the time-independent expulsive trap, which quickly decays in
the course of the evolution.

To further confirm the stability of the exact soliton solution produced by Eqs. (120) and (136), one can add random
noise to the simulations (while rigorous stability analysis for these solutions in an experimentally relevant form is not
straightforward). The respective numerically simulated density profiles demonstrate, in Figs. 25–27, that the white noise
does not break the stability of the evolving condensates. Additional numerical results demonstrate that the stability
does not depend on the particular correlation structure of the noise (white or colored), nor on its spectral width. This
conclusion further corroborates that the two-component condensate in the time-dependent expulsive HO, governed by
the specially devised integrable system, is more robust in comparison with its counterpart in the time-independent
trap. The above results indicate the possibility of increasing the life span of the two-component BEC with the time-
modulated attractive interactions in the time-dependent HO potential. These predictions may be realized experimentally
in condensates composed of 39K [35], 85Rb [145] and 7Li [5] atoms.

5.3. Conclusion of the section

It is shown that the temporal modulation of the scattering length by means of FR can be efficiently used to design
conditions under which the mean-field dynamics of two-component condensates in the time-dependent expulsive HO
potential is governed by the integrable model. The solitons generated by this integrable system stay stable for a reasonably
large interval of time, compared to the condensate in the time-independent expulsive HO potential. The analytical results
and their stability are corroborated by comparison with numerical simulations, including the case when strong random
noise is added to the simulations.

6. Soliton motion in a binary Bose–Einstein condensate

This section deals with the analytical study of dynamics of matter-wave solitons governed by an integrable system of
coupled GP equations of the Manakov’s type [77], modeling a two-component BEC. By means of the Darboux transform
(DT), analytical solutions of these equations can be obtained for a soliton set on top of a plane-wave background. These
solutions with and without the XPM interaction between the two components are considered. In the presence of XPM,
35
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Fig. 25. The same as in Fig. 22(c,d), but in the case when strong white random noise, with a standard spectral width, is added to the simulations.
Source: The results are reproduced from Ref. [71].

Fig. 26. The same as in Fig. 23(c,d), but in the case when strong random noise is added to the simulations.
Source: The results are reproduced from Fig. [71].

Fig. 27. The same as in Fig. 24(c,d), but in the case when strong random noise is added to the simulations.
Source: The results are reproduced from Ref. [71].

the solutions exhibit properties different from those in the single-component GP, such as restriction of MI and soliton
splitting.

The results presented in this section are essentially based on Ref. [146].

6.1. The model and analysis

The subject on this section is the system of coupled 1D GP equations for two-component self-attractive BEC with
negative scattering lengths. In the scaled form, these equations are

i
∂φj

∂t
= −

1
2
∂2φj

∂x2
− g

(
aij
a12

⏐⏐φj
⏐⏐2 +

⏐⏐φ3−j
⏐⏐2)φj, j = 1, 2, (150)

here ajj and a12 are, respectively, the negative scattering lengths of intra- and inter-component atomic collisions,
oordinate x is measured in units of x0 ∼ 1 µm, t in units of mx20/h̄, with atomic mass m, φj in units of

√
n0 (n0 is the

aximum density of the initial distribution of the condensate), and the interaction constant is defined as g = 4πn0x20 |a12|.
As is well known, coupled Eqs. (150) are integrable in the Manakov’s case, with a11 = a22 = a12 [77]. In this case, by

eans of DT, one can generate an exact two-component solution which accounts for a soliton interacting with a plane
ave:

φj = Aj exp (iϕ)
(
1 +

4iηG1

F

)
+

2ηC jG2
√
g

exp
(

i
2
ϕ

)
, (151)

where j = 1, 2, and

F = D exp θ + A2D exp −θ − 2iA2 (L − L
)
sinϕ + C exp −θ , (152a)
1 ( 1) 1 ( 2)
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G1 = L exp θ1 − A2L exp (−θ1)− |L|2 exp (−iϕ1)+ A2 exp (iϕ1) , (152b)

G2 = L exp
[
−

i
2
(ϕ1 + ϕ2)+

1
2
(θ1 − θ2)

]
+ A2 exp

[
i
2
(ϕ1 − ϕ2)−

1
2
(θ1 + θ2)

]
; (152c)

θ1 ≡ MIx +
1
2
[(ξ − k)MI + ηMR] t − θ10, (152d)

θ2 ≡ ηx + ηξ t + θ10, (152e)

ϕ1 ≡ MRx +
1
2
[(ξ − k)MR − ηMI ] t + ϕ10, (153)

ϕ2 ≡ ξx +
1
2

(
ξ 2 − η2

)
t − ϕ10, (154)

ϕ ≡ kx +

[
g
(
A2
1 + A2

2

)
−

1
2
k2
]
t; (155)

L ≡ MR + ξ + k + i (MI + η) ,M ≡

√
(k + ξ + iη)2 + A2 = MR + iMI , (156)

D ≡ |L|2 + A2, A ≡

√
4g
(
A2
1 + A2

2

)
, C = |C1|

2
+ |C2|

2 , (157)

, θ10, ϕ10, A1,2 are arbitrary real constants, and C1,2 are arbitrary complex constants subject to constraint

A1C1 + A2C2 = 0. (158)

n the case of zero background amplitude, A1 = A2 = 0, solution (151) amounts to φj =
[
ηϵj/

(√
g cosh θ

)]
exp (−iϕ2),

here θ = η (x + ξ) − θ0, θ0 is an arbitrary real constant, and ϵ1,2 are arbitrary complex constants obeying relation
ϵ1|

2
+|ϵ2|

2
= 1. The latter solution is a stable two-component soliton with velocity Vsol = −ξ , width η−1, and amplitudes

As1,2 =
⏐⏐ηϵ1,2⏐⏐ /√g which satisfy relation A2

s1 +A2
s2 = η2/g . The total norm of the two-component soliton (proportional to

the number of atoms in the binary condensate) is Q ≡ Q1+Q2 =
∫

+∞

−∞

(
|φ1|

2
+ |φ2|

2) dx = 2 |η| /g , with Qj = 2 |η|
⏐⏐ϵj⏐⏐2 /g .

Further, its momentum and Hamiltonian of the system are

M ≡ M1 + M2 = −
i
2

∫
+∞

−∞

[(
φ1φ1,x − φ1φ1,x

)
+
(
φ2φ2,x − φ1φ2,x

)]
dx = VsolQ (159)

and

H ≡
1
2

∫
+∞

−∞

[(⏐⏐φ1,x
⏐⏐2 +

⏐⏐φ2,x
⏐⏐2)− g

(
|φ1|

2
+ |φ2|

2)2] dx =
M2

2Q
−

g2

24
Q 3. (160)

On the other hand, when the soliton’s amplitudes vanish, A1s,2s = 0 (e.g., η = 0), solution (151) reduces to the plane
wave (alias CW), φ1,2 = A1 exp (iϕ), with amplitudes A1,2, wave number k, and frequency Ω = g

(
A2
1 + A2

2

)
− k2/2.

Thus, in the general case exact solution (151) represents a two-component soliton embedded in the CW background.
Condition (158) determines the XPM interaction between the two components of the plane-wave background. If C1 =

C2 = 0, the second term in solution (151) vanishes, each soliton component being embedded in its own background, see
a more detailed consideration of this special case below. If C1C2 ̸= 0, the second term in solution (151) is different from
zero, hence condition (158) implies that coefficients C1 and C2 depend on the CW amplitudes A2 and A1.

To understand the behavior of solution (151), it is relevant to start with the above-mentioned case of C1 = C2 = 0,
when solution (151) simplifies to

φj = Aj exp (iϕ) (1 − 2ηW ) , (161a)

W ≡
1
A

(
a cosh θ1 + sinϕ1
cosh θ1 + a sinϕ1

− i
b sinh θ1 + c cosϕ1
cosh θ1 + a sinϕ1

)
, (161b)

with a = −iA
(
L − L

)
/D, b = A

(
L + L

)
/D, and c =

(
A2

− |L|2
)
/D. Note that expressions (161a) and (161b) do not include

θ2 and ϕ2, and the two components share a common shape. This solution is similar to that for the single-component BEC.
As MI ̸= 0, from Eq. (161a) one can extract the total norm of the soliton component of the solution, which is defined as
the norm above the CW level:∫

+∞

−∞

[(
|φ1|

2
− A1

)2
+
(
|φ2|

2
− A2

2

)]
dx =

η
(
b2 + c2

)
g |MI |

I, (162a)

I ≡

∫
+∞

−∞

η + A (cosh x) sin (Bx +∆)

cosh x + a sin (Bx +∆)
dx, (162b)

here ∆ = −(1/2)ηMI
(
1 + B2

)
t +Bθ10 +ϕ10 and B = MR/MI . In deriving the above expression, relations |φ1(±∞, t)|2 =

2
1 and |φ2(±∞, t)|2 = A2

2 for asymptotic values of the fields are used. It can be verified that integral (162b) does not
epend on ∆, hence the soliton’s total norm is a conserved quantity.
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When MI = 0, the soliton’s velocity vanishes, i.e., the CW background completely traps the soliton [146]. Setting, in
articular, ξ = −k and A2 > η2 yields MI = 0, and W in solution (161a) becomes

W =
1
A
η cosh θ1 + A sinϕ1 − iMR sinh θ1

A cosh θ1 + η sinϕ1
, (163)

ith θ1 ≡ (1/2)ηMRt−θ10 and ϕ1 ≡ MR (x − kt)+ϕ10, where MR =
√
A2 − η2, and θ10 and ϕ10 are arbitrary real constants.

