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Observation of critical phase transition in a generalized Aubry-
André-Harper model with superconducting circuits
Hao Li 1,2,9, Yong-Yi Wang 2,3,9, Yun-Hao Shi 2,3, Kaixuan Huang4,5, Xiaohui Song2, Gui-Han Liang2,3, Zheng-Yang Mei2,3,
Bozhen Zhou2,3, He Zhang2,3, Jia-Chi Zhang2,3, Shu Chen2, S. P. Zhao 2,3,6,7, Ye Tian2, Zhan-Ying Yang1,8, Zhongcheng Xiang2,3,4,5,6,7,
Kai Xu 2,3,4,5,6,7✉, Dongning Zheng 2,3,6,7✉ and Heng Fan 2,3,4,5,6,7✉

Quantum simulation enables study of many-body systems in non-equilibrium by mapping to a controllable quantum system,
providing a powerful tool for computational intractable problems. Here, using a programmable quantum processor with a chain of
10 superconducting qubits interacted through tunable couplers, we simulate the one-dimensional generalized Aubry-André-Harper
model for three different phases, i.e., extended, localized and critical phases. The properties of phase transitions and many-body
dynamics are studied in the presence of quasi-periodic modulations for both off-diagonal hopping coefficients and on-site
potentials of the model controlled respectively by adjusting strength of couplings and qubit frequencies. We observe the spin
transport for initial single- and multi-excitation states in different phases, and characterize phase transitions by experimentally
measuring dynamics of participation entropies. Our experimental results demonstrate that the recently developed tunable coupling
architecture of superconducting processor extends greatly the simulation realms for a wide variety of Hamiltonians, and can be
used to study various quantum and topological phenomena.

npj Quantum Information            (2023) 9:40 ; https://doi.org/10.1038/s41534-023-00712-w

INTRODUCTION
Using controllable quantum systems, quantum simulation pro-
vides a powerful approach to study many-body physics, which
might be challenging for a classical computer1,2. In analog
quantum simulation, specific model Hamiltonians can be directly
realized by engineering the platform Hamiltonians such that
dynamics of real quantum systems can be studied in a
controllable manner, such as in trapped ions3–5, atoms in optical
lattices6–9, superconducting qubits10–12, and nuclear spins13,14.
Particularly, superconducting quantum simulation can explore a
wide regime from localization to weak and strong thermalization
in non-equilibrium quantum many-body systems15–23.
On the other hand, the 1D Aubry-André-Harper (AAH)

model24,25, as a workhorse for studying localization and topolo-
gical states, has attracted much attention both theoretically and
experimentally16,26–36. The original AAH model can be derived
from a 2D quantum Hall system with nearest-neighbor hopping.
When considering the next-nearest-neighbor hopping, one can
deduce a generalization of the AAH model with both on-site and
off-diagonal quasi-periodic modulations37,38. The generalized AAH
(GAAH) model shows different and interesting localization and
topological properties, for instance, the critical phase featured by
multifractal wave functions and the topological adiabatic pump-
ing39–44. With the development of experimental technologies, the
GAAH model has been realized in photonic crystals with on-site or
off-diagonal modulation31, and cold atoms systems in momentum
space45, which observes the dynamics only at the single-particle
level (or the mean-field level). With flexible control and precise
measurement of superconducting processor, the GAAH model

may be simulated analogously, given off-diagonal quasi-periodic
modulations can be implemented precisely.
In our experiment, taking advantage of recently developed

tunable coupling architecture46,47, we simulate the GAAH model
for a wide variety of parameters on a superconducting processor .
By adjusting both qubits and couplers, we experimentally observe
the dynamics of the extended, localized, and critical phase in the
GAAH model, and investigate the phase transition from the
perspective of non-equilibrium many-body dynamics. We observe
that in the critical phase, the spin can propagate over a range
intermediate between that of the extended phase and of the
localized phase, for both initial single- and multi-excitation states.
In addition, we quantify how fast the initial states spread over the
Hilbert space for different phases by experimentally measuring
the time evolution of participation entropies, and characterize the
transitions between the extended, localized, and critical phase by
calculating averaged late-time participation entropies.

