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Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction

imaging of single protein molecules. Various algorithms have been developed to

determine the orientation of each single-particle diffraction pattern and

reconstruct the 3D diffraction intensity. Most of these algorithms rely on the

premise that all diffraction patterns originate from identical protein molecules.

However, in actual experiments, diffraction patterns from multiple different

molecules may be collected simultaneously. Here, we propose a predicted

model-aided one-step classification–multireconstruction algorithm that can

handle mixed diffraction patterns from various molecules. The algorithm uses

predicted structures of different protein molecules as templates to classify

diffraction patterns based on correlation coefficients and determines orienta-

tions using a correlation maximization method. Tests on simulated data

demonstrated high accuracy and efficiency in classification and reconstruction.

1. Introduction

The X-ray free-electron laser (XFEL) generates ultrashort

and extremely strong pulses enabling the capture of single-

particle diffraction signals before radiation damage takes

place (Chapman et al., 2014). The first 3D reconstruction of a

biomacromolecule from XFEL single-particle diffraction

patterns was achieved using the Giant Mimivirus, attaining a

structural resolution of 125 nm (Seibert et al., 2011; Ekeberg et

al., 2015). After that, more and more successful 3D recon-

structions of smaller molecules, such as the Melbourne virus

(Lundholm et al., 2018), Rice Dwarf virus (Munke et al., 2016;

Kurta et al., 2017), bacteriophage PR772 (Reddy et al., 2017;

Assalauova et al., 2020) and protein Escherichia coli GroEL

(Ekeberg et al., 2024) have been reported at much better

resolutions. These advancements in research have experimen-

tally validated the feasibility of single-particle imaging (SPI)

techniques using XFELs. In SPI experiments, isolated particles

in random orientations are injected into the X-ray pulses and the

2D diffraction patterns can be recorded in a 2D detector. The

crucial step of the data processing for XFELs is finding the

orientations of the recorded diffraction patterns in reciprocal

space and reconstructing the 3D diffraction intensity.

Researchers have proposed many algorithms to determine

the orientation of single-particle diffraction patterns. Some of

the methods focus on finding the common lines or arcs along

the intersection of pairs of patterns and then determine the

relative orientations of all patterns (Shneerson et al., 2008;

Bortel & Tegze, 2011; Yefanov & Vartanyants, 2013). Manifold

embedding methods try to map the diffraction patterns in

high-dimensional manifest space to a 3D space of orientations

https://doi.org/10.1107/S2052252524007851
https://journals.iucr.org/m
https://scripts.iucr.org/cgi-bin/full_search?words=single-particle%20imaging&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20free-electron%20lasers&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20free-electron%20lasers&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=classification%20algorithm&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=orientation%20determination%20algorithm&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:dingwei@iphy.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252524007851&domain=pdf&date_stamp=2024-08-28


(Fung et al., 2008; Giannakis et al., 2012). Correlation-based

approaches do not find the orientation of each diffraction

pattern. Instead, these methods reconstruct 3D diffraction

intensity by calculating the intensity correlations of diffraction

patterns (von Ardenne et al., 2018; Zhao et al., 2024). The

multi-tiered iterative phasing method can find the orientations

of patterns and recover the diffraction phases simultaneously

(Donatelli et al., 2017). Several methods employ the concept

of expectation maximization to iteratively refine the orienta-

tions of diffraction patterns by comparing them with

continuously updated 3D diffraction intensities, such as the

correlation maximization (CM) algorithm (Tegze & Bortel,

2012, 2021) and the expansion maximization compression

algorithm (Loh & Elser, 2009; Ayyer et al., 2016). In our past

work, we have introduced a predicted model-aided algorithm

for orientation determination and phase retrieval, which has

been successfully tested on various simulated datasets (Jiao et

al., 2024).

Although there are many methods that have demonstrated

considerable effectiveness in dealing with XFEL data, almost

all of them share a common hypothesis that all diffraction

patterns are from identical particles. However, this is not

always the case. In many cases, polymers or protein complexes

could be formed from different kinds of monomers at room

temperature and pressure, or some complexes undergo

spontaneous dissociation after purification (Xu & Dang, 2022;

Liu & Wang, 2023), which is a phenomenon commonly noted

in cryo-electron microscopy (cryo-EM) studies. Fortunately,

cryo-EM collects 2D projections of particles, allowing

researchers to easily separate monomers and polymer/

complexes through direct visual observation. But in single-

particle diffraction experiments, the 2D diffraction patterns

are noisy and non-intuitive, making it a significant challenge to

figure out whether a pattern originates from a monomer or

polymer/complexes. Therefore, a reconstruction algorithm

that can handle mixed diffraction patterns from various

molecular types is crucial for the practical application of

single-molecule imaging techniques.