Expression (163) is periodic in x, with period Λ = 2π/MR, and aperiodic in t . To better understand the MI development
provided by this solution, one may assume that

ϵ = exp (−θ10) (164)

is small (it then plays the role of a small amplitude of the initial perturbation that triggers the onset of the MI), and
linearize the initial form of solution (161a) at t = 0 with respect to ϵ, taking Eq. (163) into account. This yields

φj(x, 0) ≈ Aj exp (iϕ) [ρ − ϵχ sin (MRx + ϕ10)] , (165)

where ρ ≡
(
A2

− 2η2 − 2iηMR
)
/A2 with |ρ|

2
= 1, χ ≡ 4ηMR (MR − iη) /A3. Direct numerical simulations of the

underlying Eqs. (150) demonstrate that the evolution of initial configuration (165), which is a plane wave with a small
modulational perturbation added to it, indeed closely follows the exact solution provided by Eqs. (163) and (161a) [146].

6.2. Results

The above results were obtained under the Manakov integrability conditions a11 = a22 = a12, which may not be exactly
satisfied in reality. However, the actual difference of the scattering lengths in a BEC mixture of two different hyperfine
states of the same atomic species is very small, therefore the Manakov’s system may be used as a good approximation.
For instance, taking

a11 = −1.03, a12 = −1, a22 = −0.97, (166)

numerical solution of Eqs. (150) yields the picture of the MI development shown in Fig. 28. Comparing it with the exact
solution obtained for a11 = a22 = a12 demonstrates that the two solutions are virtually indistinguishable.

The consideration of solution (151) in a more general situation, with nonzero coefficients C1,2 and A1,2, subject to
condition (158), make it possible to explicitly consider effects of the XPM interaction between the plane waves in the
two-component BEC. In this case, to satisfy condition (158), one sets C1 = 4

√
gA2C and C2 = −4

√
gA1C , where C is an

rbitrary complex constant. Further, one fixes ξ = −k in solution (151) to analyze two following representative situations
n detail.

(i) Setting A2
= η2, i.e., 4

(
A2
1 + A2

2

)
= A2

s1 + A2
s2, solution (151) can be written as

φj = − exp (iϕ)
[
Aj tanh (θ2/2)+ (−1)j

√
2A3−j cosh−1 (θ2/2) exp (iϕ3)

]
, (167)

where θ2 ≡ η (x − kt)+ θ10, ϕ ≡ kx+
(
η2/4 − k2/2

)
t , ϕ3 ≡ η2t/8+ϕ10, and θ10 and ϕ10 are arbitrary real constants. The

density distribution corresponding to this solution is |φ1|
2

+ |φ2|
2

=
(
A2
2 + A2

1

) [
1 + sech2 (θ2/2)

]
, see Fig. 29. Solution

(167) may be regarded as a superposition of bright and dark solitons, produced by the action of XPM. In particular, the
solution with A1 = 0 or A2 = 0 is a complex consisting of bright and dark solitons in the first and second species, or vice
versa. From the imposed condition A2

= η2, it follows that |η| =

√
4g
(
A2
1 + A2

2

)
, showing that the width of the soliton is

controlled by the amplitude of the CW background. In Fig. 29 one observes a shift of the soliton’s peak due to the action
of XPM.

(ii) In the case when A2 > η2, i.e.,

4
(
A2
1 + A2

2

)
> A2

s1 + A2
s2, (168)

solution (151) can be written as

φj = Aj exp (iϕ) (1 − 2ηW1)− (−1)j 2ηA3−jW2, (169)

W1 =
1
A
η cosh θ1 + A sinϕ1 − iMR sinh θ1
A cosh θ1 + η sinϕ1 + A exp (−θ2)

, (170a)

W2 =
1
A
(MR + iη) exp [(−iϕ1 + θ1) /2] + A exp [(iϕ1 − θ1)]

A cosh θ1 + η sinϕ1 + A exp (−θ2)

× exp
[

−θ2 + i (ϕ − ϕ2)

2

]
, (170b)

ith θ1 ≡ (η/2)MRt − θ10, θ2 ≡ x−kt + θ20, ϕ1 ≡ MR (x − kt) + ϕ10, ϕ2 ≡ −kx+
1
2

(
k2 − η2

)
t −ϕ20, and MR =

√
A2 − η2,

hile θ , θ , ϕ , and ϕ are arbitrary real constants. From expressions (170a) and (170b) one can see that W → 0 at
10 20 10 20 2
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Fig. 28. A set of snapshots showing exact solution (161a) by dotted curves, and numerical results, obtained under nearly integrable condition (166),
by solid curves (in fact, the dotted and solid plots completely overlap). Parameters are η = 0.8, k = −0.1, g = 1, A1 = 1, A2 = 1.2, θ10 = 6, the
atter one representing amplitude (164) of the initial perturbation which triggers the onset of MI, with ϵ = 2.4788 × 10−3 and ϕ10 = 0.
ource: The results are reproduced from Ref. [146].

Fig. 29. Spatiotemporal distribution of densities of the two components in solution (167), with phase difference π between the components.
Parameters are k = −0.1, g = 1, A1 = 1, A2 = 0.8, θ10 = −2, and ϕ10 = 0.
Source: The results are reproduced from Ref.

θ2 → ±∞, and W1 → W at θ2 → +∞, W1 → 0 at θ2 → −∞. Thus, taking into regard the form of solution (161a) and
expression (163), one concludes that solution (169) describes partial MI, because the growth of the instability is restrained
in the limit of θ2 → −∞, as illustrated by Fig. 30. However, if the nonlinearity constants a11, a12, and a22 slightly deviate
from the integrable case a11 = a12 = a22, a numerically found counterpart of solution (169) is conspicuously different
from it, see Fig. 31.

Finally, one can consider solution (151) in the general case. From expressions (152d) and (152e) one sees that the
solution contains terms with different velocities, V1 = −(1/2) [(ξ − k)+ ηMR/MI ] and V2 = −ξ , which leads to splitting
of the soliton part of the solution on top of the CW background in two wave packets, high- and low-frequency ones, as
shown in Fig. 32 . Further, in Fig. 33 this exact analytical solution, obtained in the integrable case with a11 = a12 = a22 = 1,
is compared to a numerically found one, produced by the generic nonintegrable version of Eqs. (150), with the normalized
scattering lengths chosen as in Eq. (166). Fig. 33 demonstrates that the soliton part of the numerically found solution, built
on top of the CW background, also splits in two packets, stable high-frequency and unstable low-frequency ones.

6.3. Conclusion of the section

Exact solutions are presented for coupled GP equations describing binary BEC, in the form of a soliton placed on top of a
CW (plane-wave) background. It is shown that, when the intensity of the CW background exceeds a quarter of the soliton’s
peak intensity, which is expressed by condition (168), the exact solution, produced by the Manakov system, describes
development of MI, which can be used in physical applications to generate a soliton train. This wave complex can be
generated, as a robust one, even if parameters of the coupled equations do not exactly satisfy the Manakov’s integrability
39
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Fig. 30. A set of snapshots representing exact solution (169) for η = −1.5, k = −0.1, g = 1, A1 = 1, A2 = 1.2, θ10 = −6, ϕ10 = 0, and θ20 = −5,
20 = 0.
ource: The results are reproduced from Ref. [146].

Fig. 31. The same as in Fig. 30, but obtained from a numerical solution of Eqs. (150) with the nonlinearity constants taken as per Eq. (166). Other
arameters are identical to those in Fig. 30.
ource: The results are reproduced from Ref. [146].

ondition. The XPM interaction in the CW background of the two-components system has been considered too. It was
hown that the interaction between two CW amplitudes gives rise to a phase difference between the components, and,
n the most general case, it causes splitting of the soliton and formation of a complex pattern. In particular, under
ondition (168) as mentioned above, the XPM interaction between the two plane waves helps to effectively restrain the
I.
Note that the coupled underlying Eqs. (150) are also integrable in the case of g < 0 and a11 = a22 = a12 (a binary self-

epulsive condensate), and also, with either sign of g , for a11 = a22 = −a12 [147], which corresponds to a mixture of two
elf-repulsive condensates that attract each other, or two self-attractive ones which repel each other. In the former case,
hen single-component bright solitons are impossible due to the intraspecies repulsion, the so-called symbiotic solitons
xist and are stable, being supported by the inter-species attraction [148,149]. However, direct attempts to construct
ound states of plane waves and solitons by means of DT lead to singular solutions in these cases [146].

. Dynamics of matter-wave solitons in spinor BEC

This section addresses the dynamics of matter-wave solitons in the general nonintegrable model of a three-component
pinor BEC, based on a system of three nonlinearly coupled GP equation. First, one-, two-, and three-component solitons
f the polar and ferromagnetic (FM) types are produced. Next, BdG equations for small perturbations are used to study
40
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Fig. 32. A set of snapshots of the general-form analytical solution (151). Parameters are η = 1.5, ξ = −0.4, k = −0.5, g = 1, A1 = 1, A2 = 1.2,
10 = 5, 10 = 0, C1 = 1, and C2 is determined by constraint (158).
Source: The results are reproduced from Ref. [146].

Fig. 33. The same as in Fig. 32, but for a numerically found solution of Eqs. (150) with a11 = −1.03, a12 = −1, a22 = −0.97. Other parameters are
identical to those in Fig. 32.
Source: The results are reproduced from Ref. [146].

the stability of the solitons by means of direct simulations and, in a part, analytically. Global stability of the solitons is
considered by means of comparison of energy for different states. As the main result, ground-state and metastable soliton
states of the FM and polar types are identified. Considering the special case of the integrable version of the system, DT
is applied to find analytical solutions that display full nonlinear evolution of MI of CW states, seeded by a small spatially
periodic perturbation. Also, it is demonstrated that solitons of both the polar and FM types, found in the integrable system,
are robust against random changes of the nonlinearity coefficient in time (i.e., random deviations form the integrability).
The latter result demonstrates structural stability of the solitons.