RESULTS
Model and set-up
Our quantum processor consists of a chain array of L= 10
transmon superconducting qubits, and 9 tunable couplers with
each placed between every two nearest-neighbor qubits, which
enable an accurate control of couplings (see Fig. 1a and
Supplementary Note 1 for details). The effective Hamiltonian of
the qubits system reads
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where σ̂þ
j ðσ̂�

j Þ is the raising (lowering) operator, hj is the tunable
local potential, and Jj,j+1 is the nearest-neighbor coupling
strength.
In our superconducting processor with tunable couplers, the

coupling Jj,j+1 contains two part: (i) direct coupling between
nearest-neighbor qubits J0j;jþ1 and (ii) superexchange interaction
via the coupler in between JSEj;jþ1 / 1=Δj;jþ1 with Δj,j+1 denoting
frequency detuning between the j-th coupler and the two nearest-
neighbor qubits (see Methods and Supplementary Note 1 for
details). Therefore, we can individually adjust the coupling by
controlling the frequency of the corresponding coupler with the
fast flux bias. In our processor, it allows a range of Jj,j+1/(2π)
from− 30 to+ 4.8 MHz. In addition, by applying the fast Z pulse
on each qubit, the local potential can also be arbitrarily tuned
relative to reference frequency ~ 4.36 GHz.
In the experiments, as depicted in Fig. 1b, we take a quasi-

periodic modulation Jj;jþ1 ¼ λ 1þ μ cos 2π j þ 1=2ð Þαþ δ½ �ð Þ and
hj ¼ λV cosð2πjαþ δÞ, where μ and V indicate the off-diagonal
and on-site modulation amplitudes, respectively. We manipulate μ
and V by applying the fast voltages to the corresponding Z control
lines of the coupler and qubit respectively, and we choose λ/
(2π)= 4 MHz throughout the work. Besides, α ¼ ð ffiffiffi

5
p � 1Þ=2 is the

irrational frequency which takes the same value for on-site and
off-diagonal modulations, and δ 2 �π; π½ Þ is an arbitrary global
phase offset.
For different parameters μ and V, localization property of the

eigenstates of Hamiltonian (1) can be characterized by the inverse
participation ratio (IPR)48–53. In Fig. 1c, we plot the single-particle
localization phase diagram of Hamiltonian (1). The heatmap shows
the negative logarithm of eigenstate’s IPR ¼ P

i ψn;i

�� ��4, where
ψn,i= 〈ψn∣i〉 is the wave function coefficient of the eigenstate ψnj i
on site i. Since mobility edges are absent in our model42, (i) for
V < 2, μ < 1, all bulk eigenstates are extended, denoted as the
extended phase, where the IPR vanishes and its negative
logarithm is close to log L; (ii) for V>2maxð1; μÞ, all bulk
eigenstates are localized with the IPR close to one and its
negative logarithm close to zero, denoted as the localized phase;
(iii) in the rest (μ>maxð1; V=2Þ), the eigenstates are critical with
intermediate IPRs, denoted as the critical phase.

Observation of spin transport in the GAAH model
First, we show that the GAAH model can be simulated with our
superconducting qubits in a tunable coupling architecture. The
experimental scheme is that three phases of the GAAH model
manifest distinguishing localization properties by measuring the
on-site population of spins for specific initial states. We initially
excite the leftmost qubit Q1, i.e., the system is initialized as
ψð0Þj i ¼ 1000000000j i, where 0j i ( 1j i) denotes the ground
(excited) state of a qubit. Then we apply the fast Z pulse on
each qubit and coupler, and the system will evolve under the
Hamiltonian (1). We measure the on-site population of each qubit
PjðtÞ ¼ hψðtÞjσ̂þ

j σ̂
�
j jψðtÞi from t= 0 to 500 ns. For each time point,

we perform 5000 repeated single-shot measurements.
The experimental results for the three phases are plotted in the

left panel of Fig. 2a–c, with a comparison of numerical simulations
in the right panel of Fig. 2a–c (see Supplementary Note 2 for
details of numerical simulations). In the extended phase, the spin
excitation spreads ballistically from an initially excited qubit to its
neighboring qubits and reflects at the boundary. The spin serving
as the carrier of the information propagates as light travels in
spacetime, referred to as lightcone-like propagation21, and it is still
visible when weak off-diagonal and on-site quasi-periodic disorder
exists, as shown in Fig. 2a. As the opposite, for sufficiently large
on-site disorder V, the spin is fully localized, and only initially
excited qubits have the population close to one at any time (Fig.
2c). In the critical region (Fig. 2b), the spin transport is not
completely blocked, but instead, the spin tends to oscillate around
adjacent sites of the initially excited qubit. The propagation range
in this phase is intermediate between the two aforementioned
phases, leading to a non-zero probability of finding spin
excitations even on the right half of the spin chain.
With the capability of precise simultaneous control and readout,

