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Rational design of anti-freezing electrolytes 
for extremely low-temperature  
aqueous batteries

Liwei Jiang    1,2,3,7, Shuai Han1,2,7, Yuan-Chao Hu4,7, Yang Yang    1,2, 
Yaxiang Lu    1,5  , Yi-Chun Lu    3  , Junmei Zhao    6  , Liquan Chen1  
& Yong-Sheng Hu    1,2,5 

Designing anti-freezing electrolytes through choosing suitable  
H2O–solute systems is crucial for low-temperature aqueous batteries 
(LTABs). However, the lack of an effective guideline for choosing  
H2O–solute systems based on decisive temperature-limiting factors 
hinders the development of LTABs. Here we identified two decisive factors: 
thermodynamic eutectic temperature (Te) and kinetic glass-transition 
temperature (Tg), with Tg being applicable for LTABs only when H2O–solute 
systems have strong super-cooling ability. We proposed a general strategy 
wherein low-Te and strong-super-cooling ability electrolytes can be realized 
by creating multiple-solute systems via introducing assisted salts with 
high ionic-potential cations (for example, Al3+, Ca2+) or cosolvents with 
high donor numbers (for example, ethylene glycol). As a demonstration 
in Na-based systems, we designed electrolytes with ultralow Te (−53.5 to 
−72.6 °C) and Tg (−86.1 to −117.1 °C), showcasing battery performances 
including 80 Wh kg−1 and 5,000 cycles at 25 °C, and 12.5 Wh kg−1 at −85 °C. 
The work provides effective guidelines for the design of anti-freezing 
electrolytes for extremely low-temperature applications.

With the increasing demand for applications under extremely 
low-temperature conditions, such as those found in extreme climates, 
outer space and deep sea enviroments1–5, extensive attention has been 
paid to the design of anti-freezing electrolytes for rechargeable batter-
ies, particularly aqueous batteries, as the water is prone to freezing6–9. 
According to typical equilibrium and non-equilibrium H2O–solute phase 
diagrams6, the freezing temperatures of H2O–solute systems involve 
three important terms for low-temperature applications: freezing 

point (Tf), eutectic temperature (Te) and glass-transition temperature 
(Tg). The different roles and effects of Tf, Te and Tg on low-temperature 
batteries are often overlooked in designing anti-freezing electrolytes, 
which hinders the development of extreme LTABs.

First, most researchers have focused on regulating electrolyte 
Tf via various approaches10–15. However, Tf is not the most impor-
tant temperature-limiting factor for low-temperature batteries. For 
instance, the partially frozen Li+, Na+, K+, Zn2+, H+ and/or Cl−-based16–21 
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because they will rapidly enter a crystalline state (which would therefore 
decrease the ionic conductivity) below Te. In contrast, the electrolytes 
in strong-SCA H2O–solute systems can maintain a super-cooling liquid 
state for a long time6 at temperatures between Te and Tg, and they may 
still remain at a high enough ionic conductivity at temperatures above 
Tg, thus enabling a battery to operate at temperatures between Te and 
Tg. Therefore, the Tg serves as the kinetic decisive temperature-limiting 
factor for low-temperature battery operation, and it is only applica-
ble for batteries using a strong-SCA electrolyte. It is crucial to design 
anti-freezing electrolytes by choosing strong-SCA H2O–solute systems 
for extremely low-temperature applications.

Here, in contrast to the traditional strategy that focuses on 
regulating Tf, we focused on regulating Te and SCA to design low-Te 
and strong-SCA electrolytes for extremely low-temperature appli-
cations (Fig. 1). We discovered a general rule that H2O–salt systems 
with high ionic-potential cations and H2O–solvent systems with 
high solvent donor numbers usually have a strong SCA, according to 
many DSC experiments. Moreover, we proposed a general strategy 
whereby low-Te and strong-SCA electrolytes can be realized by creat-
ing multiple-solute systems via introducing assisted salts with high 
ionic-potential cations (for example, Al3+, Ca2+) or cosolvents with 
high donor numbers (for example, ethylene glycol (EG)). As a dem-
onstration in Na-based H2O–solute systems, the designed low-Te and 
strong-SCA 1 m NaCF3SO3 + 2.5 m Al(CF3SO3)3 (Na–H2O–Al), H50EG50-2 m 
NaCF3SO3 (Na–H2O–EG) and 1 m NaClO4 + 4 m Ca(ClO4)2 (Na–H2O–
Ca) electrolytes exhibit ultralow Te (−53.5 to −72.6 °C) and Tg (−86.1 
to −117.1 °C), with the low-Te and strong-SCA mechanisms revealed 
to be related with electrolyte local structure coordination environ-
ments, H2O–salt interactions, and complex competing ordering effects. 
The designed electrolytes enabled the superior performance of the 
Na1.65Fe0.21Mn0.79[Fe(CN)6]0.92·2.08H2O (NaFeMnHCF)/Na–H2O–EG/
NaTi2(PO4)3 full cell (80 Wh kg−1 at 25 °C with 70% capacity retention 
over 5,000 cycles at 8 C, 63 Wh kg−1 at −60 °C and 0.05 C) and the 
NaFeMnHCF/Na–H2O–Ca/3,4,9,10-perylenetetracarboxylic diimide 
(PTCDI) full cell (65.7 Wh kg−1 at 25 °C with 91.1% capacity retention 
over 250 cycles at 4 C, 20 Wh kg−1 at −80 °C and 0.1 C, and 12.5 Wh kg−1 
at −85 °C and 0.1 C). This work marks an important development in 

