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The advent of hybrid pixel array detectors and fully automated data acquisition

workflows has revolutionized synchrotron light sources, enabling high-

throughput collection of diffraction data from biological macromolecular crys-

tals. However, these advancements have also created an urgent need for efficient

and fully automated data processing pipelines. To address this challenge, we

introduce AutoPD, an open-source high-throughput meta-pipeline for auto-

mated data processing and structure determination. Developed for the biolo-

gical macromolecular crystallography beamline at the High Energy Photon

Source in Beijing, AutoPD is also accessible to other academic and synchrotron

users. By integrating cutting-edge parallel computing strategies, AlphaFold-

assisted molecular replacement, a direct-method-based dual-space-iteration

approach for model building, and an adaptive decision-making strategy that

dynamically selects the optimal modeling pathway based on data quality and

intermediate results, AutoPD streamlines the process from raw diffraction data

and sequence files to high-precision structural models. When benchmarked

against 186 recently deposited X-ray diffraction datasets from the Protein Data

Bank, AutoPD successfully determined structures for 92% of cases, achieving

map–model correlation values of at least 0.5 between density-modified electron

density maps and the generated models. These results highlight the robustness

and efficiency of AutoPD in addressing the challenges of modern structural

biology, setting a new standard for automated structure determination.

1. Introduction

The field of macromolecular crystallography is undergoing a

transformative shift driven by rapid technological advance-

ments. The introduction of hybrid pixel array detectors

(Henrich et al., 2009; Johnson et al., 2014; Casanas et al., 2016)

and the integration of automation and artificial intelligence

(AI) into data collection processes have dramatically

increased the speed and capacity of data acquisition. These

developments have enabled unprecedented levels of data

generation but have also created challenges in efficiently

processing and analyzing the resulting datasets. In parallel,

fields such as drug discovery have witnessed a surge in data

generation, exemplified by methods like virtual synthon

hierarchical enumeration screening (Sadybekov et al., 2022).

Pharmaceutical companies and research institutions now rely

on massive datasets encompassing molecular structures,

biological pathways and disease mechanisms, yet experimental

verification remains a critical bottleneck. The convergence of

advanced synchrotron radiation sources and the vast volume
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of candidate data has ushered structural biology into an era

characterized by massive data processing demands. This

paradigm shift necessitates high-throughput data processing

pipelines capable of efficiently managing the deluge of data

generated by modern light sources. Beyond addressing the

requirements of large-scale synchrotrons, academic and

industry users alike need data processing solutions that can be

deployed locally, ensuring both confidentiality and security.

Therefore, there is an urgent demand for an open-source, fully

automated, high-throughput data processing pipeline that

supports both large-scale synchrotron facilities and localized

installations, offering versatility to meet diverse user needs.

The emergence of high-performance parallel computing

combined with automated data processing platforms provides

a critical solution to these challenges. Several beamline-

specific platforms, including Auto-Rickshaw (Panjikar et al.,

2005; Panjikar et al., 2009), ISPyB (Delageniere et al., 2011;

Fisher et al., 2015), DA+ (Wojdyla et al., 2018) and Aquarium

(Yu et al., 2019), have been developed with automated data

processing capabilities for structure determination. However,

these platforms typically either function as comprehensive

management systems, incorporating broader sample handling

and workflow orchestration, or require tight integration with

beamline-specific hardware. This complexity significantly

restricts their deployment and accessibility in home labora-

tories and other synchrotron facilities. In contrast, initiatives

such as the Gold Standard (Bernstein et al., 2020) for

macromolecular crystallography diffraction data offer

promising potential for flexible data handling independent of

specific beamline platforms. Such efforts pave the way for

developing universally accessible data processing software,

enabling users to efficiently handle their datasets regardless of

their access to dedicated synchrotron resources.

In the phasing stage of structure determination, the afore-

mentioned platforms can perform experimental phasing when

anomalous signals are detected. However, limitations arise

when anomalous signals are absent, as seen in Aquarium at

Shanghai Synchrotron Radiation Facility (SSRF), where the

process halts after data reduction in such cases. With the

continuous expansion of the Protein Data Bank (PDB; https://

www.rcsb.org/), molecular replacement (MR) has become the

preferred method for phasing and structure determination.

Because MR traditionally relies on homologous structures

from existing databases, this approach is constrained by the

availability of suitable models. The advent of AI-based protein

structure prediction tools, such as AlphaFold2 (Jumper et al.,

2021) and RoseTTAFold (Baek et al., 2021), has revolutio-

nized the field by providing highly accurate structural

predictions that complement traditional homologous models.

Studies have demonstrated that AlphaFold predictions can

serve as effective initial templates for MR, significantly

enhancing the success rate of structure determination (McCoy

et al., 2022; Terwilliger et al., 2023). However, existing pipe-

lines, such as MrBUMP (Keegan & Winn, 2008; Keegan et al.,

2018) employed at the Diamond Light Source, which rely on

structural models from the PDB and AlphaFold databases for

MR, are prone to failure when suitable high-quality templates

are unavailable, especially in cases involving novel or

previously uncharacterized protein structures. To overcome

this limitation, we propose integrating structure prediction

directly into data processing pipelines, enabling accurate

predictions for sequences lacking database models and

thereby improving MR success rates.