we can also prepare initial product states to probe the half-filled
sector. The experimental sequences are shown in Fig. 1d. Here, we
focus on an initial Néel state ψð0Þj i ¼ 1010101010j i. The
experimental and numerical results are plotted in Fig. 2d–f. As
shown in Fig. 2d, in the extended region, the mean population
oscillates around 0.5 at long times for all ten qubits with a small
fluctuation, showing a pattern of oscillation between odd and
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Fig. 1 Experimental setup. a Circuit diagram of the superconducting processor, consisting of ten transmon qubits, Q1–Q10, and nine couplers
C1–C9, each of which is placed between every two nearest-neighbor qubits. b Schematic representation of the GAAH model with both the on-
site and off-diagonal quasi-periodic modulations. The darkness of the double-headed arrows above the qubits indicates the variation of
nearest-neighbor coupling strength Ji,i+1, and the sinusoidal curve below the qubits shows the on-site potential hj with modulation amplitude
V. c Phase diagram of the GAAH model, divided into extended (E), localized (L), and critical (C) phases. The heatmap shows the inverse
participation ratio (IPR) averaged over all eigenstates and 100 configurations of δ for system size L= 1000. d Experimental pulse sequences for
observing localization properties of the GAAH model.

H. Li et al.

2

npj Quantum Information (2023)    40 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



even sites back and forth. In Fig. 2e, the population for all qubits is
also close to 0.5 in the critical region, but exhibits a certain degree
of dependence on the initial configuration. The population for the
initially excited qubits tends to stay above 0.5, while that for the
qubits initialized in 0j i tends to stay below 0.5. Figure 2f shows the
spin transport is completely blocked in the localized region, and
the population stays close to one for the initially excited qubits,
and close to zero for the qubits initialized in 0j i.

Dynamical signature of localization via participation entropies
As stated above, localization properties can be quantified by the
IPR and the associated participation entropy. Here, we define the
q-th order dynamical participation entropy19,52 as

SPEq ðtÞ ¼ 1
1� q

log
XN
i

piðtÞq; (2)

where N is the dimension of Hilbert space, and pi(t)= ∣〈ψ(t)∣i〉∣2
with the computational basis f ij ig. Considering the U(1)
symmetry, the dimension of the half-filled sector is

N ¼ ð 10
5
Þ ¼ 252. Here, we focus on the second-order participa-

tion entropy, i.e., SPE2 ðtÞ ¼ � log
PN
i
piðtÞ2, which is related to IPR by

taking the negative logarithm. In the Supplementary Note 3, we
also display the results of first-order participation entropy.
The dynamical participation entropy is a characterization

quantifying how fast ψðtÞj i spreads over the Hilbert space19,54.
Initial product states, with probability one as a Fock state, diffuse
in Fock space as the system evolves, and the wave functions have
more and more non-zero probabilities in the computational (Fock)
basis, which results in the increase of the participating entropy
with time. Here we select 2 ×M= 10 initial states which is far from
equilibrium, taking the form ψið0Þj i ¼ 10j i�ðMþ1�iÞ N 01j i�ði�1Þ,
and ψMþið0Þ

�� � ¼ Ĝ ψið0Þj i with a global spin-flip operator

Ĝ ¼ QL
j¼1

σ̂x
j , for i= 1,…,M. The experimental data shown in Fig. 3

are averaged over these 10 initial states, and the measured multi-
qubit probabilities pi(t) are post-selected within the half-filled
sector due to the U(1) symmetry.

Figure 3a displays the time evolution of participation entropy
for the system quenched into the three phases. After a fast initial
relaxation, the participation entropy oscillates around some
certain value, which varies in different phases. For both small μ
and V, the system lies in the extended phase, where the late-time
participation entropy keeps at a high value with a small oscillation.
For small μ and sufficiently large V, the participation entropy
oscillates around a much smaller value. For sufficiently large
μ> maxð1; V=2Þ, the late-time participation entropy in the critical
phase oscillates around a plateau intermediate between the
values observed in the extended and localized phases. This
behavior is similar to that near the critical line (V= 2 for small μ),
as can be seen from the data for V= 2 in Fig. 3b for comparison.
Figure 3b, c shows the time evolution of participation entropy