aqueous electrolytes enable batteries to operate at temperatures 
below their Tf. According to a typical equilibrium H2O–solute phase 
diagram6, the Te rather than the Tf is the thermodynamic decisive 
temperature-limiting factor for battery operation. As shown in Fig. 1, 
the Tf is the temperature at which an electrolyte begins to freeze and is 
in a partially frozen state, whereas the Te is the temperature at which an 
electrolyte totally freezes. In a given H2O–solute system6, electrolytes 
with varying concentrations usually have different Tf, but they would 
have the same Te. The Tf is usually not lower than the Te (Tf ≥ Te; Tf equals 
Te only when electrolyte concentration is the same as the eutectic-point 
concentration in equilibrium H2O–solute phase diagram6). At tempera-
tures below Tf, a dilute electrolyte usually becomes a mixture of ice and 
concentrated electrolyte (Fig. 1), and the mixture could still remain at a 
high enough ionic conductivity owing to the connected liquid region17 
before it is totally frozen as the crystalline state at Te. Therefore, it is cru-
cial to design anti-freezing electrolytes by choosing low-Te H2O–solute 
systems for extremely low-temperature applications.

Second, some anti-freezing electrolytes22 exhibit ultralow Tg 
heat-flow steps on the differential scanning calorimetry (DSC) curves. 
However, Tg is a kinetic decisive temperature-limiting factor for 
low-temperature batteries and is only applicable for H2O–solute sys-
tems with strong super-cooling ability (SCA). For instance, the 7 mol kg−1 
(m) LiCl electrolytes have a Tf of −58 °C and a Te of −74 °C according to 
the equilibrium H2O–LiCl phase diagram23, but it was reported to enable 
aqueous battery operation at −78 °C (ref. 20). This should be attributed 
to the strong SCA of H2O–LiCl system. The concentrated solution in 
the H2O–LiCl system can maintain a super-cooling liquid state at tem-
peratures between its Te (−74 °C)23 and Tg (−132.5 °C)24. Similarly, the 
9.5 m H3PO4 (Te = −85 °C)25 and 7.5 m ZnCl2 (Te = −63 °C)26 can support 
aqueous batteries to operate at −88 °C (ref. 27) and −90 °C (ref. 22), 
respectively, which are also attributed to the strong SCA of H2O–H3PO4 
and H2O-ZnCl2 systems. According to the non-equilibrium H2O–solute 
phase diagram6, the lowest temperature at which an electrolyte can 
maintain a super-cooling liquid state is the Tg. The electrolytes in weak- 
and strong-SCA H2O–solute systems both have Te and Tg, with Tg being 
much lower than Te. However, electrolytes in weak-SCA H2O–solute 
systems cannot support a battery to operate at temperatures below Te 
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Fig. 1 | Schematic evolution of a dilute solution in the H2O–solute system during cooling process and the difference between traditional and our proposed 
strategies. The freezing process involves several typical temperature terms of H2O transitioning to ice (Tf), H2O transitioning to the mixture of ice and water of 
crystallization (Te), H2O transitioning to glassy water (Tg).
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anti-freezing electrolyte designs for extremely low-temperature  
applications.

Design low-Te and strong-SCA aqueous 
electrolytes
To develop an effective guideline for designing low-Te and strong-SCA 
aqueous electrolytes, we first examined what kind of H2O–solute sys-
tems will have strong SCA. From DSC heating curves (see Supplemen-
tary Note 1 and Supplementary Fig. 1a–c for the conventional DSC 
analysis method24,28,29), one can observe a heat-flow signal of Te or Tg 
for dilute solutions in an H2O–solute system and identify its attribute 
(strong or weak) of SCA accordingly. The appearance of Te heat-flow 
peak in an H2O–solute system30,31 indicates the weak SCA due to the 
complete crystallization during cooling, whereas the appearance of 
Tg heat-flow step24,32 indicates the strong SCA because of the dominant 
glass state rather than the crystalline state during cooling. Therefore, 
a criterion can be proposed to distinguish weak- and strong-SCA H2O–
solute systems based on DSC data at a fixed cooling–heating rate: a 
dilution solution showing a Te heat-flow peak and a Tg heat-flow step 
in DSC curve belong to the weak- and strong-SCA H2O–solute systems, 
respectively (see examples in Supplementary Fig. 2a–c).

Although SCA attributes of a large number of H2O–solute systems 
(the solute could be salt or cosolvent) can be obtained based on DSC 
data from the literature24,31,32 and laboratory measurements (Sup-
plementary Fig. 3a,b), there still lacks a guideline to directly design 
strong-SCA electrolytes through adjusting physicochemical param-
eters of H2O–solute systems. Here, we discover that the ionic poten-
tials of cations in salts and the donor numbers of cosolvents have a 
strong correlation with the SCA attribute (Fig. 2a,b and Supplementary 
Tables 1 and 2). For H2O–salt systems (Fig. 2a), it is found that with the 
fixed anion of CF3SO3

−, most salts with low ionic-potential cations 

(for example, K+ 7.25 e nm−1) fall into the weak-SCA zone, while the 
Al(CF3SO3)3 salt with high ionic-potential cation (Al3+ 56.07 e nm−1) falls 
into the strong-SCA zone. Other salts with fixed anions (Cl− and NO3

−) 
also obey a similar rule. For H2O–solvent systems (Fig. 2b), it can be 
seen that solvents with low donor numbers, such as acetonitrile (ACN) 
(donor number 14.1), fall into the weak-SCA zone, whereas solvents with 
high donor numbers, such as the EG (donor number 20.0), fall into the 
strong-SCA zone. As a result, H2O–salt systems with high ionic-potential 
cations and H2O–solvent systems with high donor-number cosolvents 
are beneficial for systems falling into the strong-SCA zone.