Model building, a critical stage for refining and completing

structures, is absent from most existing pipelines. While AI-

based models have revolutionized structure determination,

they face challenges in complex cases where MR solutions are

unsatisfactory (Moore et al., 2022; Shao et al., 2022; Terwilliger

et al., 2024). Recent research by Li et al. (2024) demonstrates

the potential of direct methods and dual-space iteration, as

implemented in IPCAS (Ding et al., 2020), to refine and

enhance structural models after MR. IPCAS, a direct-method-

based pipeline for macromolecular structure determination,

encompasses processes from phasing to refinement and model

building. Its integration of programs like OASIS (Hao et al.,

2000; Tao et al., 2010) for direct-method phasing and CCP4

(Agirre et al., 2023) and Phenix (Adams et al., 2010) for

location of heavy atoms, density modification and model

refinement addresses the challenges of complex cases. By

incorporating IPCAS into our pipeline, we aim to significantly

improve its robustness and success rates.

Here, we introduce AutoPD, an open-source, high-

throughput, fully automated data processing and structure

determination meta-pipeline for biological macromolecular

crystallography. Developed specifically for the macro-

molecular crystallography beamline at the High Energy

Photon Source (HEPS) in Beijing (Jiao et al., 2018),AutoPD is

also accessible to other synchrotrons and academic users. The

meta-pipeline seamlessly handles datasets from data reduction

to refinement and model building, incorporating advanced

features to enhance its performance. To address the limita-

tions of traditional MR methods, AutoPD integrates Alpha-

Fold predictions, providing robust initial models that expand

the scope of structure determination. Moreover, the meta-

pipeline incorporates IPCAS for refining and extending

structural models, leveraging direct methods and dual-space

iteration to tackle challenging cases. An adaptive decision-

making strategy is embedded in the workflow to dynamically

select the most suitable modeling pathway according to the

data quality and intermediate results, thereby improving

robustness and ensuring higher success rates across diverse

datasets. By combining these cutting-edge approaches,

AutoPD not only streamlines the path from data collection to

structure determination but also enhances the reliability and

efficiency of the final structural output. The meta-pipeline

delivers refined structure models optimized for the lowest

Rfree value, exemplifying its ability to integrate innovative

methods into a unified efficient workflow.

2. Implementation

AutoPD comprises five specialized modules, each designed to

streamline and enhance the process of crystallographic data

analysis.
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(i) Data reduction module. This module processes raw

diffraction images to extract crystallographic data, providing a

solid foundation for subsequent analysis and structure deter-

mination.

(ii) Search model generation module. Critical for MR, this

module generates the necessary search models, leveraging

tools such as AlphaFold predictions to address cases where

database models are unavailable.

(iii) Molecular replacement module. This module retrieves

phase information essential for solving the crystal structure,

playing a pivotal role in the structure determination process.

(iv) Refinement and model building module. Following MR,

this module constructs and refines the structural model,

ensuring improved accuracy and reliability in the final output.

(v) Experimental phasing module. Activated when a strong

anomalous signal is detected during data scaling, this module

performs phase determination, followed by refinement and

model building, offering an alternative pathway to structure

determination.

A flowchart of the pipeline is shown in Fig. 1.

2.1. Data reduction module

The data reduction module utilizes a suite of robust data

processing software—XDS (Kabsch, 2010), xia2 (Winter,

2010; Winter et al., 2013; Winter et al., 2018; Winter et al.,

2022), and autoPROC (Vonrhein et al., 2011)—to process raw

diffraction data. This module executes a systematic sequence

of operations, starting with spot finding and progressing

through indexing, integration and scaling, ultimately

converting raw diffraction images into a single, cohesive

crystallographic file suitable for further analysis.

Using XDS, the process begins with indexing, where critical

parameters such as beam center, detector distance, rotation

axis and incident beam direction are extracted from the

XPARM.XDS file and updated for subsequent steps. After

integration, the space group and unit-cell constants are

retrieved from GXPARM.XDS, facilitating reindexing.

Following this, the beam center, detector distance, rotation

axis and incident beam direction are updated again for a final

round of integration. The resolution is determined using the

dials.estimate_resolution tool with default settings, scaling is

performed with AIMLESS (Evans & Murshudov, 2013), and

intensities are converted to structure factors using CTRUN-

CATE (Winn et al., 2011).

For xia2, the module employs variations including

xia2-3d, xia2-3dii and xia2-dials. The workflow is designed to

integrate xia2-3d and xia2-3dii, beginning with xia2-3d as the

primary option and switching to xia2-3dii in the event of

failure or timeout. To prevent stagnation and ensure timely

processing, all xia2 operations are monitored with a config-

urable time limit, which is set to a default value of 3600 s. This

mechanism ensures that any excessively prolonged operations

are automatically terminated, maintaining overall workflow

efficiency.

For autoPROC, most default settings are retained. To

enable a fair comparison of data processing statistics across

different software packages, the binning in AIMLESS is set to

20, consistent with other programs. Certain versions of

autoPROC can require significantly longer processing times—

approximately 1.5 to 3 times more than other programs.

Therefore, users may choose to bypass autoPROC when time

efficiency is a critical consideration.

These processes are executed in parallel using the GNU

parallel command tool (Tange, 2021) to maximize efficiency. If

the initial processing cycle yields incomplete results, a

secondary round is initiated to address any unresolved tasks.