In this paper, we develop a predicted model-aided classifi-

cation–reconstruction algorithm that can classify different

molecules from mixed diffraction patterns. The predicted

structures were introduced as templates to classify diffraction

patterns and the CM algorithm was employed to iteratively

optimize the orientations and 3D diffraction intensities.

Simulated data tests demonstrate that our algorithm achieves

very high accuracy in classifying mixed diffraction patterns,

successfully identifying their orientations and reconstructing

the 3D diffraction intensity. Moreover, our algorithm allows

for the one-step 3D reconstruction of multiple 3D diffraction

intensities, thereby substantially increasing computational

efficiency.

2. Methods

2.1. Simulation of diffraction patterns

Based on diffraction theory, a diffraction pattern corre-

sponds to a spherical section cut by the Ewald sphere through

the 3D intensity in reciprocal space. Given the diffraction

conditions, including the X-ray wavelength, the distance from

the sample to the detector, and the physical shape of the

detector, one can determine the reciprocal space vector q

corresponding to each pixel in the diffraction pattern. The

diffraction intensity can be calculated using the following

formula:

IðqÞ ¼ Jr2
e FðqÞ
�
�

�
�2�; ð1Þ

where J is the incident X-ray photon fluence, re is the classical

electron radius and � is the solid angle subtended by the

corresponding pixel on the detector. F(q) is the structure

factor calculated by performing Fourier transform of the

protein electron density map. Considering the non-uniform

coordinates of diffraction points in reciprocal space, a non-

uniform fast Fourier transform (NUFFT) (Fessler & Sutton,

2003; Geng et al., 2021) was employed to avoid interpolation

errors. The orientation of each diffraction pattern is entirely

random through the random selection of Euler angles for

molecular rotation.

Two mixtures of protein systems were used to evaluate our

algorithm. One is SPARTA protein (Gao et al., 2024), which is

a short prokaryotic argonaute protein and the associated TIR-

APAZ proteins. It forms three molecular configurations:

monomers, dimers and tetramers, with respective residue

counts of 1023, 2046 and 4092. The resolution of the simulated

diffraction pattern is 6.6 Å. The mixed diffraction patterns

include 20 000 patterns from monomers, 10 000 patterns from

dimers and 5000 patterns from tetramers. The other is the

binary protein complex platelet integrin �IIb–�3 (Adair et al.,

2023), and the mixed diffraction patterns originated from

complex integrin �IIb–�3, monomers of integrin �IIb and

integrin �3. The resolution of the simulated diffraction pattern

is 13.1 Å. The mixed diffraction patterns include 20 000

patterns of the integrin �IIb–�3 complex, and 10 000 patterns

each for the dissociated monomers, integrin �IIb and integrin

�3.

Poisson noise was introduced into the diffraction patterns,

and the intensity of the central 10 � 10 pixels was removed to

simulate a beam stop. In the simulated light source, each pulse

incorporates 2 � 1012 photons with a spot diameter of 0.1 mm.

Considering the fluctuations in the photon flux of real light

sources, a Gaussian fluctuation with a standard deviation of

10% was introduced into the photon flux. A more detailed

description of the simulation diffraction parameters is

provided in Table 1. The simulated diffraction patterns are

shown in Figs. S1–S2 of the supporting information.