In contrast to the SCA attribute that can be clearly correlated with 
the physicochemical parameters of H2O–solute systems, it is difficult 
to find a similar rule for depicting the attribute (high or low) of Te in 
H2O–solute systems. Nevertheless, a low Te can be realized by increasing 
the solute number because multiple-solute systems usually have lower 
Te values than single-solute systems33,34. Therefore, we can propose a 
general design strategy for realizing low-Te and strong-SCA electro-
lytes, which involves creating multiple-solute systems via introducing 
salts with high ionic-potential cations or cosolvents with high donor 
numbers, as illustrated in Fig. 2c.

To demonstrate the efficacy of the strategy proposed above, 
we take the Na-based system as an example to design low-Te and 
strong-SCA electrolytes. Owing to the relatively low ionic potential of 
Na+ (9.80 e nm−1), most Na-based H2O–salt electrolytes exhibit weak 
SCA, as demonstrated by the DSC data (Supplementary Fig. 4). The 
DSC results also show that most of Na-based H2O–salt electrolytes 
have relatively high Te (H2O–Na2SO4 −1.2 °C, H2O–NaCF3SO3 −20.5 °C, 
H2O–NaClO4 −34.1 °C and so on). Both features limit the aqueous Na-ion 
batteries to operate at extremely low temperatures. Therefore, it is cru-
cial to design low-Te and strong-SCA electrolytes for Na-based LTABs. 
Taking the H2O–NaCF3SO3 system as an example, the DSC curves of 
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Solvents used were ACN, sulfolane, propylene carbonate (PC), ethylene carbonate 
(EC), glycerol, EG and dimethylsulfoxide (DMSO). c, Schematic illustration of 
the proposed general strategy for designing low-Te and strong-SCA electrolytes. 
d, The DSC heating curves of 4.5 m NaCF3SO3 electrolytes, 1 m NaCF3SO3 + 2.5 m 
Al(CF3SO3)3 (Na–H2O–Al) and H50EG50-2 m NaCF3SO3 (Na–H2O–EG) electrolytes.
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both dilute 10 wt% NaCF3SO3 (Supplementary Fig. 4) and eutectic-point 
concentration 4.5 m NaCF3SO3 electrolytes (Fig. 2d) demonstrate 
the high-Te (−20.5 °C) and weak-SCA properties. When introducing 
a weak-SCA-zone KCF3SO3 salt or ACN cosolvent (Supplementary 
Fig. 5a,b), all the obtained electrolytes exhibit crystal melting heat-flow 
peaks and have no Tg heat-flow step, demonstrating that they failed to 
realize strong SCA. In comparison, when introducing strong-SCA-zone 
Al(CF3SO3)3 salt or EG cosolvent into the H2O–NaCF3SO3 system, all the 
obtained electrolytes exhibit Tg heat-flow steps (Fig. 2d and Supplemen-
tary Fig. 6a,b), demonstrating that they successfully realized strong 
SCA. It can be seen that the insufficient Al(CF3SO3)3 salt or EG cosolvent 
results in cold crystallization heat-flow peak on the DSC heating curve, 
whereas an excess amount Al(CF3SO3)3 salt or EG cosolvent leads to a 
high Tg value (Supplementary Fig. 6a,b). To ensure there is no cold crys-
tallization and low Tg, 1 m NaCF3SO3 + 2.5 m Al(CF3SO3)3 (Na–H2O–Al; 
Tg = −86.1 °C) and H50EG50-2 m NaCF3SO3 (Na–H2O–EG; Tg = −114.5 °C) 
are chosen as electrolytes for Na-based LTABs. In addition, the Te of Na–
H2O–Al and Na–H2O–EG electrolytes is estimated as −53.5 and −67.5 °C 
(Supplementary Fig. 6a,b), respectively, both of which are much lower 
than that of the H2O–NaCF3SO3 system (−20.5 °C). As a result, we have 
been able to successfully design low-Te and strong-SCA electrolytes 
by creating multiple-solute systems via introducing the Al(CF3SO3)3 
salt with high ionic-potential cation (Al3+ ionic potential 56.07 e nm−1) 
or the EG cosolvent with high donor number (EG donor number 20.0) 
into the high-Te and weak-SCA H2O–NaCF3SO3 system. In addition to 
the example demonstrated above, we have included more examples 
regarding the designs of anti-freezing electrolytes in Na-based systems 
(Supplementary Figs. 7a,b and 8a,b and Supplementary Note 2), such as 
1 m NaClO4 + 4 m Ca(ClO4)2 (Na–H2O–Ca) (Te = −72.6 °C, Tg = −117.1 °C), 
demonstrating the general applicability of the proposed strategy.

Mechanisms of low Te and strong SCA in designed 
electrolytes
To clarify why low-Te and strong-SCA electrolytes can be efficiently 
designed using our proposed strategy in Fig. 2c, we performed Raman 
scattering and nuclear magnetic resonance (NMR) spectroscopy analy-
ses as well as ab initio molecular dynamic (AIMD) simulations and den-
sity functional theory (DFT) calculations to the designed electrolytes, 
especially for Na–H2O–Al and Na–H2O–EG electrolytes.