In this second cycle, the space group and unit-cell parameters

derived from the result with the lowest redundancy-indepen-

dent merging R factor (Rmeas) value from the initial run are

used as inputs, significantly increasing the likelihood of

obtaining valid and comprehensive outcomes. To further

enhance flexibility and adaptability, users are also provided

with the option to specify key parameters—such as

rotation_axis (rotation axis), beam_x and beam_y

(beam center), distance (crystal-to-detector distance),

space_group (space group), and cell (unit-cell para-

meters)—to facilitate more accurate and tailored data

processing. Once data reduction is complete, all outputs from

XDS, xia2 and autoPROC are consolidated and seamlessly

passed to the next stage of analysis, which may involve either

the molecular replacement or experimental phasing module.

This workflow ensures efficient and comprehensive processing

of diffraction data, maximizing the generation of high-quality

crystallographic information for downstream analyses.
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Figure 1
Workflow ofAutoPD.AutoPD is an integrated metapipeline for structure
determination using only diffraction data and a sequence file. It includes
five modules: data reduction (green), search model generation (buff),
molecular replacement (pink), model building and refinement (gray), and
experimental phasing (blue). It runs multiple data reduction pipelines in
parallel, uses AlphaFold prediction when no suitable models are avail-
able, and performs iterative model building with Buccaneer, Phenix
Autobuild and IPCAS. Crank2 is triggered if strong anomalous signal is
detected.
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2.2. Search model generation module

The search model generation module initiates its process by

employing MrParse (Simpkin et al., 2022) to retrieve five

homologous structures and five AlphaFold database models

from available databases. To ensure data integrity during

validation testing, homologs released after the deposition date

of the test entry are excluded. In cases where no AlphaFold

database models are available, or the top-ranking model

shows a sequence identity below 0.9, covers less than 60% of

the target sequence or has a pLDDT score1 lower than 90, a de

novo AlphaFold prediction is automatically initiated to

produce a more accurate and complete structural model

specific to the input sequence. The sequence identities of all

homologous and AlphaFold models are then evaluated and

ranked separately, with the highest-ranking homolog model

and AlphaFold model selected for further analysis. For

sequences comprising multiple chains, each chain is processed

individually. In cases where a specific chain lacks homologous

structures, the AlphaFold model for that chain is combined

with homologs from other chains to assemble a complete

search model for MR.

For operations at HEPS, a local AlphaFold2 installation

configured as a server is used to perform AlphaFold predic-

tions efficiently. This setup utilizes software from ColabFold

(Mirdita et al., 2022) to streamline predictions. The predicted

models are then refined using the Phenix process_predicted_

model tool (Oeffner et al., 2022). This refinement process

includes trimming residues with low confidence (pLDDT <

70), converting pLDDT values into estimated atomic dis-

placement parameters and splitting the predicted model

into individual chains. These steps ensure that only the most

reliable structural predictions are advanced for further

analysis. For personal users, AlphaFold predictions are

performed using the Phenix PredictAndBuild tool with the

parameter stop_after_predict = True. For testing

purposes, the parameter include_templates_from_

pdb = False is applied, excluding PDB templates to ensure

unbiased results.

For this module, we provide the parameter af_

predict = true, which allows users to explicitly invoke

AlphaFold prediction, regardless of the availability or quality

of pre-existing database models. This is particularly useful in

cases where users suspect that the database models may not

adequately represent the target structure. Additionally, the

parameter pae_split = true enables automatic splitting

of the AlphaFold-predicted model into domains based on the

predicted aligned error (PAE) matrix. The PAE matrix,

generated by AlphaFold, provides a residue-wise estimate of

the alignment error between pairs of residues. By leveraging

this information, the model can be segmented into structurally

independent domains, which is especially beneficial when the

predicted structure exhibits domain displacements or signifi-

cant conformational differences relative to the experimentally

determined structure. This domain-aware processing improves

the robustness and accuracy of the downstream MR step. We

do not set pae_split = true as the default in AutoPD

because, in some tests, the model was divided into many small

fragments, which did not improve MR performance. In most

cases, splitting via the Phenix process_predicted_model tool

suffices for successful MR.

In sequences with multiple chains, each chain is processed

independently, enhancing both efficiency and accuracy. The

integration ofMrParse and AlphaFold predictions ensures the

generation of highly reliable search models, even for complex

cases where database structures are unavailable for certain

chains. This modular and robust approach guarantees the

creation of precise search models, optimized for downstream

MR tasks.

2.3. Molecular replacement module

The molecular replacement module utilizes Phaser (McCoy

et al., 2007) to perform standard MR analyses, employing all

crystallographic files generated by the data reduction module

along with two sets of search models prepared by the search

model generation module. The Phenix.Xtriage tool is used to

estimate the number of copies in one asymmetric unit for each

ensemble during the MR process.

Initially, our module selected only the crystallographic file

with the lowest Rmeas value from the data reduction module

for MR. However, during testing, we observed cases where the

lowest Rmeas file corresponded to a structure with the wrong

point group, leading to downstream errors. To address this, we

modified our approach to select the best results for each

distinct point group according to the lowest Rmeas value.

Nevertheless, this strategy still had limitations, particularly

when multiple results shared the same point group but

differed significantly in unit-cell parameters. To ensure that

potentially correct solutions are not overlooked, the current

implementation utilizes all crystallographic files produced by

the data reduction module for MR, despite a slight reduction

in computational efficiency.