with increasing V for fixed μ= 0.5, and increasing μ for fixed V= 1,
respectively. As shown in Fig. 3b, with the increase of V, the
growth of participation entropy is suppressed significantly,
reflecting a transition from the extended region to the localized
region. In contrast, in Fig. 3c, as μ increases to approach the
theoretical transition point μc= 1.0, the growth of participation
entropy slows down compared to the extended phase. However,
as μ continues to increase, the curve of time evolution of
participation entropy rises slightly again. The late-time participa-
tion entropy in the critical phase reflect a multifractal behavior,
and the multifractal analysis can be found in the Supplementary
Note 4.
In addition, the averaged participation entropy at long times

can be used as an experimentally accessible characterization of
phase transition. Here, we experimentally measure the averaged
late-time participation entropies SPE2 along three paths I, II, and III
in the μ−V plane (see Fig. 4a), corresponding to extended to
localized transition, extended to critical transition, and localized to
critical transition, respectively. Averages are taken over a time
window from 350 to 450 ns (see the gray area in Fig. 3a), and
among the 10 initial states as defined before. In Fig. 4a, we also
display the numerical results of the averaged late-time participa-
tion entropy calculated using Hamiltonian (1) for the whole μ−V
plane (0 ≤ V ≤ 4, 0 ≤ μ ≤ 2) as a reference, which exhibits a similar
phase diagram to IPR averaged over eigenstates in Fig. 1c.
Because the time window is far less than the averaged T1 � 22:3μ
s, we ignore the effect of decoherence in the simulation here (see
Supplementary Note 2 for details). The numerical simulation and
experimental results are consistent well with each other.
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Fig. 2 Spin transport. The time evolutions of qubit-resolved on-site population Pj(t) for the system initialized in (a–c) ψð0Þj i ¼ 1000000000j i,
and (d–f) ψð0Þj i ¼ 1010101010j i, in (a, d) the extended phases with μ= 0.5 and V= 0.5; b, e the critical phases with μ= 2.0 and V= 0.5; c, f the
localized phases with μ= 0.5 and V= 4.0. The left panel of each figure shows experimental data, and the right panel shows numerical
simulation. Experimental data are averaged over 5 different choices of δ, while numerical results are averaged over 50 choices of δ with
decoherence taken into account.
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Comparisons of the specific experimental data with numerical
simulation of the three paths I, II and III are plotted in Fig. 4b, c and

d, respectively. Different from the path I, where SPE2 decreases

monotonically as μ increases, for the path II, SPE2 first decreases to
the minimum around the theoretical transition point μc= 1.0, and
then increases slightly but keeps almost unchanged for increasing
μ in the critical phase. Note that both the experimentally

measured and numerically calculated minimum SPE2 are reached
at μ= 1.25 instead of μc= 1.0 for L= 10, which we attribute to
finite size effects. To see this, we also display the numerically
calculated averaged late participation entropies for larger system

sizes L= 14, 18, 22, rescaled as
f
SPE2 ðLÞ ¼ logN 10

logN L
� SPE2 ðLÞ, with N L ¼

ð L
L=2

Þ for a direct comparison to the experimental system size

L= 10. In the systems with L= 14, 18, 22, the minimum SPE2 are
reached at μc= 1.0. For the path III, i.e., the localized to critical

transition, SPE2 decreases slightly for increasing μ ≤ 1, and then
increases and finally reaches a intermediate value featuring a
multifractal behavior, as μ increases across the transition point
μ0c ¼ 1:5 for fixed V= 3. The slope at the transition point μ0c ¼ 1:5
increases with system size, which will diverge in the thermo-
dynamic limit as a signature of the localized to critical transition.
In summary, different from the Anderson model which would

be localized at any non-zero random disorder in on-site potential
or in hopping coupling (see Supplementary Note 5 for details), a
critical region emerges in the GAAH model due to the combined
effect of deterministic quasi-periodic on-site potential and
hopping coupling, which exhibit different dynamical behavior
from that in the extended and the localized phases.
Just like the critical line (V= 2 for small μ) exhibiting

intermediate behavior, the critical phase (μ> maxð1; V=2Þ) also
exhibits properties that are in between the other two phases.
Therefore, the critical phase shares some similarities with the
extended phase, such as its delocalized nature; and it also
resembles the localized phase in some respects, for example, only
a small fraction of the Fock space which is actively involved54,55,
leading to oscillations of the participation entropy similar to that
in the localized phase, and stronger than that in the extended
phase for the same system size and the same number of different
choices of δ. A more detailed discussion from the perspective of
Fock space can be found in Supplementary Note 6.