Regarding the low Te, this is associated with high electrolyte 
entropy based on the thermodynamic theory6, namely a high degree 
of disorder in atomic coordination environment of electrolyte struc-
tures. The thermodynamic liquid-to-solid low-temperature limits are 
as follows: H2O (0 °C) > 4.5 m NaCF3SO3 (−20.5 °C) > Na–H2O–Al (about 
−53.5 °C) > Na–H2O–EG (about −67.5 °C), indicating that the disorder of 
atomic coordination environment increases along the sequence. The 
mechanisms can be understood from two perspectives.

First, the degree of disorder of atomic coordination environ-
ment for different aqueous solutions can be reflected by the degree 
of hydrogen-bond (H-bond) breakage between water molecules, 
which can be studied by the OH stretching vibration (IOH) bands 
between 3,000 and 4,000 cm−1 on Raman spectra and the average 
H-bond numbers based on AIMD statistical analyses. In pure water, 
the IOH band is usually analysed by the two-state model including the 
hydrogen-bonded scatterers and non-hydrogen-bonded scatterers35,36. 
In aqueous solutions, the IOH band can also be analysed by two factors 
including hydrogen-bonded scatterers and non-hydrogen-bonded (ion 
or solvent-hydrated) scatterers37,38. Here we use two Gaussian peaks 
(weak vibration band IW and strong vibration band IS, representing the 
predominant contribution of hydrogen- and non-hydrogen-bonded 
scatterers, respectively) to fit the IOH bands (for the fitting in Na–H2O–
EG system, the additional two Gaussian peaks are used to represent 
the C–H vibration band ICH; Fig. 3a) and define amplitude ratio (IW/IS) 
to reflect the degree of H-bond breakage (Fig. 3a). The order of IW/IS 
values is as follows: H2O (0.72) > 4.5 m NaCF3SO3 (0.54) > Na–H2O–
Al (0.47) > Na–H2O–EG (0.38), which is consistent with the order of 
liquid-to-solid low-temperature limits. Meanwhile, the AIMD results 
demonstrate that the average H-bond numbers between water mol-
ecules (Fig. 3b) show a similar order: H2O (3.4) > 4.5 m NaCF3SO3 
(2.8) > Na–H2O–Al (2.4) > Na–H2O–EG (1.9). A lower IW/IS value and 
a smaller average number of H-bonds indicate a higher degree of 
H-bond breakage and increased H-bond disorder within the electro-
lyte structure, which consequently leads to a lower liquid-to-solid 
low-temperature limit.

Second, the degree of disorder in different aqueous solutions can 
also be reflected by the coordination species and numbers around the 
OW (oxygen atom in water) atoms. According to the AIMD simulation 
results (Fig. 3c, Supplementary Fig. 9a–f and Supplementary Table 3), 
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the pure H2O has only two coordination species around the OW atom 
(OW–HW (hydrogen atom in water) and OW–OW) with respective coordi-
nation numbers of 19.5 and 7.4 in a cut-off radius of 4 Å. In comparison 
to pure H2O, OW atoms in 4.5 m NaCF3SO3 structure not only exhibit 
different coordination numbers (15.4 and 6.7) for the ordinary coor-
dination species (OW–HW and OW–OW), but also show two new coordi-
nation species (OW–Na and OW–OOTf (oxygen atom in a CF3SO3 anion)) 
with coordination numbers of 0.6 and 1.2, respectively. Regarding 
the Na–H2O–Al and Na–H2O–EG electrolytes, the above-mentioned 
OW–HW, OW–OW, OW–Na and OW–OOTf coordination species also exist but 
with different coordination numbers (Supplementary Table 3). Also, 
new species of OW–Al (coordination number 0.3) and OW–OEG (oxygen 
atom in an EG molecule) (coordination number 1.8) appear, respec-
tively (Supplementary Table 3). Therefore, the designed Na–H2O–Al 
and Na–H2O–EG electrolytes have more complex and diverse atomic 
coordination environments than the 4.5 m NaCF3SO3 electrolyte, thus 
resulting in a degree of higher disorder and lower Te.

Regarding the strong SCA, this is associated with a strong frus-
tration against crystallization process at low temperatures39, which 
involves strong H2O–solute interaction and a complex competing 
ordering effect, with the latter being a well-known mechanism in the 
field of metallic glasses40,41. The strong-SCA mechanisms of Na–H2O–Al 
and Na–H2O–EG electrolytes should be understood from different 
perspectives because salt and cosolvent have different properties. 
We revealed that the H2O–salt interaction plays a dominant role in 
electrolytes containing high-ion-potential cations, whereas the com-
plex competing ordering effect plays a dominant role in electrolytes 
containing high donor-number cosolvents.