2.2. Obtaining initial templates using AlphaFold2

The structures of SPARTA monomer, dimer, tetramer and

the integrin �IIb–�3 complex were predicted by local

AlphaFold2 (Jumper et al., 2021). And the predicted structures

of integrin �IIb and integrin �3 were directly downloaded

from the AlphaFold2 database (https://alphafold.com/). A

comparison between the predicted and experimental struc-

tures is illustrated in Fig. 1, where yellow represents the
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predicted structures and blue denotes the experimental

structures. The figure demonstrates that, for the SPARTA

system, the predicted structure of the monomer is the most

accurate, well matching the experimental structure. As the

protein size increases, the prediction becomes more challen-

ging, with the predicted structure of the tetramer exhibiting

significant deviation from the experimental structure. Another

notable distinction in the SPARTA system is that the experi-

mental structure includes the gRNA–tDNA fragment, which is

absent in the predicted structure. The root-mean-square

deviations (RMSDs) between the predicted and actual struc-

tures was calculated using Phenix (Adams et al., 2010), and the

results for the monomer, dimer and tetramer are 2.18, 3.81 and

10.68 Å, respectively. In the integrin �IIb–�3 system, a flexible

�-helix present in both monomers leads to the primary

differences between the predicted and experimental struc-

tures. The RMSD for the integrin �IIb–�3 complex, integrin

�IIb monomer and integrin �3 monomer are 3.05, 3.17 and

1.58 Å, respectively.

After obtaining the predicted structures, each atom was

treated as a Gaussian peak to generate an electron density

map. By sampling in reciprocal space based on the parameters

used in the simulated diffraction, the electron density map is

transformed into reciprocal space via NUFFT, and then

squared to calculate the 3D diffraction intensity. These 3D

diffraction intensities in reciprocal space are to be utilized as

initial templates in the one-step classification–multi-

reconstruction algorithm.

2.3. One-step classification-multireconstruction algorithm

Our algorithm utilizes predicted 3D diffraction intensities

as the initial templates for classification according to the
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Figure 1
Comparison of predicted and real molecular structures. Blue – real structure; yellow – predicted structure. (a) SPARTA protein system: monomers,
dimers and tetramers. (b) Integrin �IIb–�3 system: the integrin �IIb–�3 complex and its dissociated monomers, integrin �IIb and integrin �3.

Table 1
Parameters used in the simulation of diffraction patterns.

SPARTA system (monomer, dimer, tetramer) Integrin �IIb�3 system (�IIb–�3, �IIb, �3)

Protein SPARTA monomer SPARTA dimer SPARTA tetramer Integrin �IIb–�3 Integrin �IIb Integrin �3

PDB code 8isz† 8k9g† 8it1† 8t2v‡ 8t2v (chain A) 8t2v (chain B)
No. of amino acid residues 1023 2046 4092 1770 1008 762
No. of patterns 20000 10000 5000 20000 10000 10000
XFEL wavelength (Å) 1 1
Photon flux (photons per pulse) 2 � 1012 2 � 1012

Beam focus size (mm) 0.1 0.1
Detector size (pixels) 512 � 512 512 � 512

Pixel size (mm) 300 300
Beam stop size (pixels) 10 � 10 10 � 10
Sample-to-detector distance (m) 0.5 1
Resolution of pattern (Å) 6.6 13.1

† From the work by Gao et al. (2024). ‡ From the work by Adair et al. (2023).



similarity between each diffraction pattern and the templates.

At the same time, the best orientation for each diffraction

pattern is determined, and then diffraction patterns within the

same class are merged based on their best orientation into a

set of updated 3D intensities, serving as templates for the next

round of classification. After several iterations, diffraction

patterns from different molecules will be classified and

reconstructed at once. Fig. 2 provides a concise overview of

the algorithm’s core procedure. Specifically, our algorithm is

divided into the following steps:

(1) Preprocessing diffraction patterns and 3D diffraction

intensities. All diffraction images and predicted 3D intensities

are downsampled by a factor of two to enhance the signal-to-

noise ratio and improve computational efficiency.

(2) Cutting the 3D diffraction intensities in all possible

orientations. Orientations are determined using Euler angles,

and by appropriately selecting the values of Euler angles,

uniform sampling of all possible orientations within the 3D

space can be ensured. Details of the 3D orientation sampling

are provided in Appendix A. Based on the parameters used in

the simulated diffraction, the Ewald sphere is calculated,

rotated to the specified orientation and the 3D diffraction

intensities are then cut to yield the 2D diffraction slices.

