
nature physics

https://doi.org/10.1038/s41567-023-02243-9Article

Non-affine atomic rearrangement of glasses 
through stress-induced structural 
anisotropy

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41567-023-02243-9


1 
 

Supplementary Information  

 

Contents 
 

Figure S1 Signature of structural anisotropy in deformed glasses. 

Figure S2 Comparison between the first- and the second-order approximation on 

extracting the affine part of anisotropic PDF. 

Figure S3 Comparison between the first-order approximation and the original value of 

isotropic component of PDF. 

Figure S4 Comparison between the first- and the second-order approximation on 

extracting the nonaffine strain of anisotropic PDF. 

Figure S5 Correlation of spatially dependent nonaffine strain with constant affine strain. 

Figure S6 Simulated results for the metallic and polymer glasses. 

Figure S7 Correlations of structural anisotropy with nonaffine deformation and changes 

of bonds, by taking the cutoff of D2 as 1.5 rmin in simulations, for the deformed 

metallic and polymer glasses. 

Figure S8 Correlation of the nonaffine mode of atomic rearrangements with 

macroscopic creep behavior for the metallic and polymer glasses. 

Figure S9 Modulus anisotropy in the deformed metallic glass. 

Text SI Error analysis for the higher-order terms in the calculation of 𝒈𝟐
𝟎(𝒓). 

Text SII Determination of the radially varying nonaffine strain from experimentally 

measured PDFs. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

 

Figure S1. Signature of structural anisotropy in deformed glasses. After the 

high-temperature creep deformation, the nonoverlapped elliptical diffraction rings 

observed for various types of glasses, indicating an anisotropic structure. 
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Text SI. Error analysis for the higher-order terms in the calculation of 𝑔ଶ
଴(𝑟) 

According to the perturbation expansions in Ref.41, the anisotropic PDF 𝑔(𝒓) 

under the uniaxial deformation is expressed in as:  

𝑔(𝒓) = 𝑔(𝑟) +
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Where 0 ≤ 𝛼, 𝛽, 𝛾 ≤ 𝑛 , 𝜀(𝑟)  is the uniaxial strain. Specifically, for an affine 

compression strain, 𝜀௔௙௙  along the z axis, the expressions of 𝑔ଶ
଴(𝑟)  for the 

first-order and second-order expansion can be directly obtained from Eq. S1: 

For the first-order expansion:  
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For the second-order expansion: 
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Here, 𝛼 = 𝜀௔௙௙/√5  is taken as the fitting parameter. 𝑔(𝑟) and 𝑔଴
଴(𝑟)  are the 

isotropic PDF before and after deformation, respectively. For the first-order expansion, 

𝑔(𝑟) = 𝑔଴
଴(𝑟) , and for the second-order expansion, 𝑔(𝑟) ≠ 𝑔଴

଴(𝑟)  and their 

difference is given by Eq. S4. We also note that Eq. 3 in our paper has the same form 

as Eq. S1 if 𝛼 is taken as 
ଶ(ଵାఔ)

ଷ√ହ
𝜀௔௙௙. Hence they play the equivalent role in fitting 

the experimental curves. 

We then use Eqs. S2 and S3 to fit the experimentally observed 𝑔ଶ,௘௫௣
଴ (𝑟) to 

extract the part due to affine deformation, 𝑔ଶ,௔௙௙
଴ (𝑟). The fitting curves for the Vit105 

metallic glass are shown as follows (Fig. S2). We can see that the curve of 𝑔ଶ,௔௙௙
଴ (𝑟) 

for the second-order expansion almost completely coincides with that for the 
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first-order expansion. The values of 𝛼 for two fitted curves are 0.01005 and 0.01009, 

which are very close to each other. These evidences justify that the first-order 

expansion is accurate enough for extracting the affine part of 𝑔ଶ
଴(𝑟)  in our 

experimental analysis, and the higher-order terms can be neglected. In addition, we 

also calculated the 𝑔଴
଴(𝑟) the curve for the second-order expansion, and it is also 

almost identical to the 𝑔(𝑟) curve, as shown in Fig. S3. This also verifies the validity 

of the first-order approximation from the other side.  