Additionally, we employed two distinct sets of search

models—a homolog-based set and an AlphaFold-based

set—because testing showed that homolog-based models

occasionally yield superior results, while AlphaFold-based

models perform better in other instances. Typically, with four

crystallographic files from data reduction and two sets of

search models, eight MR jobs run concurrently, systematically

exploring all potential space groups within the point group.

This parallelized approach ensures comprehensive explora-

tion of possible solutions, enhancing both the thoroughness

and success rate of the MR analysis.

Users can also input a crystallographic file using the para-

meter mtz_file or specify the path containing search

models using the parameter pdb_path. In this case, the

corresponding data reduction module or search model

generation module will be skipped, and the user-provided files

will be directly used in the MR module.
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1 Predicted local distance difference test (pLDDT) (Mariani et al., 2013): a per-
residue confidence metric used by AlphaFold to estimate the local accuracy of
predicted structures.
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2.4. Refinement and model building module

Following MR, the resulting models are subjected to auto-

mated refinement using Refmac (Murshudov et al., 2011;

Yamashita et al., 2023) and model building via Buccaneer

(Cowtan, 2006) within CCP4i2 (Agirre et al., 2023; Potterton et

al., 2018). Buccaneer performs iterative cycles of crystal-

lographic rebuilding, refinement and density modification,

aiming to generate an improved rebuilt model along with a

density-modified map.

If the Rfree value of the reconstructed model exceeds 0.35,

the workflow proceeds to Phenix Autobuild for further

refinement and model building. If the previous Buccaneer job

results in an improved Rfree value, its output model is used as

the input for Phenix Autobuild; otherwise, the model gener-

ated by Refmac is used. Should the Rfree value remain above

0.35 after Phenix Autobuild, the process advances to IPCAS

for additional refinement. Similarly, if the Phenix Autobuild

step improves the Rfree value, its resulting model is passed to

IPCAS; otherwise, the Refmac model is reused.

This tiered, multi-step approach ensures the rigorous opti-

mization of model accuracy and module efficiency, progres-

sively refining the structural model through successive stages

tailored to address challenging cases and maximize the quality

of the final output.

2.5. Experimental phasing module

When a strong anomalous signal is detected during data

scaling, all crystallographic files along with the sequence file

are submitted to Crank-2 (Skubák & Pannu, 2013) for

experimental phasing. Since Crank-2 requires a specified

heavy-atom type for phasing, sulfur is used as the default when

no such information is provided. However, users can override

this default by specifying the known heavy-atom type via the

atom parameter, allowing for more accurate experimental

phasing when prior knowledge is available. To enhance effi-

ciency, all Crank-2 jobs are executed in parallel, with each job

utilizing a different crystallographic file. Upon completion, the

result with the lowest Rwork value is selected as the optimal

solution. This parallelized approach ensures a thorough

exploration of possible phasing outcomes while prioritizing

efficiency and accuracy in selecting the best result.

3. Graphical user interface

At HEPS, AutoPD is integrated into a multi-user graphical

web application known as Daisy-BMX, which is deployed on

an advanced computing platform powered by the Daisy

framework (Hu et al., 2021b). Built atop the JupyterLab

technology stack (https://jupyter.org/), Daisy-BMX offers an

intuitive interface for efficient data management and analysis.

The data collection page [Fig. 2(a)] provides a compre-

hensive view of experimental sample results after data

processing. Users can sort and filter results by name, collection

time or a combination of criteria, facilitating streamlined

navigation. By clicking on an entry, users access the detail

page [Fig. 2(b)], where detailed results and charts generated
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Figure 2
Daisy-BMX. Web-based user interface for AutoPD at HEPS. (a) Data collection page: displays sortable and filterable sample results. (b) Detail page:
integrates AutoPD outputs with visualizations and key metrics. (c) System architecture: separates JupyterLab-based front-end from a containerized
back-end managed by Kubernetes, with computing resources accessed via CVMFS. (d) Directory structure: supports traceable and scalable data
processing, with dedicated spaces for raw data, results, logs and user workspaces.
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by AutoPD are centrally displayed, offering a clear overview

of the processed sample data.

Daisy-BMX employs a modern architecture that separates

the front-end and back-end for enhanced flexibility and scal-

ability [Fig. 2(c)]. The front-end utilizes Jupyter-ipywidgets

(https://ipywidgets.readthedocs.io/en/stable/), combining exist-

ing and custom-developed widgets for layout and styling. It

also integrates ipydatagrid (https://github.com/bloomberg/

ipydatagrid) and pandas (McKinney, 2010) for efficient

management and visualization of sample data. Voila (https://

github.com/voila-dashboards/voila) is used for rendering the

interface, ensuring a user-friendly presentation of results and

tools.

On the back-end, containerization plays a central role in

resource management and task orchestration. Container

images for specialized software environments such as CCP4

and Phenix are built using Dockerfiles, managed through

Podman and stored in a private Docker registry for deploy-

ment via Kubernetes. Open-source applications like Jupy-

terLab and Prometheus utilize pre-built containers deployed

directly from public repositories through Helm charts. The

Kubernetes container runtime employs Containerd, enabling

efficient compatibility with GPU pass-through via the

NVIDIA Container Toolkit and optimized high-performance

input/output (I/O) operations.

The directory structure supporting Daisy-BMX is designed

for effective isolation, traceability and performance [Fig.

2(d)]. Directories are organized by beamtime ID and user to

prevent file conflicts and ensure data privacy. Essential

metadata such as job_id systematically links raw detector

data, intermediate processing files and final results, enhancing

data reproducibility and management. The dedicated scratch

directory utilizes high-speed NVMe storage specifically to

support intensive I/O operations during data processing.