The results collected in this section are essentially based on Ref. [150].

7.1. Formulation of the model

The object considered here is an effectively 1D BEC loaded in a cigar-shaped trap, which is elongated in x and tightly
confined in the transverse plane (y, z) [109]. In the mean-field approximation, atoms in the hyperfine state with atomic
spin F = 1 are described by a 1D three-component wave function, Φ(x, t) = [Φ+1(x, t),Φ0(x, t),Φ−1(x, t)]T, with the
components corresponding to the three values of the vertical spin projection, m = +1, 0, −1 [151]. The wave functions
F
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bey the corresponding three-component system of GP equations [151–153]:

iℏ
∂Φ±1

∂t
= −

ℏ2

2m
∂2Φ±1

∂x2
+ (c0 + c2)

(
|Φ±1|

2
+ |Φ0|

2)Φ±1 + (c0 − c2)

× |Φ∓1|
2Φ±1 + c2Φ∗

∓1Φ
2
0 ,

iℏ
∂Φ0

∂t
= −

ℏ2

2m
∂2Φ0

∂x2
+ (c0 + c2)

(
|Φ+1|

2
+ |Φ−1|

2)Φ0 (171)

+c0 |Φ0|
2Φ0 + 2c2Φ+1Φ−1Φ

∗

0 ,

where c0 = (g0 + 2g2) /3 and c2 = (g2 − g0) /3 denote, respectively, effective constants of the spin-independent and
pin-exchange interactions [150,154]. In terms of similar optics models, c2 is the coefficient of the four-wave mixing,
while c0 ± c2 account for the SPM and XPM interactions. Here gf = 4ℏ2af /

[
ma2

⊥

(
1 − caf /a⊥

)]
, with f = 0, 2, are

effective 1D coupling constants, af is the s-wave scattering length in the channel with total hyperfine spin f , a⊥ is the
size of the transverse ground state, m is the atomic mass, and c = −ζ (1/2) ≈ 1.46. Redefining the wave function as

Φ →

(
φ+1,

√
2φ0, φ−1

)T
and measuring time and length in units of ℏ/|c0| and

√
ℏ2/2m |c0|, respectively, one casts system

171) in the scaled form:

i
∂φ±1

∂t
= −

∂2φ±1

∂x2
− (ν + a)

(
|φ±1|

2
+ 2 |φ0|

2)φ±1 − (ν − a) |φ∓1|
2
±1 φ±1

− 2aφ∗

∓1φ
2
0 , (172)

i
∂φ0

∂t
= −

∂2φ0

∂x2
− 2ν |φ0|

2 φ0 − (ν + a)
(
|φ+1|

2
+ |φ−1|

2)φ0 − 2aφ+1φ−1φ
∗

0 ,

here ν ≡ −sgn(c0) and a ≡ −c2/c0.
System (172) can be derived from the Hamiltonian,

H =

∫
+∞

−∞

dx

{⏐⏐⏐⏐∂φ+1

∂x

⏐⏐⏐⏐2 +

⏐⏐⏐⏐∂φ−1

∂x

⏐⏐⏐⏐2 −
1
2
(ν + a)

(
|φ+1|

4
+ |φ−1|

4)
− (ν − a) |φ+1|

2
|φ−1|

2
+ 2

[⏐⏐⏐⏐∂φ0

∂x

⏐⏐⏐⏐2 − ν |φ0|
4
− (ν + a) (173)

×
(
|φ+1|

2
+ |φ−1|

2)
|φ0|

2
− a

(
φ∗

+1φ
∗

−1φ
2
0 + φ+1φ−1

(
φ∗

0

)2)]}
,

which is a dynamical invariant of the model (dH/dt = 0). Moreover, system (172) conserves the momentum, i.e.,

P = i
∫

+∞

−∞

(
φ∗

+1
∂φ+1

∂x
+ φ∗

−1
∂φ−1

∂x
+ 2φ2

0
∂φ0

∂x

)
dx, (174)

he solution’s norm, proportional to total number of atoms,

N =

∫
+∞

−∞

[
|φ+1(x, t)|2 + |φ−1(x, t)|2 + 2 |φ0(x, t)|2

]
dx, (175)

and the total magnetization,

M =

∫
+∞

−∞

[
|φ+1(x, t)|2 − |φ−1(x, t)|2

]
dx. (176)

These conservation laws are generated by symmetries of the system of GP Eqs. (172). In particular, the conservation of
the magnetization is related to the invariance of the system with respect to rotation of the atomic spin.

An obvious reduction of system (172) can be obtained by setting φ0 = 0. In this case, the model reduces to a system
of two equations which are tantamount to those describing light transmission in bimodal nonlinear optical fibers, with
the two modes representing either different wavelengths or two orthogonal polarizations [150]:

i
∂φ±1

∂t
= −

∂2φ±1

∂x2
− (ν + a) |φ±1|

2 φ±1 − (ν − a) |φ∓1|
2 φ±1. (177)

In particular, the case of two linear polarizations in the birefringent fiber corresponds to (ν − a) /(ν + a) = 2/3, i.e., a =

ν/5 and two different carrier waves of circular polarizations correspond to (ν − a) /(ν + a) = 2, i.e., a = −ν/3. The two
nonlinear terms in system (177) account for, respectively, the SPM and XPM interactions of the two waves. The MI of CW
(uniform) states in the system of two XPM-coupled Eqs. (177) has been studied in detail [117]. If the nonlinearity in system
(177) is self-defocusing, i.e., ν = −1 and 1 ± a > 0 (in other words, |a| < 1), the single NLS equation would of course
show no MI, but the XPM-coupled system of NLS equations (177) gives rise to MI, provided that the XPM interaction is
stronger than SPM, i.e., 0 < a < 1 [155].
42



E. Kengne, W.-M. Liu and B.A. Malomed Physics Reports 899 (2021) 1–62

7

p
i

o

(

7

w
z
N
(

S
t
e

a

w

T
b
d

A
t

a
b

.2. Analytical one-, two-, and three-component soliton solutions

As follows from the above derivation, the special case of the integrable model (with a = ν = 1 [156]) is physically
ossible, corresponding to c2 = c0 or, equivalently, 2g0 = −g2 > 0. The condition 2g0 = −g2 > 0 can be satisfied by
mposing condition

a⊥ = 3ca0a2/(2a0 + a2) (178)

n the scattering lengths, provided that a0a2 (a2 − a0) > 0 holds.
However, it is also possible to find simple exact soliton solutions of both polar and FM types in the general

non-integrable) case a ̸= ν. Several soliton species and results for their stability are presented below, following Ref. [150].

.2.1. Single-component FM solitons
A one-component FM soliton is given by a straightforward single-component solution (assuming a + ν > 0):

φ−1 = φ0 = 0, φ+1 =

√
−

2µ
ν + 1

exp (−iµt)
cosh

(√
−µx

) , (179)

here chemical potential µ < 0 is an intrinsic parameter of the soliton family. While expression (179) corresponds to the
ero-velocity soliton, moving ones can be generated from it in an obvious way by means of the Galilean transformation.
ote that condition a + ν > 0 implies a > 1 or a > −1 in the cases of the, respectively, repulsive (ν = −1) or attractive
ν = +1) spin-independent interaction. Norm (175) and energy (173) of this soliton are

N =
4
√

−µ

ν + a
, H = −

(ν + a)2

48
N3. (180)

oliton (179) is stable against small perturbations, as the linearization of system (172) about this solution demonstrates
hat the BdG equations for small perturbations are decoupled. Then, because the standard soliton of the single NLS
quation is always stable, solution (179) cannot be unstable against small perturbations of φ+1. Further, the decoupled

BdG equations for small perturbations φ−1 and φ0 of the other fields are

∂φ−1

∂t
= −

∂2φ−1

∂x2
− (ν − a) |φ+1|

2 φ−1, (181a)

∂φ0

∂t
= −

∂2φ0

∂x2
− (ν + a) |φ+1|

2 φ0, (181b)

nd it is well known that such linear equations, with |φ+1|
2 corresponding to the unperturbed soliton (179), give rise to

no instabilities either.

7.2.2. Single-component polar solitons
The simplest polar soliton, which has only the φ0 component different from zero, can be found for ν = +1,

φ0(x, t) =
√

−µ
exp (−iµt)

cosh
(√

−µx
) , φ±1(x, t) = 0. (182)

The stability problem for this soliton is more involved, as the unperturbed field φ0 gives rise to a coupled system of BdG
equations for infinitesimal perturbations φ±1 of the other fields:(

i
∂

∂t
+ µ

)
χ±1 = −

∂2χ±1

∂x2
+

2µ
cosh2 (√

−µx
) [(1 + a) χ±1 + aχ∗

∓1

]
, (183)

here we have substituted ν = +1 and redefined the perturbation,

φ±1(x, t) ≡ χ±1(x, t) exp (−iµt) . (184)

he last term in system (183) gives rise to parametric gain, which may be a source of instability. This instability can
e easily understood in qualitative terms if one replaces system (183) by simplified equations, which disregard the x
ependence, and replace the wave form sech2 (√

−µx
)
by its value at the soliton’s center, x = 0:

i
dχ±1

dt
= µ

[
(1 + 2a) χ±1 + 2aχ∗

∓1

]
. (185)

n elementary consideration shows that the zero solution of linear Eqs. (185) is unstable through a double eigenvalue in
he region of a < −1/4.