 

Figure S2. Comparison between the first- and the second-order approximation 

on extracting the affine part of anisotropic PDF. The theoretically fitted curves 

𝑔ଶ,௔௙௙
଴ (𝑟) for the Vit105 MG according to the first-order and second-order expansion 

of 𝑔ଶ
଴(𝑟), together with the experimentally observed 𝑔ଶ,௘௫௣

଴ (𝑟). 
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Figure S3. Comparison between the first-order approximation and original value 

of isotropic component of PDF. The calculated 𝑔଴
଴(𝑟) curve for the second-order 

expansion, which is almost identical to the 𝑔(𝑟) curve, suggesting the validity of the 

first-order approximation. 

 

 

Text SII. Determination of the radially varying nonaffine strain from 

experimentally measured PDFs 

According to Eq. S1, we could also obtain the expression of 𝑔ଶ
଴(𝑟) in the case of 

nonaffine strain for the first-order and second-order approximation, respectively: 
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By solving the differential equations S5 and S6 with the experimental curves 

𝑔ଶ,௘௫௣
଴ (𝑟) and 𝑔௘௫௣(𝑟) of Vit105 MG, we obtain the spatially-dependent strain 𝜀(𝑟) 

for the first-order and second-order approximation, respectively. The curves of 𝜀(𝑟) 

obtained for the Vit105 MG are shown in Fig. S4. We can see that the curves of 𝜀(𝑟) 

oscillate violently at small r and tend to approach a constant strain (affine) at large r, 

indicating that the nonaffine strain is spatially localized and tends to disappear for 

large distance r. In addition, we can also see that the strain curves 𝜀(𝑟) for the 
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first-order approximation and second-order approximation almost overlap with each 

other. This again suggests that the first-order expansion is accurate enough for 

extracting the nonaffine strain and the higher-order terms can be neglected.  

 

 

Figure S4. Comparison between the first- and the second-order approximation 

on extracting the nonaffine strain of anisotropic PDF. The spatially-dependent 

strain curves of 𝜀(𝑟)  solved from the experimental measured 𝑔ଶ,௘௫௣
଴ (𝑟)  and 

𝑔௘௫௣(𝑟)  of Vit105 MG for the first-order and second-order approximation, 

respectively. 
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Figure S5. Correlation of the spatially dependent nonaffine strain with the 

constant affine strain. a, The calculated curves of the total strain 𝜀(𝑟) for different 

values of the affine strain 𝜀௔௙௙ . b, The extracted nonaffine strain curve of 

𝜀௡௢௡௔௙௙ (𝑟)  for different values of affine strain 𝜀௔௙௙ . The height of peaks of 

𝜀௡௢௡௔௙௙ (𝑟) are increased with 𝜀௔௙௙, while the peak positions are unchanged.    
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Figure S6. Simulated results for the metallic and polymer glasses. a and b, The 

stress-time curves during creep tests. c and d, The comparisons of anisotropic PDF 

𝑔ଶ
଴(𝑟)  with the first deviation of isotropic PDF 𝛼𝑟𝑑𝑔(𝑟) 𝑑𝑟⁄ . e and f, The 

comparisons of 𝑔ଶ
଴(𝑟) with 𝑔଴

଴(𝑟). The peak positions of the compared curves show 

a shift in the MG, whereas match well with each other in the polymer glass.  
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Figure S7. Correlations of structural anisotropy with nonaffine deformation and 

changes of bonds, by taking the cutoff of D2 as 1.5 rmin in simulations, for the 

deformed metallic and polymer glasses. a and b, The intensity of  𝑔ଶ
଴(𝑟) with the 

squared nonaffinity D2 at any r, for both the MG and the polymer glass, respectively. 

c, In the MG, the variation of the fraction of the number of breaking bonds with D2. d, 

For the polymer glass after creep, the dependence of angle probability distribution for 

the C-C bonds in aliphatic moiety and Benzene rings, respectively. 
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Figure S8. Correlation of the nonaffine mode of atomic rearrangements with 

macroscopic creep behavior for metallic and covalent bonded glasses. a, For the 

metallic glass with the nonaffine mode of the atomic bond stretching and contraction, 

the creep strain is increased gradually and continuously with the creep time; the 

sample was finally crept into a barrel shape without rupture. b, For the polymer glass 

with the nonaffine mode of atomic bond rotation, the creep strain increases sharply at 

some creep time in the later stage, indicating the rupture of the sample. 
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Figure S9. Modulus anisotropy in the deformed metallic glass. The modulus on 

the cross-section a and longitudinal section b of the crept Vit 105 MG, measured via 

the nanoindentation test. The averaged radial modulus is ~7.8% higher than the 

longitudinal modulus, indicating a mechanical anisotropy after creep. 
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