For the Na–H2O–Al electrolyte, its strong-SCA mechanism 
can be interpreted by examining H2O–solute interactions and 
the water diffusion kinetics using AIMD simulations, DFT calcula-
tions and two-dimensional diffusion-ordered NMR spectroscopy 
(2D-DOSY-NMR). As shown in Fig. 4a, the mean squared displacement of 
H atom in the Na–H2O–Al electrolyte is much lower than that in the 4.5 m 
NaCF3SO3 electrolyte within 40 ps, indicating slower water diffusion 
kinetics in the Na–H2O–Al electrolyte. The 2D-DOSY-NMR results (see 
the 1H NMR spectra in Supplementary Fig. 10) further demonstrated 
that the Na–H2O–Al electrolyte has a lower 1H diffusion coefficient 
(4.1 × 10−10 m2 s−1) than the 4.5 m NaCF3SO3 electrolyte (6.4 × 10−10 m2 s−1). 
This should be attributed to different H2O–solute interactions in both 
electrolytes, which can be revealed by DFT calculations. As shown in 
Fig. 4b, the calculated average binding energy of H2O molecules in 
Na–H2O–Al (1.37 eV) is higher than that of 4.5 m NaCF3SO3 (1.13 eV), 
which should be responsible for the lower 1H diffusion coefficient in 
the Na–H2O–Al electrolyte. A higher average binding energy means that 
local atomic rearrangement for ice precipitation during the crystal-
lization process is more difficult, thus resulting in a stronger SCA. We 
believe that after introducing Al(CF3SO3)3 salt into an H2O–NaCF3SO3 
system, the increased average binding energy should be attributed to 
the higher ionic potential of Al3+ (56.07 e nm−1) than Na+ (9.80 e nm−1). 
This can be demonstrated by the higher average binding energy of 
H2O molecules bonded with Al3+ (2.48 eV of H2O–Al3+) than that of H2O 
molecules bonded with Na+ (1.41 eV of H2O–Na+) in the Na–H2O–Al 
electrolyte (Fig. 4b). In contrast, after introducing KCF3SO3 salt with a 
low ionic potential of K+ (7.25 e nm−1) into the H2O–NaCF3SO3 system, 
the obtained 1 m NaCF3SO3 + 2.5 m KCF3SO3 (Na–H2O–K) electrolyte 
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still has a weak SCA, which is attributed to a low H2O molecule average 
binding energy (Supplementary Fig. 11 and Supplementary Note 3). 
These insights clarified why introducing a salt with high ionic-potential 
cation into the weak-SCA H2O–NaCF3SO3 system can realize strong SCA.

For the Na–H2O–EG electrolyte, its strong SCA can be understood 
by the complex competing ordering effect, which stems from local 
structure differences between liquid electrolyte and solid crystalliza-
tion components40,41. AIMD simulations are adopted to examine the 
local structures with the assumption that both 4.5 m NaCF3SO3 and 
Na–H2O–EG electrolytes would form the solid crystallization compo-
nents containing ice and monohydrate NaCF3SO3·H2O crystals during 
the cooling process. Typical atomic-level local structures are extracted 
from the AIMD snapshots of 4.5 m NaCF3SO3 and Na–H2O–EG electrolyte 
models as well as the experimental structures of ice and NaCF3SO3·H2O 
crystals (Fig. 4c and Supplementary Fig. 12a–d). The H-bond local struc-
ture difference between the Na–H2O–EG electrolyte (diverse H-bond 
coordinating structures between H2O and EG molecules) and ice crystal 
(four H-bond coordinating structures) is more noticeable than the dif-
ference between the 4.5 m NaCF3SO3 electrolyte (two or three H-bond 
coordinating structures) and ice crystal. Similarly, the Na–H2O–EG 
electrolyte also exhibits a greater Na-coordination local structure dif-
ference (Na–3OW–2OEG and Na–OOTf-–2OW–2OEG) to the NaCF3SO3·H2O 
crystal (Na–2OW–4OOTf) than that of the 4.5 m NaCF3SO3 electrolyte 
(Na–5OW and Na–4OW–OOTf) to the NaCF3SO3·H2O crystal. The greater 
the disparity in local structure between liquid electrolytes and solid 
crystallization components, the longer the atomic diffusion distance 
during the electrolyte crystallization process39, thus frustrating the crys-
tallization and resulting in a stronger SCA. The remarkably increased 
local structure difference between designed electrolyte and solid 
crystallization components after introducing the EG solvent into the 
H2O–NaCF3SO3 system should be attributed to the high donor number 
(20.0) of the EG solvent, which is beneficial for coordinating with H2O 
and Na+. In contrast, after introducing the low donor-number (14.1) ACN 
cosolvent into the H2O–NaCF3SO3 system, the obtained H50ACN50-2 m 
NaCF3SO3 (Na–H2O–ACN) electrolyte still has a weak SCA, which should 
be attributed to the weak coordinating ability of the ACN molecule with 
H2O and Na+ (Supplementary Fig. 13 and Supplementary Note 3). These 
insights clarified why adding a high donor-number cosolvent into the 
weak-SCA H2O–NaCF3SO3 system can result in a strong SCA.

In short, the mechanisms of low-Te and strong-SCA properties are 
mainly associated with the local structure coordination environment, 
H2O–salt interactions and complex competing ordering effects. The 
introduced assisted salts or cosolvents can increase electrolyte entropy 
by breaking H-bonds and enriching local structure coordination species, 
thus realizing low Te. The assisted salts with high cation ionic potentials 
can enhance the H2O–solute interaction, whereas the cosolvents with 
high donor numbers can increase local structure difference between 
the liquid electrolyte and solid crystallization components, both of 
which lead to strong frustration against crystallization process at low 
temperatures, thus realizing a strong SCA. These insights rationalize the 
low Te and strong SCA of designed electrolytes as well as the proposed 
general design strategy for anti-freezing electrolytes in Fig. 2c.