The stability of the single-component polar soliton (182) was checked by means of direct simulations of Eqs. (172),
dding a small random perturbation in components φ+1 and φ−1, the value of the perturbation being distributed uniformly
etween 0 and 0.03 (the same random perturbation is used in simulations of the stability of other solitons; see below).
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Fig. 34. The evolution of the single-component polar soliton (182) with a small random perturbation added, at t = 0, to the φ+1 and φ−1 components.
arameters are ν = 1, a = −0.5, and µ = −1.
ource: The results are reproduced from Ref. [150].

he result is that the soliton (182) is, indeed, always unstable, as shown in Fig. 34. In particular, panel (d) in the figure
isplays the time evolution of

N0 =

∫
+∞

−∞

|φ0(x, t)|2 dx, N±1 =

∫
+∞

−∞

|φ±1(x, t)|2 dx. (186)

.2.3. Two-component polar solitons
In the same case as considered above, ν = +1, a two-component polar soliton can be easily found too:

φ0(x, t) = 0, φ+1(x, t) = ±φ−1(x, t) =
√

−µ
exp (−iµt)

cosh
(√

−µx
) . (187)

n this case, instability is possible due to the parametric gain revealed by the BdG equations for small perturbations.
ndeed, the corresponding equation for the perturbation in the φ0 component decouples from the other equations and
takes the form of(

i
∂

∂t
+ µ

)
χ0 = −

∂2χ0

∂x2
+

2µ
cosh2 (√

−µx
) [(1 + a) χ0 + aχ∗

0

]
, (188)

here the perturbation was redefined the same way as in Eq. (184), φ0(x, t) ≡ χ0(x, t) exp (−iµt). Similar to the case of
q. (183), the origin of the instability may be understood, replacing Eq. (188) by its simplified version that disregards the
dependence, replacing the wave form sech2 (√

−µx
)
by its value at the central point of the soliton, x = 0:

i
dχ0

dt
= µ

[
(1 + 2a) χ0 ± 2aχ∗

0

]
. (189)

lementary consideration demonstrates that the zero solution of Eq. (189) (for either sign ±) is unstable in exactly the
ame region as in the case of system (185), viz., a < −1/4. While simplified equation (189) illustrates the qualitative
echanism of the parametric instability, the actual stability border may be different from a = −1/4. The stability of the
oliton (187) was tested by direct simulations of Eqs. (172) with a small uniformly distributed random perturbation added
o the φ0 component. The result shows that the soliton is unstable in the region of |a| ≥ 1, as shown in Fig. 35, and it is
stable at |a| < 1 (not shown here).

The change of the stability of this soliton at a = +1 can be explained analytically. Indeed, splitting the perturbation
into real and imaginary parts, χ x, t ≡ χ x, t +iχ x, t , and looking for a perturbation eigenmode as χ x, t =
0 ( ) (1 ) 2 ( ) 1,2 ( )
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Fig. 35. Solid, dashed, and dotted curves show, respectively, the evolution of norms N0 , N± of the φ0 and φ±1 components, and total norm N
see Eqs. (175) and (186)) in the two-component polar soliton (187) perturbed by a small random perturbation introduced in the φ0 component.
arameters are ν = 1 and µ = −1 and (a) a = 1.5 for φ+1φ

∗

−1 < 0; (b) a = 1.5 for φ+1φ
∗

−1 > 0; (c) a = −1.5 for φ+1φ
∗

−1 < 0; (d) a = −1.5 for
+1φ

∗

−1 > 0.
ource: The results are reproduced from Ref. [150].

xp (σ t)U1,2(x) with instability growth rate σ , one arrives at a system of real equations,

−σU2 =

(
−

d2

dx2
− µ+

2µ (1 + 2a)
cosh2 (√

−µx
))U1,

(190)

−σU1 =

(
−

d2

dx2
− µ+

2µ
cosh2 (√

−µx
))U2.

The simplest possibility for the onset of instability of the soliton is the passage of eigenvalue σ through zero. At σ = 0,
ystem (190) decouples, making each equation explicitly solvable and producing the zero eigenvalue at a = an ≡

(n + 3) /4, n = 0, 1, 2, . . .. The vanishing of σ at a0 = 0 corresponds not to destabilization of the soliton, but to the
act that system (190) becomes symmetric at this point, while the zero crossings at other points indeed imply stability
hanges. In particular, the critical point a1 = 1 explains the destabilization of soliton (187) at a = 1 as observed in the
imulations, the corresponding eigenfunctions being

U1(x) =
sinh

(√
−µx

)
cosh2 (√

−µx
) ,U2(x) =

1
cosh

(√
−µx

) . (191)

ritical points corresponding to n > 1 imply additional destabilizations through the emergence of new unstable
igenmodes of the already unstable soliton. On the other hand, the destabilization of the soliton at a = −1, also observed
n the simulations, may be explained by a bifurcation which changes a pair of eigenvalues σ from purely imaginary to
omplex ones, developing an unstable positive real part.

.2.4. Three-component polar solitons
In the case of ν = +1, three-component solitons of the polar type can be also found. One of them is

φ0 =

√
1 − ϵ2

√
−µ

exp (−iµt)
cosh

(√
−µx

) ,
(192)

φ+1 = −φ−1 = ±ϵ
√

−µ
exp (−iµt)(√ ) ,
cosh −µx
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Fig. 36. The evolution of the three-component polar soliton (192) under the action of a small random perturbation initially added to the φ0
omponent. Parameters are ν = 1, µ = −0.8, and ϵ = 2/

√
5 and (a) a = 0.5; (b) a = 1.5; (c) a = −0.5; (d) a = −1.5. The meaning of the solid,

ashed, and dotted curves is the same as in Fig. 35.
ource: The results are reproduced from Ref. [150].

here ϵ is an arbitrary parameter taking values −1 < ϵ < +1, and the opposite signs of φ+1 and φ−1 is an essential
ngredient of the solution. As well as the one- and two-component polar solitons displayed above, see Eqs. (187) and
191), the solution does not explicitly depend on parameter a in Eq. (172).

There is another three-component polar solution similar to the above one, i.e., containing an arbitrary parameter and
ndependent of a, but with identical signs of the φ±1 components and a phase shift of π/2 in the φ0 component. This
olution is

φ0 = i
√
1 − ϵ2

√
−µ

exp (−iµt)
cosh

(√
−µx

) ,
(193)

φ+1 = φ−1 = ±ϵ
√

−µ
exp (−iµt)

cosh
(√

−µx
) .

urthermore, there is a species of three-component polar solitons that explicitly depends on a:

φ0 = i (µ+1µ−1)
1/4 exp (−iµt)

cosh
(√

−µx
) ,

(194)

φ±1 =
√

−µ±1
exp (−iµt)

cosh
(√

−µx
) ,

where µ±1 are two arbitrary negative parameters, and the chemical potential is µ = − (ν + a)
(√

−µ+1 +
√

−µ−1
)2
/2,

which implies condition ν + a > 0 (note that this solution admits ν = −1, i.e., repulsive spin-independent interaction).
hus, each species of the three-component polar soliton contains two arbitrary parameters: either µ and ϵ in solutions
192) and (193), or µ±1 in solution (194).

The stability of all the species of these solitons was tested in direct simulations [150]. In the case of solutions (192)
nd (193), it was enough to seed a small random perturbation only in the φ0 component, to observe that both these types
re unstable, as shown in Figs. 36 and 37.
On the contrary, the three-component polar soliton (194) is completely stable. This point was checked in detail by

eeding small random perturbations in all the components. The result, illustrated by Fig. 38, is that the perturbation
nduces only small oscillations of the amplitudes of each component of the soliton.
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Fig. 37. The same as in Fig. 35, but for the three-component polar soliton (193). Parameters are ν = 1, µ = −0.8, ϵ = 2/
√
5, and a = 0.5 in (a),

a = 1.5 in (b), a = −0.5 in (c), and a = −1.5 in (d). The meaning of the solid, dashed, and dotted curves is the same as in Figs. 35 and 36.
Source: The results are reproduced from Ref. [150].

Fig. 38. The evolution of the three-component polar soliton (194) with initially added random perturbations. Parameters are ν = 1, µ+1 = −1.21,
−1 = −0.25, and a = 0.5 in (a,c) or a = −0.5 in (b,d). In cases (a) and (b), the random perturbation was added to the φ0 component, and in cases
c) and (d) it was added to components φ±1 . The curves labeled by 1, 2, 3, and 4 represent, respectively, the evolution of norms N+1 , N−1 , N0 , and
defined as per Eqs. (175) and (186).

ource: The results are reproduced from Ref. [150].

.2.5. Multistability of the solitons
The above results demonstrate remarkable multistability in the system, as the FM soliton (179), two-component polar

olitons (187) in the regions of −1 < a < +1, and the three-component one (194) may all be stable in the same parameter
egion. Then, to identify which solitons are “more stable” and “less stable,” one may fix norm (175) and compare respective
alues of the Hamiltonian (173) for these solutions, as the ground-state solution should correspond to a minimum of H
t given N .
The substitution of the solutions in Eq. (173) reveals another remarkable fact: all the solutions which do not explicitly

epend on a, i.e., the one-, two-, and three-component polar solitons (182), (187), (192), and (193), produce identical
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elations between N , µ, and H:

N = 4
√

−µ, H = −
1
48

N3. (195)

The N(µ) and H(N) relations are different for the single-component FM soliton (179), see Eq. (180). Finally, for the stable
three-component polar soliton (194), the relations between µ, N , and H take exactly the same form as Eq. (180) for the
FM soliton.

The comparison of expressions (180) and (195) leads to a simple conclusion: the one-component FM soliton (179) and
the stable three-component polar one (194) simultaneously provide the minimum of energy in the case of ν = +1 and
a > 0, when both the spin-independent and spin-exchange interactions between atoms are attractive. In these cases, each
of these two species (179) and (194) plays the role of the ground state in its own class of the solitons, viz., FM and polar
ones, respectively. Simultaneously, the two-component soliton (187) is also stable in the region of 0 < a < 1, as shown
above, but it corresponds to higher energy, hence it represents a metastable state in this region.