(3) Calculating the correlation coefficient between each

diffraction pattern and all the 2D diffraction slices. The

Pearson correlation coefficient (Lee Rodgers & Nicewander,

1988) is employed to evaluate the similarity between a

diffraction pattern and a slice. The formula for the coefficient

is provided as follows:

CC Pi; Si

� �
¼

P
i Pi � �P
� �

Si � �S
� �

P
i Pi � �P
� �2

h i1=2 P
i Si � �S
� �2

h i1=2
; ð2Þ

where

�P ¼
1

N

XN

i¼1
Pi;

where Pi and Si represent the corresponding pixels in the

pattern and the slice, respectively. For each diffraction pattern,

the correlation coefficient is calculated with all slices derived

from each 3D intensity. CCmax(n, m) represents the maximum

value among the correlation coefficients between the nth

diffraction pattern and all slices of the mth 3D intensity. To

accelerate computation, both the diffraction pattern and the

slice have been transformed into polar coordinates and then

FFT is employed; details are provided in Appendix A.

(4) Classification of diffraction patterns according to their

correlation coefficients. For each diffraction pattern, we have

calculated a set of CCmax, where the number of CCmax is equal

to the number of classes. For each diffraction pattern, its
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Figure 2
Diagram of the one-step classification–multireconstruction algorithm. This process classifies mixed diffraction patterns by comparing them with multiple
templates from predicted structures while simultaneously determining the orientation to reconstruct multiple 3D diffraction intensities. Classification
results and orientations are continuously refined through iteration.



associated CCmax is sorted, where CC1
max denotes the highest

value within that pattern, CC2
max represents the second highest

within the same pattern and so on. Only diffraction patterns

whose CCmax satisfy the following criteria will be classified:

CC1
max � CC2

max > 0:02: ð3Þ

This diffraction pattern will be assigned to the class corre-

sponding to CC1
max and used to reconstruct 3D diffraction

intensity. Any diffraction pattern failing to satisfy equation (3)

will be assigned as unclassified and will not be used for

reconstructing any 3D intensities. Setting this threshold for the

correlation coefficient can effectively lower the proportion of

incorrectly classified diffraction patterns. During the early

iterations, it is common for many diffraction patterns to have

comparable CCmax values across various classes, hence being

assigned as unclassified. However, with ongoing iterations, the

quality of 3D intensities is enhanced, diminishing the number

of unclassified diffraction images.

(5) Reconstruction of updated 3D intensities. Following

classification, diffraction patterns within each class are utilized

to reconstruct a new series of 3D intensities, based on their

best orientation indicated by the CCmax. In the beginning

iterations, the number of diffraction patterns used for recon-

struction is relatively low due to a high number of unclassified

diffraction patterns. As iterations proceed, the number of

diffraction patterns in each class will gradually increase, and

the best orientation of each diffraction pattern will become

increasingly accurate, thereby improving the quality of the

reconstructed 3D intensities.

(6) Iterate from step (2) to (5) until the classification and

best orientation of each diffraction pattern stabilize. Of note,

at every classification step, not only the unclassified diffraction

patterns but all diffraction patterns undergo reclassification.

Throughout this process, some misclassified diffraction

patterns will be corrected.

2.4. Computational environment

The algorithm was written in C, Python and Bash, utilizing

MPI parallelization to accelerate performance. The compu-

tations were executed on a computer featuring an Intel Core

i7-12700 processor, which has 12 cores and 20 threads. All

calculations were performed on the CPU, without using any

GPU resources. For a single iteration of the algorithm on

35 000 diffraction patterns and 3 classes, the runtime was

approximately 18 min. Molecular graphics were made using

UCSF Chimera (Pettersen et al., 2021).

3. Results and discussion

3.1. Mixed diffraction patterns of monomers, dimers and

tetramers

To assess the efficacy of the algorithm, we first chose the

SPARTA protein system. Mixed diffraction patterns were

simulated, with 20 000 originating from monomers, 10 000

from dimers and 5000 from tetramers. The parameters used

for the simulation are presented in Table 1. Predicted

diffraction intensities from three types of protein molecules

are employed as initial templates for classifying mixed

diffraction patterns.

Following the initial classification, 11 355 diffraction

patterns were identified as monomers, 5395 as dimers and 3105

as tetramers, as depicted in the Fig. 3(a). Among all success-

fully classified diffraction patterns, the accuracy of classifica-

tion reached a relatively high 83.00%, as shown in the Table 2.