Battery demonstrations for designed electrolytes
To show battery performance using the designed electrolytes at various 
temperatures, we synthesized the Prussian blue analogous cathode 
NaFeMnHCF (chemical formula Na1.65Fe0.21Mn0.79[Fe(CN)6]0.92·2.08H2O) 
and prepared two anode materials: a polyanionic anode NaTi2(PO4)3 for 
achieving high energy density and an organic anode PTCDI for realizing 
ultralow temperature operation. The structural and compositional 
characterizations of electrode materials are depicted in Supplementary 
Figs. 14–17, Supplementary Tables 4 and 5 and Supplementary Note 4.

We examined the performance of NaFeMnHCF//NaTi2(PO4)3 full 
cells in various electrolytes and temperatures. For full cells using the 
weak-SCA 4.5 m NaCF3SO3, Na–H2O–K and Na–H2O–ACN electrolytes, 

the lowest operating temperatures are not lower than the Te of these 
electrolytes, which are −20.5, −26.3 and −53.1 °C, respectively (Sup-
plementary Fig. 18a–c). Since the weak-SCA electrolytes would rapidly 
become crystalline at temperatures below their Te, the ion diffusions 
in these electrolytes are completely prevented. In contrast, ben-
efiting from low Te and strong SCA, both Na–H2O–Al (Te = –53.5 °C, 
Tg = −86.1 °C) and Na–H2O–EG (Te = −67.5 °C, Tg = −114.5 °C) electrolytes 
have high enough ionic conductivities at ultralow temperatures (Sup-
plementary Table 6), enabling the NaFeMnHCF//NaTi2(PO4)3 full cells 
to deliver reversible capacities at temperatures from −60 to 25 °C and 
even light bulbs at −70 °C (Fig. 5a–c and Supplementary Fig. 18d).

The NaFeMnHCF//NaTi2(PO4)3 full cells using the Na–H2O–EG 
electrolyte exhibited a much better performance than those using 
the Na–H2O–Al electrolyte. In the Na–H2O–Al electrolyte, the full cells 
show limited lifespans at −60 to 25 °C (4–14 cycles) (Supplementary 
Fig. 19a), which are much lower than full cells in the Na–H2O–EG elec-
trolyte (27–5,000 cycles) (Fig. 5a–c). The full cells using the Na–H2O–Al 
electrolyte have issues of Al3+-ion insertion on the cathode side (Sup-
plementary Fig. 19b) and severe H2 evolution on the anode side (the 
Na–H2O–Al electrolyte pH value is roughly 4), whereas full cells using 
the Na–H2O–EG electrolyte do not exhibit these issues. In addition, the 
Na–H2O–EG electrolyte has lower Te and Tg, wider voltage window and 
higher low-temperature ionic conductivity than the Na–H2O–Al electro-
lyte (Supplementary Fig. 20a,b and Supplementary Table 6). Therefore, 
we focused on the performance of NaFeMnHCF//NaTi2(PO4)3 full cells 
using the Na–H2O–EG electrolyte at various temperatures. At 25 °C, 
the NaFeMnHCF/Na–H2O–EG/NaTi2(PO4)3 full cell delivers an energy 
density of 80 Wh kg−1 at 2 C, maintains 88% capacity retention from 2 to 
10 C and exhibits 70% capacity retention at 8 C over 5,000 cycles (Fig. 5c 
and Supplementary Fig. 21a). At −40 °C, the full cell delivers an energy 
density of 72 Wh kg−1 at 0.1 C, maintains 68% capacity retention from 
0.1 to 0.5 C and shows 96% capacity retention after 80 cycles at 0.5 C 
(Supplementary Fig. 21b,c). At −60 °C, the full cell delivers an energy 
density of 63 Wh kg−1 at 0.05 C and maintains 65% capacity retention 
from 0.05 to 0.15 C (Fig. 5b and Supplementary Fig. 21d).

To demonstrate an aqueous Na-ion battery with a more impres-
sive low-temperature performance, we assembled the NaFeMnHCF//
PTCDI full cell using the designed Na–H2O–Ca electrolyte (Te = −72.6 °C, 
Tg = −117.1 °C). Benefiting from the high ionic conductivity of the elec-
trolyte (112.5 mS cm−1 at 25 °C, 0.8 mS cm−1 at −80 °C; Supplementary 
Table 6), the NaFeMnHCF/Na–H2O–Ca/PTCDI full cell can stably operate 
at temperatures ranging from 25 to −85 °C. We examined the perfor-
mance of both coin and pouch cells at various temperatures (Fig. 5d,e 
and Supplementary Figs. 22a–d and 23a–c). At 25 °C, the coin cell deliv-
ers a high energy density of 65.7 Wh kg–1 and remains at 91.1% capacity 
retention over 250 cycles at 4 C (Supplementary Fig. 22a,b). At −60 °C, 
the coin cell delivers a high energy density of 46.3 Wh kg–1 and remains 
at 85.1% capacity retention over 70 cycles at 0.5 C (Supplementary 
Fig. 22c,d). At −80 °C, the coin cell delivers a high energy density of 
20 Wh kg−1 and remains at 93.1% capacity retention over 20 cycles at 
0.1 C (Fig. 5e and Supplementary Fig. 23a). At −85 °C, the coin cell deliv-
ers an energy density of 12.5 Wh kg−1 at 0.1 C (Supplementary Fig. 23b). 
As shown in Fig. 5d and Supplementary Fig. 23c, the assembled pouch 
cell delivers 10.4, 6.9, 4.9 and 2.3 mAh at 25, −60, −80 and −85 °C, respec-
tively. Compared with reported aqueous Na-ion batteries13,15,42–46 (Sup-
plementary Fig. 24 and Supplementary Table 7), our demonstrated full 
cells achieve the best overall performance in terms of energy density, 
cycling lifespan and lower limit of operating temperature.