Given the complexity and potential for failed tasks, jobs are

categorized and prioritized into three distinct groups to help

users identify the most promising solutions quickly.

(a) Highest priority. Jobs successfully solved by MR or

single-wavelength anomalous diffraction (SAD) phasing,

sorted by model Rfree values from lowest to highest.

(b) Intermediate priority. Jobs where MR fails but data

reduction succeeds. These results are sorted by data quality

metrics (Rmeas), prioritizing better-quality datasets for further

analysis.

(c) Lowest priority. Jobs with unsuccessful data reduction

due to issues such as poor data quality, incorrect beam center

or crystal-to-detector distances, or corrupted image data.

These require careful manual examination.

This comprehensive, structured approach ensures that

Daisy-BMX, powered by AutoPD, delivers an accessible,

efficient and reliable data processing platform for crystal-

lographic research at HEPS.

4. Computing platform

AutoPD is deployed on the advanced computing platform at

HEPS, designed specifically to support high-performance

large-scale data processing. This platform integrates Kuber-

netes orchestration with heterogeneous hardware to optimize

resource allocation and task execution, ensuring efficient

handling of modern crystallography workflows. A computa-

tional workflow diagram illustrating task scheduling, resource

allocation and interaction between system components is

included to depict this process (Fig. 3).

The computational infrastructure includes GPU servers

consisting of 23 nodes equipped with a total of 1472 CPU

cores, approximately 1.5 TB of memory per node, and diverse

GPU configurations, such as NVIDIA A100 80 GB GPUs

dedicated exclusively to AlphaFold tasks, and NVIDIA A800

GPUs for general-purpose computations. Additionally, there

are 15 CPU servers providing 960 CPU cores with an average

memory capacity of 512 GB per node.

Storage infrastructure consists of beamline-specific high-

performance storage (/heps/beamline) with 1.8 PB

capacity and aggregated bandwidth up to 40 GB s�1, centra-

lized shared storage (/heps/centralfs) of 14 PB acces-

sible across HEPS beamlines, and a tape-based archival

storage system providing 2 PB for secure long-term backups.

Kubernetes orchestration optimizes resource allocation by

assigning lightweight front-end tasks, such as user interaction

and result visualization, to nodes with fewer CPU cores (e.g.

four-core pods). Compute-intensive tasks, including MR

analyses, AlphaFold structure predictions and molecular

dynamics simulations, are dynamically scheduled to GPU-
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Figure 3
A computational workflow diagram illustrating task scheduling, resource allocation and interaction between system components.
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equipped pods or multi-core CPU pods to ensure optimal

computational efficiency.

Real-time resource utilization is monitored using Prome-

theus and Grafana (https://prometheus.io/), while OMAT (Hu

et al., 2021a; Hu et al., 2022) is used to coordinate task prior-

itization and job management.

The computational platform also features dedicated

resources for AlphaFold, including an exclusive GPU server

with two NVIDIA A100 80 GB GPUs and high-speed NVMe

SSD storage, capable of supporting concurrent structure

prediction tasks for up to four users and managing sequences

exceeding 4000 residues. Furthermore, hybrid workload

management integrates batch queuing and task distribution

through SLURM (Simple Linux Utility for Resource

Management) and Ray, complemented by Kubernetes for

elastic scaling and efficient resource utilization.

Overall, this robust and flexible computing environment

allows AutoPD to efficiently handle the computational

demands of contemporary crystallography research, providing

researchers with a reliable and powerful infrastructure for

data processing and structure determination.

The computations described in this work were performed

on an Ubuntu 22.04 operating system, utilizing the following

software versions: CCP4 (version 9.0.004), Phenix (version

1.21.2-5419), XDS (version 20230630),DIALS (version 3.22.1),

autoPROC (version 20240710) and IPCAS (version 2.0).

5. Test and results

5.1. Test data

To evaluate the performance of AutoPD, we selected

entries from the PDB that met specific criteria, ensuring the

collection represented structures determined after the training

period of AlphaFold2, which utilized data available up to

April 2018. The dataset comprises 186 unique protein struc-

tures with associated diffraction data, all released between 1

January 2022 and 31 December 2023. The corresponding raw

diffraction images were downloaded via the DOI links labeled

‘Diffraction Data’ provided on the respective PDB entry

pages, and the sequences were obtained directly using the

sequence download option of each PDB entry page for testing.

To maintain the integrity and relevance of the test set, data

with the same space group and similar cell parameters were

excluded to avoid redundancy. Additionally, data containing

DNA or RNA chains were excluded to focus solely on protein

structures. Data involving more than one dataset was also

excluded to simplify the evaluation process. This curated

dataset provides a diverse and representative sample for

assessing the effectiveness and robustness of AutoPD in

processing modern crystallographic data.

5.2. Overall results

Our results demonstrate the successful application of the

comprehensive data processing and structure determination

meta-pipeline to 186 deposited datasets. During this process,

the data reduction module failed to produce valid solutions—

due to incorrect point group or unit-cell parameters, or a

complete lack of solution—in seven cases. Additionally, in

eight instances, the MR module was unable to generate a

solution or produced models with incorrect space groups,

leading to the discontinuation of analysis for those datasets.