The FM soliton (179) and three-component polar soliton (194) also exist in the case of ν = −1 and a > 1, when ν+ a
is positive. In this case too, these two soliton species provide for the energy minimum, simply because the other solitons,
(182) , (187), (192), and (193) do not exist at ν = −1.

For ν = +1 and −1 < a < 0, i.e., attractive spin-independent and repulsive spin-exchange interactions in Eqs. (177),
Hamiltonian (195) is smaller than the competing one (180), which means that the two-component polar soliton (187)
plays the role of the ground state in this case, as only it, among all the polar solitons whose Hamiltonian is given by
expression (195), is dynamically stable in direct simulations (for −1 < a < +1, see above). As the FM soliton (179) and
hree-component polar one (194) also exist and are stable in this region, but correspond to greater energy, they represent
etastable states here. Finally, for ν = +1 and a < −1, there are no stable solitons.
Dependence N(µ) for each solution family provides an additional characteristic of the soliton stability. Indeed, the

well-known known Vakhitovi–Kolokolov criterion [144,157] states that a necessary stability condition for the soliton
family supported by a self-attractive nonlinearity is dM/dµ < 0. It guarantees that the soliton cannot be unstable against
perturbations with real eigenvalues, but does not say anything about oscillatory perturbations modes appertaining to
complex eigenvalues. Obviously, both relations, given by Eqs. (180) and (195), satisfy the criterion, i.e., solitons may be
unstable only against perturbations that grow in time with oscillations. Indeed, numerical results which illustrate the
evolution of unstable solitons, see Figs. 34–37, clearly suggest that the instability, if any, is oscillatory.

7.2.6. Finite-background solitons
In special cases, it is possible to find analytical solutions for solitons sitting on a CW background. Namely, for ν = 1

and a = −1/2, one can find a two-component polar soliton with a CW background attached to it, in the following form:

φ0 = 0,

φ+1 =
√

−µ

[
1

√
2

±
1

cosh
(√

−µx
)] exp (−iµt) , (196)

φ−1 =
√

−µ

[
1

√
2

∓
1

cosh
(√

−µx
)] exp (−iµt) .

For ν = a = 1, it is also possible to find a three-component polar solution with the background,

φ+1 = φ−1 =
1
2
√

−µ

[
1

√
2

±
1

cosh
(√

−µx
)] exp (−iµt) ,

(197)

φ0 =
1
2
√

−µ

[
1

√
2

∓
1

cosh
(√

−µx
)] exp (−iµt) .

The stability of solutions (196) and (197) was tested by simultaneously perturbing the φ0 and φ±1 components by small
niformly distributed random perturbations. Figs. 39 and 40 show that both solutions are unstable, although the character
f the instability is different: in the former case, the soliton’s core seems stable, while the CW background appears to be
odulationally unstable. In the latter case, which is shown in Fig. 40, the background is modulationally stable, but the
ore of the soliton (197) clearly features oscillatory instability.
MI of the CW background in solution (196) is obvious, as, even without exciting the φ0 field, i.e., in the framework of the

educed Eqs. (177), with ν+ a = 1/2 and ν− a = 3/2, any CW solution is subject to MI. As concerns the excitation of the
0 field, an elementary consideration shows that the CW part of solution (196) exactly corresponds to the threshold of the
arametric instability driven by term 2aφ+1φ −1 φ

∗

0 in the last equation of system (172). Actually, Fig. 39 demonstrates that
he parametric instability sets in, which is explained by a conjecture that the initial development of the above-mentioned
I, that does not involve the φ field, drives the perturbed system across the threshold of the parametric instability.
0
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Fig. 39. The evolution of the two-component polar soliton on the CW background, given by Eq. (196), under the action of initial random perturbations
dded to the φ0 and φ±1 components. Parameters are ν = +1, q = −1/2, and µ = −1.

Source: The results reproduced from Ref. [150].

Fig. 40. The same as in Fig. 39, but for the finite-background soliton (197). Parameters are ν = a = 1 and µ = −0.36.
Source: The results are reproduced from Ref. [150].

7.3. The Darboux transform (DT) and nonlinear development of MI

The integrable case, with ν = a = 1, which corresponds to the attractive interactions, makes it possible to develop
deeper analysis of MI. As mentioned above, the spinor BEC obeys the integrability condition if a special but physically
possible constraint (178) is imposed on the scattering lengths of collisions between atoms. Then, Eqs. (172) can be
rewritten as a 2 × 2 matrix NLS equation

i
∂Q
∂t

+
∂2Q
∂x2

+ 2QQ†Q = 0, Q ≡

(
φ+1 φ0
φ0 φ−1

)
, (198)

which is a completely integrable system [156]. DT for Eqs. (198) can be derived from the respective Lax pair, which
is [156,158]

∂Ψ

∂x
= UΨ ,

∂Ψ

∂t
= VΨ . (199)

Here U = λJ + P and V = 2iλ2J + 2iλP + iW, with

J =

(
I 0
0 −I

)
, P =

(
0 Q

−Q† 0

)
, (200a)

W =

(
QQ† ∂

∂xQ
∂
∂xQ

†
−Q†Q

)
, (200b)

here I and 0 denote the unit and zero matrices, Ψ = (Ψ 1,Ψ 2)
T is the matrix eigenfunction corresponding to λ, Ψ 1

nd Ψ 2 are 2 × 2 matrices, and λ is the spectral parameter. Accordingly, Eq. (198) is tantamount to the compatibility
ondition of the overdetermined linear system (199), ∂U/∂r − ∂V/∂x + UV − VU = 0.
Based on the Lax pair (199), one introduces a transformation in the form of

Ψ̃ = (λ− S)Ψ , S = DΛD−1, Λ =

(
λ1I 0
0 λ1I

)
, (201)

here D is a nonsingular matrix satisfying equation ∂D/∂x = JDΛ + PD. Further, letting

∂Ψ̃
= ŨΨ , Ũ = λJ + P1, P1 ≡

(
0 Q1

†

)
, (202)
∂x −Q1 0
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P1 = P + JS − SJ. (203)

ne can also verify the following involution property of the linear equations written above: if Ψ = (Ψ 1,Ψ 2)
T is an

eigenfunction corresponding to λ, where Ψ j are 2 × 2 matrices, then
(
−Ψ∗

2,Ψ
∗

1

)T is an eigenfunction corresponding to
−λ∗. Thus one can take D as

D =

(
Ψ 1 −Ψ∗

2
Ψ 2 Ψ∗

1

)
, Λ =

(
λI 0
0 −λ∗I

)
, (204)

to obtain

S = λ

(
I 0
0 I

)
+
(
λ+ λ∗

) ( −S11 S12
S21 −S22

)
, (205)

where the matrix elements of S are given by

S11 =

(
I + Ψ 1Ψ

−1
2 Ψ∗

1Ψ
∗
−1

2

)−1
, S12 =

(
Ψ 2Ψ

−1
1 + Ψ∗

1Ψ
∗
−1

2

)−1
, (206)

S21 =

(
Ψ∗

2Ψ
∗
−1

1 + Ψ 1Ψ
−1
2

)−1
, S22 =

(
I + Ψ 2Ψ

−1
1 Ψ∗

2Ψ
∗
−1

1

)−1
. (207)

Finally, DT for Eq. (198) follows from Eq. (203), taking the form of

Q1 = Q+2
(
λ+ λ∗

)
S12. (208)

From Eqs. (199) and (208) it can be deduced that Eq. (208) generates a new solution Q1 for Eq. (211a), once seed solution
Q is known. In particular, a one-soliton solution can be generated if the seed is a trivial zero state. Next, taking Q1 as the
new seed solution, one can derive from Eq. (208) the corresponding two-soliton solution. The procedure can be continued
to generate multisoliton solutions.

In what follows, solutions to Eq. (198) are considered under nonzero boundary conditions. The simplest among them
is the CW solution with constant densities:

Qc = −Ac exp [iϕc ] , Ac ≡

(
βc αc
αc −βc

)
, ϕc ≡ kx +

[
2
(
α2
c + β2

c

)
− k2

]
t, (209)

where αc and βc are real constants and k is a wave number. In this solution, the constant densities of components φ±1
are equal, while their signs are opposite.

Applying the above DT to the CW solution Qc , solving Eqs. (199) for this case, and employing Eq. (208), one obtains a
new family of solutions of Eq. (198), in the form of

Q1 =

[
Ac + 4ξ

(
I + AA∗

)−1 A
]
exp (iϕc) . (210)

Here the following definitions are used:

A =
[
Π exp (θ − iϕ)+ κ−1Ac

] [
κ−1AcΠ exp (θ − iϕ)+ I

]−1
, (211a)

θ = MIx + [2ξMR − (k + 2η)MI ] t, (211b)
ϕ = MRx − [2ξMI + (k + 2η)MR] , (211c)

M =

√
(k + 2iλ)2 + 4

(
α2
c + β2

c

)
= MR + iMI , (211d)

where κ ≡
1
2 (ik − 2λ+ iM), λ = ξ + iη is the spectral parameter, and Π =

(
β α

α γ

)
is an arbitrary complex

symmetric matrix. Solution (210) reduces back to CW (209) when ξ = 0. Note that the three-component polar soliton
(197), considered in the previous subsection, is not a special example of solution (210), because the background fields in
components φ±1 in solution (197) have identical signs.