Conclusions
In summary, we recognized two liquid-to-solid low-temperature limits 
(Te and Tg) of H2O–solute systems, as well as the importance of designing 
anti-freezing electrolytes by choosing low-Te and strong-SCA H2O–sol-
ute systems for extremely low-temperature applications. We proposed a 
general strategy that low-Te and strong-SCA electrolytes can be realized 
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by creating multiple-solute systems via introducing assisted salts with 
high ionic-potential cations or cosolvents with high donor numbers. 
Taking the Na-based system as an example, the designed low-Te and 
strong-SCA Na–H2O–Al, Na–H2O–EG and Na–H2O–Ca electrolytes show 
ultralow Te (−53.5 to −72.6 °C) and Tg (−86.1 to −117.1 °C), enabling the 
superior performance of the NaFeMnHCF/Na–H2O–EG/NaTi2(PO4)3 full 
cell (80 Wh kg−1 at 25 °C with 70% capacity retention over 5,000 cycles at 
8 C, 63 Wh kg−1 at −60 °C and 0.05 C) and the NaFeMnHCF/Na–H2O–Ca/
PTCDI full cell (65.7 Wh kg−1 at 25 °C with 91.1% capacity retention over 
250 cycles at 4 C, 20 Wh kg−1 at −80 °C and 0.1 C, 12.5 Wh kg−1 at −85 °C 
and 0.1 C). The mechanisms of low-Te and strong-SCA properties are 
revealed to be associated with local structure coordination environ-
ment, H2O–salt interaction and a complex competing ordering effect. 
This work provides an effective guideline for anti-freezing electrolyte 
designs, marking an important development for extreme LTABs.

Methods
Materials and electrolytes
The NaFeMnHCF cathode was prepared by a simple precipitation 
method. Typically, 2 mmol Na4Fe(CN)6·10H2O and a corresponding 

proportion of FeSO4·7H2O (0.4 mmol) and MnSO4·H2O (1.6 mmol) 
were dissolved into 100 and 80 ml of H2O–EG hybrid solution (equal 
volume), respectively. Then, the latter solution was slowly dropped 
into the former with magnetic stirring at room temperature. After 
12 h, the precipitate formed was centrifuged and washed thoroughly 
with deionized water. The final product was obtained after drying in 
air under 80 °C for 12 h. The NaTi2(PO4)3 was synthesized through the 
sol-gel method according to the literature47. The PTCDI powder (CAS 
number 81–33–4) was purchased from TCI Co., Ltd. The HxEGy-2 m 
NaCF3SO3 electrolyte was made by dissolving the 2 mmol NaCF3SO3 
in 2 g of solvent (prepared by x% ml of H2O and y% ml of EG). The 1 m 
NaCF3SO3 + 2.5 m Al(CF3SO3)3 electrolyte was obtained by dissolving 
the 1 mmol NaCF3SO3 and 2.5 mmol Al(CF3SO3)3 in 1 g H2O. Other elec-
trolytes were prepared in a similar way to the HxEGy-2 m NaCF3SO3 and 
1 m NaCF3SO3 + 2.5 m Al(CF3SO3)3 electrolytes.

Electrochemical measurements
The NaFeMnHCF and NaTi2(PO4)3 electrodes were fabricated using 
active materials, carbon black and polytetrafluorothylene at a weight 
ratio of 7/2/1. The CR2032-type coin cells are used to assemble the 
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Fig. 5 | Battery demonstrations in designed electrolytes. a, The discharge 
curves of the NaFeMnHCF/Na–H2O–EG/NaTi2(PO4)3 full cell at various 
temperatures. The inset photograph shows the bulbs lighted by full cells at 
−70 °C. b,c, Rate capability and cycling stability of the NaFeMnHCF/Na–H2O–EG/

NaTi2(PO4)3 full cell at −60 °C (b) and 25 °C (c). d, Typical discharge curves of 
NaFeMnHCF/Na–H2O–Ca/PCDI pouch cell at temperatures ranging from −85 to 
25 °C. The inset is a photograph of the assembled pouch cell. e, Cycling stability 
of a NaFeMnHCF/Na–H2O–Ca/PCDI coin cell at −80 °C and 0.1 C.
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NaFeMnHCF/Na–H2O–EG/NaTi2(PO4)3 and NaFeMnHCF/Na–H2O–
Ca/PTCDI full cells (cathode/anode mass ratio was 1/0.9). The 
Swagelok-type cells (Ti foil was used to protect against proton corro-
sion) NaFeMnHCF/Na–H2O–Al/NaTi2(PO4)3 full cell (cathode/anode 
mass ratio was 1/1.5). The mass loading values for NaFeMnHCF and 
NaTi2(PO4)3, and PTCDI electrodes in coin cells were about 5.2 and 
4.1 mg cm−2, respectively. The mass loading values for NaFeMnHCF 
and PTCDI electrodes in pouch cells were about 12.4 and 10.6 mg cm−2, 
respectively. The reversible capacities of NaFeMnHCF/Na–H2O–EG/
NaTi2(PO4)3 and NaFeMnHCF/Na–H2O–Ca/PTCDI full cells are shown on 
the basis of cathode mass, whereas the reversible capacity of NaFeMn-
HCF/Na–H2O–Al/NaTi2(PO4)3 full cell is displayed on the basis of anode 
mass. The energy densities of all full cells were calculated by total 
active mass of cathode and anode. All charge–discharge curves were 
performed using the NEWARE Battery Test System (catalogue no. 
CT-4008-5V50mA-164).