Despite these challenges, AutoPD successfully processed the

remaining 171 datasets in a fully automated manner, without

any manual intervention, generating density-modified elec-

tron-density maps (Terwilliger, 2000) and corresponding

structural models that accurately interpreted the maps.

To evaluate the accuracy of our results, we calculated the

map–model correlation (CC-overall) between density-modi-

fied electron-density maps generated by the refinement and

model building module and models in PDB depositions. Using

a conservative minimum map–model correlation threshold of

0.5 (Oeffner et al., 2013; Terwilliger et al., 2023), and ensuring

correct space group and cell parameters as prerequisites, we

determined that 171 out of 186 datasets (approximately 92%)

were successfully analyzed. The remaining 15 datasets,

including the seven unsuccessful in data reduction and the

eight that failed in MR, were classified as unsuccessful. Of

particular note, seven datasets in the collection were originally

solved using SAD methods as reported in the PDB.

Remarkably, we were able to solve all of these cases using the

MR approach within our pipeline, demonstrating its flexibility

and capability in addressing challenging cases.

CC-overall was calculated using the Phenix get_cc_mtz_pdb

tool for the 171 successfully processed datasets. In cases where

multiple structural models were generated, the model with the

highest CC-overall value was selected for analysis and is the

one presented in Figs. 4(a)–4(c). However, we recommend

that users carefully examine all available models to identify

the most suitable starting point for further refinement, as

alternative models may offer advantages depending on the

specific context of downstream applications.

Fig. 4(a) shows the distribution of map–model correlation

values CC-overall. For the 171 successfully processed datasets,

the map–model correlation values ranged from 0.543 to 0.896,

with a mean of 0.812 and a median of 0.828. Over 75% of the

datasets achieved correlation values above 0.862, with the

majority clustering between 0.8 and 0.9. These results

demonstrate strong agreement between the density maps and

the rebuilt models, highlighting the accuracy of the pipeline in

reconstructing structures.

Fig. 4(b) illustrates the relationship between Rmeas (overall)

and CC-overall, serving as an indicator of how data quality

correlates with map–model correlation. A slight negative

correlation is observed: higher Rmeas values tend to be asso-

ciated with lower CC-overall scores. However, this trend is not

particularly strong, suggesting that Rmeas alone does not fully

determine the quality of the resulting electron density map.

We carefully examined the data points located in the lower-left

corner of the plot, where Rmeas is relatively low but CC-overall

is also unexpectedly low. Among these datasets, we identified

several contributing factors, including low resolution (worse

than 3.0 Å), an MR search model with an r.m.s.d. greater than
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1.5 Å or a low MR TFZ value (<10). These findings suggest

that, while Rmeas provides useful insight into data quality,

additional factors such as resolution and MR model quality

also play critical roles in determining map correlation and

should be considered in comprehensive data assessment.

Fig. 4(c) illustrates the relationship between resolution and

CC-overall. A general trend is observed: higher-resolution

data tend to produce higher CC-overall scores, indicating

better model-to-map correlation. Most datasets with resolu-

tion better than approximately 2.5 Å exhibit CC-overall

values above 0.8, while datasets with resolution worse than

3.0 Å often show a notable drop in CC-overall, with some

values falling below 0.7. Although this negative correlation is

evident, the spread of CC-overall values at similar resolution

levels suggests that resolution is not the sole determinant of

map quality. Other factors—such as the quality of the MR

model and data completeness—likely contribute to the

variation in map correlation observed across datasets.

Fig. 4(d) illustrates structural completeness, defined as the

percentage of C� atoms in the deposited models that align

within 2 Å of those in the models reconstructed by AutoPD

(Terwilliger et al., 2023). Space-group symmetry was used to

include all related copies of chains in the comparison, and the

completeness was calculated with phenix.chain_comparison.

The completeness values were strongly clustered near 100%,

with a mean of 95.45% and a median of 98.7%. Over 75% of

the datasets achieved a completeness greater than 99.6%,

demonstrating the pipeline’s ability to produce near-complete

structural data. While the minimum completeness observed

was 27.4%, the overwhelming majority of datasets fell within

the high-completeness range, as indicated by the sharp peak

near 100% in the histogram. These findings underscore the

pipeline’s capability of generating comprehensive crystal-

lographic models.

Fig. 4(e) depicts the root-mean-square deviation (r.m.s.d.)

values for C� atoms, calculated using GESAMT (Krissinel,

2012) in CCP4i2, comparing the coordinates of rebuilt models

with those in the deposited structures. The r.m.s.d. values

range from 0.059 to 1.433, with a mean of 0.363 and a median

of 0.309. Approximately 75% of the datasets had r.m.s.d.

values below 0.492, with the majority falling under 1.0. This

distribution indicates strong structural agreement between the

reconstructed models and the deposited structures, further

highlighting the pipeline’s accuracy in reproducing detailed

structural features.

Fig. 4( f) presents Rwork and Rfree values derived from the

structural models generated by the pipeline. The Rwork values

range from 0.187 to 0.389, with a mean of 0.241 and a median

of 0.234. The Rfree values range from 0.203 to 0.488, with a

mean of 0.287 and a median of 0.282. Over 75% of the datasets

exhibited Rwork and Rfree values below 0.257 and 0.311,

respectively, demonstrating strong refinement quality. These

results highlight the pipeline’s ability to generate structural

models with reliable refinement metrics and further validate

its robustness in achieving high-quality results.