In particular, with zero background, Ac = O, Eq. (210) yields a soliton solution:

Q1 =
4ξ
[
Π 1 exp (−θ1)+

(
σyΠ ∗

1σ
y
)
exp (θs) detΠ 1

]
exp (−2θs)+ 1 + exp (2θs) |detΠ 1|

2 exp (iϕs) , (212)

here θs = 2ξ (x − 4ηt) − θ0, ϕs = 2ηx + 4
(
ξ 2 − η2

)
t , θ0 is an arbitrary real constant which determines the initial

position of the soliton, σy is the Pauli matrix, and Π 1 is the polarization matrix [159],

Π 1 =
(
2 |α|

2
+ |β|

2
+ |γ |

2)−1/2
Π ≡

(
β1 α1

)
. (213)
α1 γ1
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Fig. 41. The nonlinear development of the modulation instability, as per exact solution (210), under conditions k = 2η and α2
c +β2

c > ξ 2 . Parameters
are k = 0.6, η = 0.3, ξ = 1, α = β = γ = exp (−8), αc = 1.2, and βc = 0.
ource: The results are reproduced from Ref. [150].

Solitons (212) are tantamount to ones found in Ref. [159], where they were classified into the above-mentioned types,
iz., the FM and polar ones. Indeed, one can see from expression (212) that, when detΠ 1 = 0, soliton (212) represents
FM state. However, when detΠ 1 ̸= 0, solution (212) may have two peaks, corresponding to a polar state.
Another relevant example of exact solutions (210) describes the onset and nonlinear development of MI of CW states.

t can be obtained by noting that, under conditions k = 2η and α2
cM β2

c Mξ
2, Eq. (211d) yields MI = 0, hence there is no

dependence on x in expression (211b), and the solution features no localization. Instead, it is periodic in x, through the x
dependence of ϕ, as given by Eq. (211c); in this connection, note that

M2
R = 4

(
α2
c + β2

c

)
− 4ξ 2 (214)

does not vanish when MI = 0. This spatially periodic state represents a particular mode of the nonlinear development
of MI, in the exact form. To look at it in detail, one can take a special case with Π = ϵE, where E is a matrix with all
elements equal to 1, and ϵ is a small amplitude of the initial perturbation added to the CW background, with the aim to
initiate the onset of MI. Indeed, the linearization of the initial profile of solution (210) with respect to ϵ yields

Q1(x, 0) ≈
[
Acρ − ϵχ1E cos (MRx)− ϵχ2σ

zσxAc exp (iMRx)
]
exp (ikx) , (215)

where ρ ≡ 1 − ξ (2ξ + iMR) /
(
α2
c + β2

c

)
with |ρ| = 1, χ1 ≡ ξMR (2iξ − MR) /

(
α2
c + β2

c

)
, χ2 ≡ βcχ1/

(
α2
c + β2

c

)
,

MR = 2
√
α2
c + β2

c − ξ 2, and σx,z are the Pauli matrices. Clearly, the first term in Eq. (215) represents the CW background,
hile the second and third ones are small spatially modulated perturbations.
Comparing exact solution (210), obtained in this special case, with results of direct numerical simulations of

qs. (203) with the initial condition (215), one can verify that the numerical solution is very close to the analytical one,
oth displaying the development of the MI initiated by the small modulational perturbation in expression (215) (not
hown here). Fig. 41 displays the solution in terms of densities of the three components, as provided by exact result
210). From this picture one concludes that atoms are periodically transferred, in the spinor BEC, from the spin state
F = 0 into ones mF = ±1 and vice versa.
As said above, exact solution (210) of Eqs. (172) is only valid under the special condition a = 1 (i.e., 2g0 = −g2). In the

general case (a ̸= 1), the onset of the MI can be analyzed directly from Eqs. (172) linearized for small perturbations [160].
To this end, take the CW solution (209) with k = 0, which can be fixed by means of the Galilean transformation, and
consider its perturbed version

Q̃ = (Ac + B) exp
[
2iν

(
α2
c + β2

c

)
t
]
, B =

(
b+1(x, t) b0(x, t)
b0(x, t) b−1(x, t)

)
, (216)

where b±1 and b0 are weak perturbations. Substituting this expression in Eqs. (172), linearizing them, and looking for
perturbation eigenmodes in the usual form,

bj(x, t) = bjR cos (Kx − ωt)+ ibjI sin (Kx − ωt) , j = +1,−1, 0, (217)

where bjR,I are real amplitudes, the BdG equations give rise to two branches of the dispersion relation between wave
number K and frequency ω of the perturbation,

ω2
= K 2 (K 2

− 4aα2
c − 4aβ2

c

)
, (218a)

ω2
= K 2 (K 2

− 4να2
c − 4νβ2

c

)
. (218b)

The MI sets in when ω2 given by either expression ceases to be real and positive. Obviously, this happens if, at least,
one condition

K 2 < 4a
(
α2
c + β2

c

)
, K 2 < 4ν

(
α2
c + β2

c

)
(219)

holds. Note that these conditions agree with the above exact result, which corresponds to a = ν = 1. Indeed, in that
case one may identify K ≡ M , according to Eq. (215), and then Eq. (214) entails constraint M2 < 4

(
α2

+ β2
)
, which
R R c c
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Fig. 42. The evolution of the density distribution in the soliton, as obtained from solution (210) by adding a random time-dependent perturbation
of the nonlinear-coupling constant a, with the perturbation amplitude ±5%. Parameters are ν = a = 1 (as concerns the unperturbed value of a),
ξ = 1, η = −0.03, and θ0 = 0. (a) The FM soliton, with α1 = 0.48, β1 and γ1 determined by conditions α2

1 = β1γ1 and 2 |α1|
2
+ |β1|

2
+ |γ1|

2
= 1;

(b) the polar soliton, with α1 = 0.53 and β1 = 0.43, γ1 being determined by condition 2 |α1|
2

+ |β1|
2

+ |γ1|
2

= 1. Solid and dotted curves show,
respectively, the exact solutions and the perturbed ones, produced by numerical simulations.
Source: The results are reproduced from Ref. [150].

is identical to conditions (219). Note that the MI may occur in the case of the repulsive spin-independent interactions
in Eqs. (172), i.e., for ν = −1, provided that the nonlinear-coupling constant a, which accounts for the strength of the
spin-dependent interaction, is positive.

The stability of the soliton solutions (212) was explored too, of both the polar and FM types, against finite random
variations of the coupling constant a in time. The issue is relevant, as the exact solutions are only available for a = 1;
hence, it is necessary to understand if the solitons survive random deviations of a from this value corresponding to
the integrability. Physically, this situation may correspond to a case when the scattering length, which determines the
nonlinear coefficient a in Eqs. (172), follows random variations of an external magnetic or laser field which affects the
scattering length through FR. The evolution of the density profiles in the thus perturbed solitons is displayed in Fig. 42.
This figure demonstrates that the solitons of both the FM and polar types are robust against random changes of a, once
they are dynamically stable as exact solutions to the integrable version of the model. Note also that the FM soliton seems
more robust than its polar counterpart.

7.4. Conclusion of the section

Soliton states have been presented in the model based on the coupled GP equations describing the dynamics of spinor
BEC with atomic spin F = 1. In the general nonintegrable version of the model, several types of elementary exact soliton
solutions are reported, which include one, two, or three components, and represent either polar or FM solitons. Their
stability is checked by direct simulations and, in some cases, in an exact analytical form, based on BdG equations for
small perturbations. The global stability of the solitons is analyzed by comparing the respective values of the energy for
a fixed norm. As the main result, stable ground-state solitons of the polar and FM types have been found. Metastable
solitons coexisting with the ground-state ones are possible too, in certain parameter regions.

In the special case of the integrable spinor-BEC model [156], DT has been introduced and applied to derive a family
of exact solutions on top of the CW background. This family includes a solution that explicitly displays full nonlinear
evolution of the MI of the CW state, seeded by a small spatially periodic perturbation. Robustness of one-soliton solutions
of both the FM and polar types against finite perturbations of the coupling constant (deviations from the integrability)
has been verified by means of direct simulations.

8. Soliton dynamics in one-dimensional spin–orbit-coupled BEC

This section deals with motion of matter-wave solitons in 1D spin–orbit-coupled (SOC) BEC. It is demonstrated that
the spin dynamics of solitons in this system is governed by a nonlinear Bloch equation, which affects the orbital motion
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f solitons, leading to SOC effects in the motion of macroscopic quantum objects. The solitons perform oscillations with
frequency determined by the interplay of SOC, Raman coupling, and intrinsic nonlinearity [161]. Analytical predictions
re corroborated by numerical simulations of the underlying system of GP equations.
Results collected in this section are based on Ref. [161].

.1. The model

In the presence of SOC, the dynamics of quasi-1D BEC, elongated in the direction of z, is modeled by the GP equation
for the pseudo-spinor mean-field wave function,

i
∂

∂t

(
ψ↑

ψ↓

)
= ĥ0

(
ψ↑

ψ↓

)
+

(
g↑↑

⏐⏐ψ↑

⏐⏐2 g↑↓

⏐⏐ψ↓

⏐⏐2
g↓↑

⏐⏐ψ↑

⏐⏐2 g↓↓

⏐⏐ψ↓

⏐⏐2
)(

ψ↑

ψ↓

)
, (220)

here ψσ are pseudospin components, with σ =↑,↓ labeling the spin states. These can represent, for instance, the
yperfine states |1,−1⟩ and |1, 0⟩ of 87Rb atoms [162–164]. Here,

ĥ0 = −
1
2
∂2

∂z2
+ V (z) + iλ

∂σz

∂z
+Ωσx + δσz (221)

is the single-particle Hamiltonian which includes the Raman-induced SOC with frequencyΩ and strength λ, while δ is the
eeman detuning. Further, V (z) = γ 2z2/2 is the 1D HO trapping potential with aspect ratio γ ≡ ωz/ω⊥, where ωz and ω⊥

re the trapping frequencies along the longitudinal and transverse directions, respectively. The frequencies and lengths
re measured here in units ω⊥ and a⊥ =

√
ℏ/(mω⊥), respectively, and the SOC strength is λ = kLa⊥, with kL being the

omentum transfer. Note that, as the scattering lengths characterizing the inter- and intra-species atomic interactions are
ery close in the experiment, it is reasonable to assume SU(2)-symmetric spin interactions, with all strengths gσσ ′ taking
single value, g . To focus on SOC effects in the dynamics of solitons, the free space is considered first, while effects of

he external trap are discussed afterwards. Note that the SOC term ∼ λ in Eq. (221) breaks the Galilean invariance of the
ystem of GP Eqs. (220) in the free space (although the total momentum remains a dynamical invariant). The latter fact
akes mobility of solitons in the SOC system a nontrivial issue, which is a particular motivation for studying them.
For λ = Ω = 0, the system reduces to the normal binary BEC without SOC. In this case, Eq. (220) with gσσ ′ ≡ g is the in-

egrable Manakov’s system [77]. In particular, it produces bright–bright solitons ψσ = ηϵσ
[√

−g cosh (ηz)
]−1 exp

(
iη2t/2

)
for the attractive sign of the nonlinearity, g < 0, where η−1 is the soliton’s width, and |ϵ↑|

2
+|ϵ↓|

2
= −g/(2η). Such exact

soliton solutions may be naturally used as an initial wave function, while SOC is switched on. Note that the effective
single-particle Hamiltonian (221) can be rewritten in the frame transformed by the local pseudospin rotation with angle
ϑ = 2λz about the z axis. The transformation adds phase factors exp (±iλz) to the two components of the wave function.