The trade-off is that a significant proportion, specifically

15 145 diffraction patterns (43% of all patterns), were assigned

as unclassified after the first round of classification. Simulta-

neously with classification, the optimal orientation was iden-
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Figure 3
Classification results of the SPARTA system. (a) Classification results of
mixed diffraction patterns during the iterative process. Red – diffraction
patterns classified as tetramers; yellow – diffraction patterns classified as
dimers; blue – diffraction patterns classified as monomers; gray –
unclassified diffraction patterns. (b) Classification results of different
molecular diffraction patterns during the iterative process. The first row
contains 20 000 patterns diffracted by monomers, the second row contains
10 000 patterns diffracted by dimers and the third row contains 5000
patterns diffracted by tetramers. Green – diffraction patterns classified as
tetramers; orange – diffraction patterns classified as dimers; blue –
diffraction patterns classified as monomers; gray – unclassified diffraction
patterns.



tified for each diffraction pattern. Based on the classification

and orientation results, three new 3D intensities were recon-

structed to be used as templates in the next iteration.

In the second iteration, a greater number of diffraction

patterns were successfully classified: 15 418 as monomers, 8232

as dimers and 4938 as tetramers. Moreover, the classification

accuracy increased to 93.07%, indicating that the 3D inten-

sities reconstructed in the first round were superior to the

predicted intensities. In subsequent iterations, simultaneous

advancements were made in the number of successfully clas-

sified diffraction patterns, classification accuracy, orientation

precision and the quality of reconstructed 3D intensities. After

ten iterations, 33 970 diffraction patterns (97% of all patterns)

were successfully classified, with a remarkably high accuracy

of 99.94%.

Tracking the classification results of diffraction patterns

from a single type of molecule throughout the iterative

process is highly insightful. As illustrated in Fig. 3(b), each row

represents all diffraction patterns from the same molecule,

with different colors indicating classification into distinct

classes. In the first classification, a significant portion of

diffraction patterns from three type of molecule remained

unclassified, with a minor fraction classified to an incorrect

class. Among them, the dimer diffraction patterns showed the

highest misclassification rate, with 20.46% of the patterns

misidentified as monomers. This could be attributed to the

similarity in diffraction intensities between dimers and

monomers at certain orientations. As the iterations

progressed, misclassified diffraction patterns quickly disap-

peared. After ten iterations, a small portion of diffraction

patterns from monomers and dimers remained unclassified.

On the other hand, among the 5000 diffraction patterns of

tetramers, 4999 were correctly classified as tetramers. This can

be explained by the larger molecular size of tetramers,

resulting in higher signal-to-noise ratios in their diffraction

patterns, making them easier to classify.

We calculated the correlation coefficients between the

reconstructed 3D diffraction intensities from the final results

and the true intensities across various resolution shells, as

shown in Fig. 4. Despite having the fewest diffraction patterns,

the tetramers achieved the highest final resolution of 16 Å due

to their stronger diffraction signals. The resolutions of the 3D

intensities for dimers and monomers are 19 and 21 Å,

respectively.

3.2. Mixed diffraction patterns of complex and dissociated

monomers

The algorithm was also tested using the integrin �IIb–�3

complex system for further evaluation. We simulated the

dissociation of complexes, including 20 000 diffraction

patterns of the integrin �IIb–�3 complex, and 10 000 diffrac-

tion patterns each for the dissociated monomers, integrin �IIb

and integrin �3. The parameters used for the simulation are

presented in Table 1.

In the first iteration, 17 117 diffraction patterns were clas-

sified as complex, while 7406 and 6950 diffraction patterns

were classified as monomer �IIb and �3, respectively, as

shown in Fig. 5(a). And the number of unclassified diffraction

patterns was 8527 (21% of all patterns). Among all success-

fully classified diffraction patterns, the accuracy rate of clas-

sification reached as high as 99.71%, as shown in Table 3. The

excellent outcomes of the initial classification are potentially

due to the more accurate predicted structures of these three

proteins, which provided improved 3D intensity templates for

classification. As the iterations progressed, an increasing

number of diffraction patterns were successfully classified,

with corresponding enhancements in classification accuracy.

By the second iteration, 37 867 diffraction patterns had been

successfully classified, achieving an accuracy rate of 99.80%.

The algorithm was nearing convergence, with only minor

changes in classification results in subsequent iterations.