Fig. 4 thus demonstrates the robustness and reliability of

our structural determination pipeline. The high map–model

correlation, strong structural completeness, tight r.m.s.d.

distributions and low R values collectively validate the effec-

tiveness of the pipeline. These results support its applicability

research papers

J. Appl. Cryst. (2025). 58, 746–758 Xin Zhang et al. � AutoPD: a meta-pipeline for high-throughput crystallography 753

Figure 4
The results of structure redeterminations using AutoPD across 171 successful datasets. (a) Distribution of map–model correlation values (CC-overall).
The majority of datasets exhibit high CC-overall values, indicating strong agreement between the electron density maps and the deposited models. (b)
Scatter plot of Rmeas (overall) versus CC-overall. A slight negative correlation is observed, where higher Rmeas values are generally associated with lower
CC-overall scores. However, this trend is weak, and several low-Rmeas cases still show poor CC-overall due to factors such as low resolution, suboptimal
MRmodels or low-TFZ scores. (c) Scatter plot of resolution versus CC-overall. A general trend is observed in which higher-resolution data tend to yield
higher CC-overall values, though variation at similar resolution levels suggests that other factors also influence map quality. (d) Distribution of structural
completeness. Completeness values are strongly skewed toward the high end, demonstrating the pipeline’s ability to reconstruct nearly complete models.
(e) Histogram of r.m.s.d. values for C� atoms between the rebuilt and deposited models. Most datasets show low r.m.s.d. values, indicating strong
structural agreement and precise reproduction of atomic coordinates. ( f ) Scatter plot of Rwork versus Rfree values from refined models. A strong positive
correlation is observed, with most data points falling within the expected range, reflecting good refinement quality and minimal overfitting. These results
collectively demonstrate the robustness, accuracy and completeness of AutoPD in fully automated macromolecular structure determination.
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as a reliable tool for advancing structural determination in

macromolecular crystallography.

5.3. Results of data reduction module

During the data reduction phase, encompassing 186 data-

sets, seven datasets produced solutions with incorrect point

group determinations or unit-cell parameters, leading to

erroneous space group or unit-cell parameter assignments in

subsequent MR steps. As a result, the overall success rate for

this module was 96%.

The data reduction phase employed four distinct programs:

XDS, xia2-3d/3dii, xia2-dials and autoPROC, with success

rates—defined as their ability to generate crystallographic files

with correct point group and unit-cell parameter determina-

tions—of 91%, 85%, 84% and 94%, respectively. Of the 171

successful cases, the crystallographic files leading to the best

structural models originated from XDS (40%), xia2-3d/3dii

(25%), xia2-dials (14%) and autoPROC (21%), highlighting

the complementary roles of these programs in achieving reli-

able data reduction.

Fig. 5(a) illustrates the distribution of Rmeas values for the

crystallographic files generated during the data reduction

process. The Rmeas values ranged from 0.033 to 0.63, with a

mean of 0.149 and a median of 0.116. Over 75% of the datasets

exhibited Rmeas values below 0.187, indicating that the

majority of datasets had low redundancy-independent errors.

This distribution underscores the effectiveness of AutoPD in

minimizing errors during data processing, providing high-

quality input for downstream analysis.

5.4. Results of search model generation module

Within this component of our pipeline, the initial step

employs MrParse to identify potential homologs and Alpha-

Fold models from existing databases. In cases where no

AlphaFold database models are available, or the top-ranking

model shows a sequence identity below 0.9, covers less than

60% of the target sequence or has a pLDDT score lower than

90, a de novo AlphaFold prediction is automatically initiated

to produce a more accurate and complete structural model

specific to the input sequence. In our analysis of 171 successful

cases, many included more than one unique protein chain.

After excluding chains too short for AlphaFold prediction, we

identified 229 unique chains across these cases.

This dual-strategy approach effectively integrates both

database-derived and prediction-based models to enhance

MR. Among the 229 models that contributed to the 171 final

structures, 55 were retrieved from the AlphaFold database,

100 homologous models were sourced from the PDB and 74

were generated via de novo AlphaFold predictions. This

comprehensive methodology maximizes the likelihood of

identifying accurate and reliable search models, providing

robust inputs for successful structure determination.

Fig. 5(b) illustrates the r.m.s.d. values between MR search

models and their corresponding deposited PDB structures,

stratified by the source of the search models: homologs from

the PDB (black bars), AlphaFold (AF) database models (light

gray) and AlphaFold de novo predictions (dark gray).

Homolog-based models tend to exhibit lower r.m.s.d. values,

with a strong concentration between 0.4 and 0.7 Å, indicating

close structural similarity to the final structures. AlphaFold

database models show a slightly broader distribution, with

more chains in the range 0.6–1.0 Å, and a modest number

extending beyond 1.2 Å. AlphaFold predictions exhibit the

widest spread, with a notable number of models showing

r.m.s.d. values above 1.0 Å, reflecting greater structural

variation, but still maintain a substantial portion below 1.0 Å.