8.2. Approximate analytical results (variational approximation)

The full GP system (220) is not integrable. Therefore, it is relevant to employ VA for the analysis of the soliton
dynamics [109,161] , making use of the Lagrangian

L =

∫
+∞

−∞

⎧⎨⎩ i
2

∑
σ=↑,↓

[
ψ∗

σ (ψσ )t − ψσ (ψ∗

σ )t
]
− H

⎫⎬⎭ dz, (222)

here H is the Hamiltonian density of system (220). In the case of the attractive nonlinearity, g < 0, the following
ariational ansatz for bright–bright solitons, with the total norm fixed to be 1, was introduced in Ref. [161]:(

ψ↑

ψ↓

)
=

√
η

2

(
sin θ cosh−1 (ηz + ξ) exp

[
i
(
k↑z + ϕ↑

)]
cos θ cosh−1 (ηz + ξ) exp

[
i
(
k↓z + ϕ↓

)] ) , (223)

here θ , η, ξ , kσ , ϕσ are time-dependent variational parameters. Here, θ determines the population imbalance between
he pseudospin components, η−1 defines their common width, kσ is the wave number, and ϕσ the phase.

Inserting ansatz (223) into the Lagrangian and performing the integration, one obtains the effective Lagrangian,

L =
ξ

η

dk+

dt
−
ξ

η
cos (2θ)

dk−

dt
−

dϕ+

dt
+ cos (2θ)

dϕ−

dt

−
1
2

[
k2
+

− 2k+k− cos (2θ)+ k2
−

]
−

1
6
η2 −

1
6
gη

−
Ωπk− sin (2θ) cos (2ϕ− − 2k−ξ/η)

η sinh (πk−/η)
(224)

+δ cos 2θ − λ [k cos 2θ − k ] ,
( ) + ( ) −

53



E. Kengne, W.-M. Liu and B.A. Malomed Physics Reports 899 (2021) 1–62

w
c

H

w

T
S
m

y
b

w
e
c

w

w
o
o

here k± ≡ (1/2)(k↑ ± k↓) and ϕ± ≡ (1/2)(ϕ↑ ± ϕ↓). The evolution of the variational parameters is governed by the
orresponding Euler-Lagrangian equations. These equations produce simple results, η ≈ −g/2 and k− ≈ λ, in the case of
a weak SOC, πλ ≪ η. Indeed, in the absence of SOC, relation η = −g/2 holds for the normalized wave function, indicating
that the width of the solitons is determined by the nonlinearity, and k− remains equal to the initial relative momentum
λ between the components of the soliton. As a result, one arrives at a reduced system of dynamical equations, in which
η and k− are considered as frozen quantities:

d
dt

k+ = 2̃λ sin (2θ) sinφ, (225a)

d
dt
φ = −2Ω̃ cot (2θ) cosφ + 2λk+ − 2δ, (225b)

d
dt
θ = −Ω̃ sinφ, (225c)

d
dt

⟨z⟩ = k+. (225d)

ere, ⟨z⟩ =
∫

+∞

−∞
z(|ψ↑|

2
+ |ψ↓|

2)dz ≡ −ξ/η is the center-of-mass coordinate, Ω̃ ≡ πλ/[η sinh (πλ/η)], and φ ≡

2ϕ−+2k−⟨z⟩ is the phase difference between the two components of the soliton. Thus, Eqs. (225a)–(225d) account for the
dynamical coupling of the center-of-mass momentum k+, phase difference φ, population imbalance θ , and center-of-mass
coordinate ⟨z⟩.

Next, introduce a normalized complex-valued spinor χ = (χ↑, χ↓) proportional to the two-component wave function,
as ψσ =

√
ρ(z, t)χσ , where ρ ≡ |ψ↑|

2
+ |ψ↓|

2 is the total density, hence χ is subject to normalization |χ↑|
2
+ |χ↓|

2
= 1.

Then, one defines spin density S = χ Tσχ , where σ ≡ {σx, σy, σz} is the vector set of the Pauli matrices, and one has

{Sx, Sy, Sz} = {sin (2θ) cos (2λz + 2ϕ−) ,− sin (2θ) sin (2λz + 2ϕ−) ,− cos (2θ)} (226)

for the ansatz given by Eq. (223). Focusing the consideration on the center-of-mass motion of the soliton, by setting
z = ⟨z⟩ = −ξ/η, the evolution of the atomic spin at the soliton’s center-of-mass is governed by the following equations:

d
dt

Sx = 2(λc1 − δ)Sy − 2λ2SzSy, (227a)

d
dt

Sy = −2Ω̃Sz − 2(λc1 − δ)Sx + 2λ2SzSx, (227b)

d
dt

Sz = 2Ω̃Sy, (227c)

here c1 ≡ λSz,0, with Sα,0 (α = x, y, z) being initial values of the components. These equations of motion for the soliton’s
spin can be rewritten as

d
dt

S = S × Beff, Beff = {2Ω̃, 0, 2λ2Sz − 2(λc1 − δ)}. (228)

his is the Bloch equation for the spin precession under the action of the effective magnetic field, Beff. The macroscopic
OC for the soliton as a quantum body is exhibited by the effect of the evolution of the spin on the soliton’s longitudinal
omentum, resulting in coupled nonlinear dynamics of the soliton’s spin and position.
To construct solutions of the nonlinear Bloch equation, one first integrates Eq. (227a), dividing it by Eq. (227c). This

ields Sx = c2−(λ2/2)Ω̃−1S2z +(c1λ−δ)Ω̃−1Sz , where c2 ≡ Sx,0+(δ−c1λ)Ω̃−1Sz,0+(λ2/2)Ω̃−1S2z,0 is a constant determined
y the initial conditions. Next, the analysis focuses on the case of

δ = c1λ, (229)

hich implies a particular relation between the strengths of the Zeeman splitting and SOC, making the analysis more
xplicit. By differentiating Eq. (227c), one arrives at a standard equation for anharmonic oscillations for the single spin
omponent Sz ,

d2Sz
dt2

+ΞSz + 2λ4S3z = 0, (230)

here Ξ ≡ 4Ω̃(Ω̃ − c2λ2) may be positive or negative. Eq. (230) has a usual solution,

Sz(t) =

√
1 −Ξτ 2

2λ2τ
cn (t/τ , k) , k2 =

1
2

(
1 −Ξτ 2

)
, (231)

here cn is the Jacobi’s cosine with modulus k, and τ is an arbitrary parameter taking values τ < 1/
√

|Ξ |. In the case
f Ξ > 0, the linearized version of Eq. (230), which corresponds to τ → 1/

√
|Ξ | in Eq. (231), gives rise to free Rabi

scillations with frequency
√

|Ξ |. In the general case, the frequency given by solution (231), ω = π/[2τK (k)], where
osc
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Fig. 43. The track of the motion of the spin density on the Bloch sphere (a), and the corresponding evolution of the spin components (b) and
center-of-mass coordinate (c) of the soliton for the initially balanced state, with θ (t = 0) = π/4, and initial phase difference ϕ−(t = 0) = π/4, see
q. (223). Other parameters are Ω = 0.5, λ = 0.5

√
Ω , δ = 0, and g = −10. z and t being measured in units of a⊥ and ω−1

⊥
.

ource: The results are reproduced from Ref. [161].

(k) is the complete elliptic integral, exceeds
√

|Ξ | due to the nonlinear shift. Note also that the nonlinearity may give
rise to oscillations in the case of Ξ < 0, when the Rabi oscillations are impossible.

Further, in the spin representation, Eq. (225a) can be written as dk+/dt = −2λΩ̃Sy, which accounts for the feedback
f the evolution of the spin on the center-of-mass momentum (this effect makes the SOC system essentially different
rom others considered in the present review). This leads to the following equation of motion for the center-of-mass
oordinate:

d2⟨z⟩
dt2

= −2λΩ̃Sy. (232)

n other words, if one considers the soliton as a macroscopic quantum body carrying the intrinsic angular momentum,
q. (232) represents the driving force, exerted by the intrinsic momentum and acting on the linear momentum. This is,
iterally, a macroscopic realization of SOC. It is relevant to stress that the mechanism of the soliton’s motion is definitely
ifferent from the conventional collective dipole oscillations of BEC in the HO trap. Indeed, in the present case the SOC-
nduced force which drives the motion of the soliton is the spin precession, rather than the force defined by the external
otential.
To illustrate the soliton dynamics in detail, Fig. 44 displays numerical solutions of Eqs. (227a)–(227c) and (232), with

nitially balanced populations in the two components, which correspond to θ (t = 0) = π/4 and ϕ−(t = 0) = π/4.
First, Fig. 43(a) shows that the soliton’s spin moves along a closed orbit on the Bloch sphere. Accordingly, perfect
periodic oscillations of the spin, coupled to the periodic motion of the soliton’s central coordinate, are observed in
Figs. 43(b) and (c), respectively. In particular, for weaker SOC, the center-of-mass oscillations can be approximated by
⟨z⟩ ≃

(
λ/Ω̃

)
sin2 (Ω̃t

)
with amplitude λ/Ω̃ and period π/Ω̃ , which depend on the strengths of SOC, Raman coupling,

nd intrinsic BEC nonlinearity.