DISCUSSION
In this work, we implement a simulation of the GAAH model for a
wide range of parameters. The capability of individual control and
multi-qubit simultaneous readout of our superconducting pro-
cessor allows for observation of multi-qubit spin transport and
measurement of participation entropies revealing different
dynamical behaviors in three distinct phases and phase transitions
of the model.
Our work extends the current state of quantum simulations by

introducing simultaneous tunable coupling and qubit frequency
control, which, for example, enables engineering more types of
Hamiltonians exhibiting different topological properties, and
measuring quantities like Loschmidt echo and OTOCs which
needs coherently reverse time evolution by changing the sign of
Hamiltonians. In addition, we note that the GAAH model with
many-body interactions hosts a similar phase diagram, where a
novel many-body critical phase which is delocalized but
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sizes. Error bars represent the standard deviation.
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nonthermal emerges due to interaction effects44. The phase
transitions between the ergodic phase, the many-body localized
phase, and the many-body critical phase deserve further
experimental exploration by probing many-body dynamics.

METHODS
Adjustment of the hopping coupling
As mentioned in the main text, the coupling Jj,j+1 contains two
part: (i) direct coupling between nearest-neighbor qubits J0j;jþ1 and
(ii) superexchange interaction via the coupler in between
JSEj;jþ1 ¼ J0j J

0
jþ1=Δj;jþ1. Therefore, the effective coupling strength

can be described by refs. 46,47:

Jj;jþ1 ¼ J0j;jþ1 þ JSEj;jþ1; (3)

where J0j;jþ1 is the direct coupling between Qj and Qj+1, J
0
j is the

direct coupling between Qj and Cj, and Δj;jþ1 ¼
2= 1= ωQj � ωCj

� �þ 1= ωQjþ1 � ωCj

� �� �
denotes frequency detuning

between the j-th coupler and the two nearest-neighbor qubits.
The effective coupling Jj,j+1 can be tuned by applying fast flux bias
to the Z control lines of the couplers and measured precisely by
the joint probility as a function of qubit-qubit swapping time (see
Supplementary Note 1 for details). In principle, the coupling can
be adjusted arbitrarily according to Eq. (3). However, limited by
the microwave frequency band of measurement devices (from 4
to 7 GHz) and the undesired ZZ interaction between a coupler and
its two nearest-neighbor qubits, the applicable adjustable range of
coupling is −30.0 to 4.8 MHz, and we used only −15.0 to 3.8 MHz
in our experiments. To realized the target coupling distribution,
we firstly estimated all the Z pulse amplitudes of the couplers by
Eq. (3) and checked each coupling of two nearest-neighbor qubits
by the time-dependent swap experiment at the resonant
frequency around 4.36 GHz. If the checked coupling strength is
not close to the target, we will fine-tune the Z pulse of the
corresponding coupler (within the tolerance 0.1 MHz). For each
off-diagonal modulation amplitude μ, we calibrated all the
coupling strengths and fixed this configuration for the on-site
potential calibrations.

Calibration of the on-site potential
The on-site potentials satisfying Eq. (1) was realized by performing
two specific vacuum Rabi oscillation experiments on the target
qubit. In order to mitigate the AC Stark effect between qubits
when simultaneously biased the frequencies, we designed two
staggered frequency distributions (±80 MHz away from the
reference frequency) of non-target qubits. The Z pulse amplitude
corresponding to the target on-site potential of each qubit was
determined by the average of the results from these two
experiments under different configurations (see more details in
Supplementary Note 1).

Measurement of spin transport and participation entropies
In the experiments of spin transport, we prepared the single-
particle and half-filled excited states as the initial states and then
manipulated all the qubits and couplers to their operating points
corresponding to the GAAH model. By varying the evolution time
from 0 to 500 ns, for each choice of the global phase offset δ, we
simultaneously measured the on-site populations of all the qubits
by 5000 repeated single-shot measurements for each time point.
The readout correction was implemented by using the single-
qubit readout fidelity matrix. For the experiments of measuring
the participation entropies, all 210 probabilities of single-shot
measurements were performed and the readout errors were
corrected via the direct product of single-qubit readout fidelity
matrices. To calculate the participation entropies, considering the

U(1) symmetry of the GAAH model, we post-selected the states
that conserve the total excitations17,19.

DATA AVAILABILITY
The data that support the findings of this study are available at https://doi.org/
10.6084/m9.figshare.22575130.
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