The classification results for diffraction patterns of each

type of molecule are shown in Fig. 5(b) separately. The
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Figure 4
Correlation coefficients between reconstructed diffraction intensities and
real intensities of the SPARTA protein system in different resolution
shells. Red curve – monomer; blue – dimer; yellow – tetramer. Dotted line
indicates the resolution of the reconstructed 3D diffraction intensity,
where the CC drops to 0.5. The resolution of the monomer, dimer and
tetramers are 21, 19 and 16 Å, respectively.

Table 2
Classification accuracy of the SPARTA system.

Classification accuracy = number of correct classified patterns/number of successful classified patterns.

1 2 3 4 5 6 7 8 9 10

Classification accuracy (%) 83.00 93.07 96.40 98.24 99.17 99.78 99.87 99.93 99.94 99.94



diffraction intensities of the whole complexes are the highest,

hence the classification of their patterns is relatively simple,

with 19 915 of 20 000 diffraction patterns accurately classified

as complexes after ten iterations. And the diffraction patterns

of monomers �IIb and �3 exhibit weaker signals, posing a

greater challenge for classification. The remaining unclassified

diffraction patterns are predominantly from these two types of

molecules. Despite the challenges, the percentage of unclas-

sified particles remains below 5%.

The orientation of each diffraction pattern was determined

simultaneously with classification, leading to the reconstruc-

tion of three 3D diffraction intensities based on these orien-

tations. Fig. 6 displays the correlation coefficients between the

reconstructed 3D intensities and the true 3D intensities across

different resolution shells. The complexes have the highest

number of diffraction patterns and strongest diffraction

signals, resulting in the highest resolution of the reconstructed

3D intensities, reaching 27 Å. For the two monomers, the

residue count of integrin �IIb is slightly higher than that of

integrin �3 (with values of 1008 and 762, respectively), and the

quantity of diffraction patterns utilized in the reconstruction is

also slightly greater for integrin �IIb (9576 compared with

9006), resulting in a resolution of 31 Å, marginally higher than

the 33 Å resolution of integrin �3.

4. Conclusions

This research presented a one-step classification–multi-

reconstruction algorithm designed to separate different

molecules from mixed diffraction patterns while simulta-

neously reconstructing multiple 3D diffraction intensities. The
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Table 3
Classification accuracy of the integrin �IIb–�3 complex system.

Classification accuracy = number of correct classified patterns/number of successful classified patterns.

1 2 3 4 5 6 7 8 9 10

Classification accuracy (%) 99.71 99.80 99.81 99.82 99.82 99.81 99.81 99.81 99.81 99.81

Figure 5
Classification results of the integrin �IIb–�3 system. (a) Classification
results of mixed diffraction patterns during the iterative process. Red –
diffraction patterns classified as the integrin �3 monomer;
yellow – diffraction patterns classified as the integrin �IIb monomer;
blue – diffraction patterns classified as the integrin �IIb–�3
complex; gray – unclassified diffraction patterns. (b) Classification results
of different molecular diffraction patterns during the iterative process.
The first row contains 20 000 patterns diffracted by the integrin �IIb–�3
complex, the second row contains 10 000 patterns diffracted by the
integrin �IIb monomer and the third row contains 10 000 patterns
diffracted by the integrin �3 monomer. Green – diffraction patterns
classified as the integrin �3 monomer; orange – diffraction patterns
classified as the integrin �IIb monomer; blue – diffraction patterns clas-
sified as the integrin �IIb-�3 complex; gray – unclassified diffraction
patterns.

Figure 6
Correlation coefficients between reconstructed diffraction intensities and
real intensities of the integrin �IIb–�3 system in different resolution
shells. Red curve – integrin �IIb–�3 complex; blue – integrin �IIb
monomer; yellow – integrin �3 monomer. Dotted line indicates the
resolution of the reconstructed 3D diffraction intensity, where CC drops
to 0.5. The resolution of the integrin �IIb–�3 complex, integrin �IIb
monomer and integrin �3 monomer are 27, 31 and 33 Å, respectively.



classification is achieved by comparing correlation coefficients

between a diffraction pattern and various templates generated

from predicted structures. At the same time, the orientation of

each diffraction pattern is determined by the correlation

coefficient and used to update the 3D intensity template.