.3. Numerical results

To test the predictions of VA (i.e., effectively quasi-particle approximation for the motion of the soliton), the system
f coupled GP Eqs. (220) was solved numerically in Ref. [161], with the input in the form of the bright–bright soliton,

ψ↑ =

√
η/2(sin θ0) cosh−1 (ηz) exp

[
i(λz + ϕ↑,0)

]
(233)

ψ↓ =

√
η/2 (cos θ0) cosh−1 (ηz) exp

[
i(−λz + ϕ↓,0)

]
. (234)

n Figs. 44(a-c), the density of the soliton’s components exhibits robust periodic oscillations, and the soliton maintains its
nitial hyperbolic-secant profile in the course of many oscillation cycles. Note that, although the initial momenta of the
wo components are opposite, the soliton does not split. Figs. 44(d) and (e) show that results of VA agree very well with
he direct GP simulations. For weaker nonlinearity, the simulations show that solitons decay under the action of SOC for
λ/η > (πλ/η)c ≈ 0.4, as shown in Figs. 44(f) and (g). Furthermore, when condition (229) does not hold, it is found
hat, besides the SOC-driven oscillations, the soliton exhibits additional linear motion, as can be found, in particular, by
imulations for the initially polarized state with θ (t = 0) = π/2 (not shown here in detail).
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Fig. 44. (a–c) The evolution of the density in the two components of the soliton, produced by simulations of Eq. (220) for the initially balanced state
with θ (t = 0) = π/4 and ϕ−(t = 0) = π/4. The parameters are Ω = 0.5, λ = 0.5

√
Ω , δ = 0, and g = −10. The spin dynamics and center-of-mass

otion of the soliton, generated by these simulations (circles), and by VA based on Eqs. (227a)–(232) and (227c) (solid lines), are depicted in panels
d) and (e). Panels (f) and (g) display decay of the soliton in the case of a weaker atomic interaction, g = −3.
ource: The results are reproduced from Ref. [161].

Next the case of the repulsive BEC nonlinearity is addressed, which is more relevant to current experiments with SOC
ondensates [162,165]. In this case, the following variational ansatz can be used for dark–dark solitons:(

ψ↑

ψ↓

)
=

√
η

2

(
(sin θ) tanh (ηz + ξ) exp

(
k↑z + ϕ↑

)
(cos θ) tanh (ηz + ξ) exp

(
k↓z + ϕ↓

) ) , (235)

f. Eqs. (233) and (234). Inserting ansatz (235) into the Lagrangian, one needs to renormalize the integrals, so as to exclude
ivergent contributions of the nonvanishing background. The analysis yields the same Euler–Lagrange equations as Eqs.
225b)–(225d), but with η = g/2 for repulsive g > 0. The corresponding direct simulations of the GP system were
erformed in Ref. [161] with initial conditions corresponding to the dark–dark soliton,

ψ↑ =

√
η/2(sin θ0 sin) tanh (ηz) exp

[
i(λz + ϕ↑,0)

]
, (236)

ψ↓ =

√
η/2(cos θ0) tanh (ηz) exp

[
i(−λz + ϕ↓,0)

]
. (237)

he results are displayed in Fig. 45, where the dark–dark soliton performs oscillations similar to those displayed above in
he case of the bright-bright soliton. Note that the two components of the background alternately disappear and revive,
s seen in Figs. 45(a) and (b).
In the experiment, the condensate is trapped in an HO potential, V (z) = γ 2z2/2, which affects the motion of solitons.

In this case, the Euler–Lagrange equations for variational parameters k+ and ξ are modified to

d
dt

k+ = −2λΩ̃Sy +
γ 2

η
ξ,

d
dt
ξ = −k+η, (238)

ith η satisfying equation 4η4 + 2gη3 = π2γ 2, cf. Eqs. (225a)–(225d). Accordingly, the center-of-mass motion acquires
n additional trap-induced term,

d2

dt2
⟨z⟩ + γ 2

⟨z⟩ = −2λΩ̃Sy, (239)

hich gives rise to additional collective oscillations with period ≃ 2π/γ , as shown in Fig. 46. For a weak trap, the period
f the oscillations and the characteristic length scale are much larger than the period and amplitude of the SOC-driven
scillations, therefore the SOC-driven oscillations of the soliton are not conspicuously affected by the trap. Similar results
re also produced by the simulations for a dark soliton in the HO trap (oscillations of a trapped single-component dark
oliton, in the absence of SOC, were studied in work [166]).
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Fig. 45. The same as in panels (a)–(e) of Fig. 44, but for the dark soliton, in the case of g = 10.
Source: The results are reproduced from Ref. [161].

Fig. 46. Dynamics of bright–bright solitons in the trapping potential, see Eqs. (238) and (239), with γ = 0.1, the other parameters being the same
s in Fig. 44.
ource: The results are reproduced from Ref. [161].

Finally, it is relevant to briefly discuss conditions for the experimental realization of the predicted dynamical regimes.
he Raman-induced SOC has been realized for BEC in the 87Rb gas with repulsive atomic interactions. Typically, an
longated condensate of ∼ 104 atoms is trapped in a weak HO trap with frequencies ω⊥ = 2π×85 Hz and ωz = 2π×5.9

Hz, and the ratio of the scattering lengths is a↑↑ : a↑↓ : a↓↓ = 1 : 1 : 1.005. In this case, a stationary dark–dark soliton
ith width ∼ 0.5 µm can be created at the center of the condensate by means of PIT [101]. Then two 804.1 nm Raman

asers with intersection angle 20◦ are used to induce weak SOC. With the above parameters, the period and amplitude
f the SOC-driven oscillations of the dark–dark soliton are about 11 ms and 2 µm, respectively, which may be further
djusted by varying strengths of the SOC, Raman coupling, and atomic interaction. These estimates clearly suggest that
he SOC-driven oscillations can be experimentally observed under available experimental conditions.

.4. Conclusion of the section

In conclusion, it has been shown in this section that the interplay of SOC, Raman coupling, and intrinsic nonlinearity
n quasi-1D BEC may realize the mechanism of macroscopic SOC, in the form of a mechanical motion of bright and dark
olitons, considered as macroscopic quantum bodies. The soliton’s angular momentum (spin) evolves according to the
loch equation under the action of an effective magnetic field, and induces a force affecting the motion of the soliton’s
entral coordinate. The results have been obtained by means of VA and numerical simulations, which demonstrate very
ood agreement. These findings suggest directions for experimental studies of the motion of matter-wave solitons under
he action of SOC.
57
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. Conclusion of the article

Theoretical and experimental work focused on solitons and other nonlinear modes in BEC and similar physical settings
in particular, nonlinear optics) subject to the temporal, spatial, and spatiotemporal “management”, has grown into a
ast research area. In terms of the theory, the central theme is analytical and numerical investigation of the dynamics
f solitons and other modes in the framework of the underlying models (chiefly, NLS and GP equations, as well as
ulticomponent systems of coupled equations), in which coefficients in front of specific linear and nonlinear terms are
ade functions of time and/or spatial coordinates. Well-known examples are the dispersion management in optics and
onlinearity management in BEC. In this context, basic subjects of the theoretical studies are the existence and stability of
olitons and extended nonlinear states in this class of models. In particular, an important direction is search for nontrivial
odels which may be transformed into well-known integrable equations with constant coefficients, such as the 1D cubic
LS equation and the Manakov’s system. Then, by means of the inverse transformation, one can produce a vast set of
xact stable solutions in the original models, using, as inputs, well-known exact solutions of the integrable equations.
earch for robust solitons in nonintegrable systems is a still more challenging direction, which has also yielded many
ontrivial results. These findings are summarized in the present review. Also included are theoretical results obtained in
ome other models, which, strictly speaking, do not include spatiotemporal modulation, but the methods and findings
laborated for such models are closely related to those produced in models which explicitly include the spatiotemporal
management”. Particular results, which are collected in the article, are summarized in detail in concluding subsections
ncluded in Sections 2–8.

The most essential point which should be stressed to conclude the review is that experimental findings lag far beyond
he theoretical predictions. Nevertheless, the remarkable progress in the development of experimental methods in realms
f matter waves in BEC, as well as in nonlinear optics, suggest that essential development of the experimental studies in
he areas outlined in the present review may be expected. In particular, many theoretical predictions, presented in this
eview, provide straightforward clues for the experiment.

As concerns further development of the theory, there are many interesting problems to be tackled. In particular, this
ay be the investigation of 2D and 3D solitons and similar objects, especially solitary vortices and more complex self-

rapped modes with an intrinsic topological structure, as well as studies of interactions between two or several solitons,
nd formation of multi-soliton bound states, in one- and multidimensional settings alike. The study of multidimensional
odels is most interesting in cases when they cannot be reduced, by means of exact or approximate factorization, to
D counterparts. As concerns interactions between solitons, they may yield most nontrivial results in models which are
ot tantamount to integrable equations, hence results of the interactions may be strongly different from familiar elastic
ollisions.
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