Material characterizations
DSC tests were carried out in DSC200F3 at a temperature range from 
25 to −150 °C. All samples had mesophase carbon micro-beads added 
to promote nucleation48. The cooling–heating rates were 20 K min−1 
(to keep to the same testing conditions of Cl-based and NO3-based 
H2O–salt systems in the literature24) for 10 wt% LiNO3 and 10 wt% KCl 
aqueous solution samples. The cooling–heating rates of other samples 
were 10 K min−1. The Raman spectroscopy for the electrolyte OH stretch 
was conducted on a HORIBA HR Evolution microscope using a 532 nm 
excitation laser. The 1H 2D-DOSY-NMR spectra were produced using 
a Bruker DRX 600 spectrometer. The structures were characterized 
using an X’Pert Pro MPD X-ray diffractometer (D8 Bruker) with Cu Kα 
radiation (λ = 1.5405 Å). X-ray photoelectron spectra were recorded 
with a spectrometer that had Mg/Al Kα radiation (ESCALAB 250 Xi, 
ThermoFisher). The morphologies of the electrodes were obtained 
by scanning electron microscopy (Hitachi-S4800). The thermo-
gravimetric analysis for NaFeMnHCF cathode was conducted on a 
NETZSCH-STA449C thermal analysis device. The elemental ratios of Na, 
Fe and Mn in the NaFeMnHCF cathode were determined by inductively 
coupled plasma atomic emission spectrometry. For low-temperature 
tests, the cell performance was measured in ShangHai BoYi (B-T-107D 
and B-T-80-E) low-temperature ovens at temperatures ranging from 
−85 to 25 °C. The reference electrode for testing the electrochemical 
window at various temperatures was a Zn2+/Zn electrode with 7.5 m 
ZnCl2 electrolyte (−0.67 V versus a standard hydrogen electrode). 
Three NaFeMnHC/Na–H2O–EG/NaTi2(PO4)3 coin cells (fully charged 
at room temperature) were used to power light emitting diode bulbs 
at −70 °C. The ionic conductivities of electrolytes were measured via 
an electrochemical impedance spectrum using the Pt electrode equip-
ment purchased from Shanghai Russell Technology Co., Ltd. The linear 
sweep voltammetry experiments were conducted using a VMP3 elec-
trochemical testing unit (BioLogic).

Computations
The DFT calculations were carried out by using the Vienna ab initio 
simulation package49. The projector augmented-wave potentials50 
generated with Perdew–Burke–Ernzerhof generalized gradient approx-
imation51 were used. The van der Waals interaction was taken into 
account by using the rev-vdWDF2 functional52. The plane wave cut-off 
energy was set to 400 eV and the Γ point was used for the Brillouin zone 
sampling. The AIMD simulations were performed in a canonical ensem-
ble (NVT) by using a Nosé thermostat53,54, with a time step of 1 fs. All 
molecular dynamics simulations were run for 40 ps at 400 K first, then 
run for 20 ps at 300 K to yield the data for analysis. The water calcula-
tion model contained 55 H2O molecules within a 11.8 × 11.8 × 11.8 Å3 
cubic supercell. The 4.5 m NaCF3SO3 electrolyte calculation model 
contained two NaCF3SO3 and 25 H2O within a 10 × 10 × 10 Å3 cubic super-
cell. The Na–H2O–Al electrolyte calculation model contained one 

NaCF3SO3, two Al(CF3SO3)3 and 55 H2O within a 13.5 × 13.5 × 13.5 Å3 cubic 
supercell. The Na–H2O–EG electrolyte calculation model contained 
two NaCF3SO3, nine (CH2OH)2 and 28 H2O within a 13.0 × 13.0 × 13.0 Å3 
cubic supercell. The Na–H2O–K electrolyte calculation model con-
tained one NaCF3SO3, two KCF3SO3 and 55 H2O within a 
13.0 × 13.0 × 13.0 Å3 cubic supercell. The Na–H2O–ACN electrolyte 
calculation model contained two NaCF3SO3, ten CH3CN and 31 H2O 
within a 13.0 × 13.0 × 13.0 Å3 cubic supercell. All initial electrolyte struc-
tures of calculation models were constructed using the Packmol soft-
ware55 according to the experimental density. The ice (mp-697111) and 
NaCF3SO3·H2O (mp-601202) crystal structures comes from the website 
https://materialsproject.org/. The average binding energy of the H2O 
molecule was calculated using DFT based on the structure of the AIMD 
snapshot. The binding energy of an H2O molecule in electrolyte is 
calculated by the formula as follows: Eb = EH2O + E1electrolyte − E0

electrolyte, 
where the Eb is the binding energy of the H2O molecule in electrolytes, 
EH2O is energy of the H2O molecule in a vacuum, E0

electrolyte is energy of 
the electrolyte structure model obtained by AIMD simulation and 
E1

electrolyte is energy of the calculation model whose water numbers are 
one less than the electrolyte model obtained by AIMD simulation. The 
average H-bond numbers were calculated on the basis of the geometri-
cal criterion of O–H···O angle <30° and the distance of two O being less 
than 0.35 nm.

Data availability
The datasets analysed and generated during the current study are 
included in the paper and its Supplementary Information.
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