We set a threshold for the difference in correlation coeffi-

cients, marking diffraction patterns with approximate simi-

larity to several templates as unclassified. This strategy

effectively minimizes the quantity of unclassified diffraction

patterns, thereby avoiding potential cascading errors and

enhancing the stability and robustness of the algorithm. In this

paper, a threshold of 0.02 was used, selected based on

experience and recommended as a suitable value for most

cases. However, this threshold can be adjusted in different

cases, depending on the trade-off between the number of

patterns used in the reconstruction and the accuracy of the

classification. Moreover, testing indicated that the probability

of misclassifying diffraction patterns is greatest in the first

iteration and decreases with further iterations. Therefore, an

automatic method for selecting and adjusting the threshold is

beneficial. For example, using a larger threshold at the start of

the iterations ensures classification accuracy, and then redu-

cing the threshold during the iterations allows more diffrac-

tion patterns to be classified.

The effectiveness and accuracy of this algorithm in classi-

fication and orientation determination were validated using

simulated data. Unfortunately, the absence of experimental

data prevents us from testing our algorithm with real data at

this time. Recently, Ekeberg et al. (2024) utilized XFELs to

capture diffraction patterns of single protein molecules and

reconstructed their 3D structures. This significant advance-

ment propelled SPI from viral to protein specimens, marking a

major leap forward. With the ongoing development and

improvement of XFEL sources and single-particle experi-

mental techniques, it is certain that they will be applied to a

broader range of protein samples. We look forward to

applying our algorithm to real experimental data in the future,

aiding in the single-particle reconstruction of proteins.

APPENDIX A

Orientation sampling and correlation coefficient calculation

The orientation in 3D space can be represented by a set of

Euler angles �, �, and �, as illustrated in Fig. 7. We define the

incident X-ray direction as the red Z-axis direction. Conse-

quently, molecular rotation about the red Z axis does not

modify the diffraction pattern, but merely induces self-rota-

tion. Therefore, � is treated differently from � and �; a

specified set of � and � defines a diffraction pattern, and �

determines the self-rotation angle. For a complete exploration

of every orientation within 3D space, the ranges of �, � and �

are set to 2�, � and 2�, respectively. To ensure uniform

sampling, it is necessary to specifically design the sampling

intervals of � and �, as described by the following equation:

�� ¼ ��= sin �; ð4Þ

where �� and �� represent the sampling intervals of � and �,

respectively. In our test, �� is set to 0.1 radians, corresponding

to 1273 distinct orientations throughout the entire 3D space.

For each diffraction pattern, the correlation coefficient must

be calculated with all slices at every self-rotation angle.

Diffraction patterns and slices in Cartesian coordinates are

converted into polar coordinates to reduce the amount of

computation. Subsequently, angular normalization within each

radius determined is applied to diffraction patterns and slices

in polar coordinates, resulting in a mean of zero and a variance

of one. Accordingly, the Pearson correlation coefficient for a

diffraction pattern Pn(r, �) and a slice SR(r, �) at a specified

self-rotation angle � is represented by

CCðn;R; �Þ ¼
1

Nr

Xrmax

rmin

X2�

�¼0

Pnðr; �ÞSRðr; � þ �Þ; ð5Þ

where Pn(r, �) represents the nth pattern in polar coordinates,

SR(r, � + �) represents a slice with an R orientation, which has

self-rotated by an angle of �. Specifically, due to the absence of

low-resolution data and the poor signal-to-noise ratio at high

resolution in the diffraction patterns, both regions are

excluded from correlation coefficient calculations by setting

boundaries with rmin and rmax. According to the cross-corre-

lation theorem, by performing Fourier transforms on both the

diffraction patterns and slices, the correlation coefficients for

all self-rotation angles can be computed at once:

CCðn;RÞ ¼
1

Nr

Xrmax

rmin

F� 1 F Pn r; hð Þ
� �

F� SR r; hð Þ
� �� �

; ð6Þ

where h is a vector of azimuthal angles with a range of 2�, the

operator F represents 1D Fourier transforms about vector h,

F� represents the conjugate of 1D Fourier transforms and

F� 1 is the inverse 1D Fourier transforms. CC(n, R) contains a
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Figure 7
Diagram of Euler angles used in orientation sampling. The red Z axis
represents the direction of the incident X-rays. A specified set of � and �
defines a diffraction pattern, and � determines the self-rotation angle.



set of correlation coefficients, each corresponding to a

different self-rotation angle, with the highest one chosen to

represent the correlation between the diffraction pattern and

the slice.
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