These results highlight the overall reliability of all three model

sources for MR, while also illustrating that homologs generally

offer the closest structural match when available. However,

AlphaFold-based models—both from the database and de
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Figure 5
Results across the various modules of AutoPD. (a) Distribution of Rmeas

values generated by the data reduction module, highlighting data quality
for crystallographic files produced during the data reduction process. (b)
r.m.s.d. values between MR search models and their corresponding
deposited PDB structures, stratified by the source of the search models:
homologs from the PDB (black bars), AlphaFold database models (light
gray) and AlphaFold de novo predictions (dark gray). (c) Comparison of
Rwork values after MR using the AutoPD MR module versus MrBUMP,
with points above the diagonal indicating superior performance by
AutoPD. (d) Map–model correlation coefficients from the refinement and
model building module, comparing Buccaneer (blue dots), Phenix
Autobuild (red squares) and IPCAS (green triangles) across datasets for
which IPCAS is triggered. (e)–(g) Superimposed models of PDB entry
7raa, with the deposited structure in green and rebuilt models from
Buccaneer (magenta), Phenix Autobuild (cyan) and IPCAS (yellow).
IPCAS demonstrates superior structural alignment, successfully resolving
regions where Buccaneer and Phenix Autobuild exhibit significant gaps.
These outcomes collectively demonstrate the robust performance and
versatility of AutoPD across all stages of macromolecular structure
determination.
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novo predictions—provide valuable alternatives, especially

when high-quality homologs are lacking.

5.5. Results of molecular replacement module

Among the 179 cases that successfully passed the data

reduction stage, four cases failed to yield MR solutions, while

four cases were assigned incorrect space groups compared

with their deposited models. This resulted in a success rate of

96% for the MR module in the AutoPD pipeline. For

comparison, MR was also performed usingMrBUMP with the

same crystallographic files and sequence files, yielding a lower

success rate of 78%.

Fig. 5(c) compares the Rfree values obtained after MR using

MrBUMP versus those from the AutoPD MR module. Points

above the diagonal line represent cases where the AutoPD

MR module achieved lower Rfree values, while points below

the line indicate instances where MrBUMP performed better.

The majority of points lie above the diagonal, demonstrating

that the AutoPD MR module consistently outperformed

MrBUMP in terms of Rfree values.

These results highlight the effectiveness of the AutoPDMR

module in generating accurate initial models for refinement,

surpassing the performance of MrBUMP in a significant

number of cases. The superior Rfree values underscore the

robustness and reliability of the AutoPD MR module, vali-

dating the strategic integration of database-derived and

predictive models to optimize MR. This approach ensures

both higher accuracy and greater efficiency in the structure

determination process.

5.6. Results of refinement and model building module

In the refinement and model building stage of our pipeline,

Buccaneer is initially employed due to its rapid processing

capabilities, providing a quick baseline for model quality.

However, if the output from Buccaneer does not meet the

predefined quality standard—indicated by an Rfree value

exceeding the default threshold of 0.35—additional refine-

ment is performed using Phenix Autobuild and IPCAS to

improve the model further.

Fig. 5(d) presents the map–model correlation (CC-overall)

for a set of datasets for which IPCAS was triggered,

comparing the performance of three model building tools:

Buccaneer (cyan circles), Phenix Autobuild (red squares) and

IPCAS (green triangles). Each point represents the CC-

overall value for a model built by the respective tool for a

given PDB entry. The results indicate that all three tools

contribute to model building across different datasets, with

Phenix Autobuild generally yielding high CC-overall values.

IPCAS also contributes meaningfully in several cases, either

matching or exceeding the CC-overall achieved by the other

tools. For certain datasets, such as 7qii, 8arb and 8ew7, IPCAS

provides the highest correlation among the three, highlighting

its role in complementing existing model building methods,

particularly in cases where initial models may be suboptimal.

This comparison illustrates that using multiple model building

strategies can improve the robustness of the overall pipeline

by providing alternative solutions when standard tools face

limitations.

To illustrate the performance of IPCAS, we analyzed a

specific protein structure (PDB entry 7raa) (Bejger et al.,

2021), which contains one unique chain, represented by four

copies within a single asymmetric unit. The Rfree values

achieved by Buccaneer, Phenix Autobuild and IPCAS for this

structure were 0.4718, 0.4881 and 0.4056, respectively, high-

lighting the superior accuracy of IPCAS.

Figs. 5(e), 5( f) and 5(g) depict the superimposition of the

PDB-deposited structure with models reconstructed by

Buccaneer, Phenix Autobuild and IPCAS, respectively. These

comparisons clearly showcase the superior performance of

IPCAS. The IPCAS-reconstructed model exhibits better

structural alignment with the reference structure, showing

fewer deviations and greater accuracy in backbone tracing.

Notably, in the top-right region of the structure, the Buccaneer

and Phenix Autobuild models exhibit significant structural

gaps, whereas IPCAS successfully reconstructs these regions

without any missing elements. This highlights the robustness of

IPCAS in addressing difficult regions where other tools fail.

A key advantage of IPCAS is its ability to address incom-

plete or ambiguous regions in the initial model. By leveraging

direct-method phasing and iterative dual-space refinement,

IPCAS excels in extending and refining partial structures,

resulting in more complete and accurate final models. This

iterative refinement strategy not only fills in missing regions

but also improves overall agreement with the deposited

structures, as seen in the overlays. These results underscore

the ability of IPCAS to deliver high-quality models, even for

challenging datasets, and its value as a critical tool in crystal-

lographic structure determination.

This analysis underscores a fundamental balance in

computational structural biology: the trade-off between rapid

processing and meticulous precision. The necessity for a

layered approach in model building is evident—where faster

algorithms such as Buccaneer provide an initial approxima-

tion, which can then be refined through more computationally

intensive tools like IPCAS to achieve higher accuracy. This

strategic combination ensures both efficiency and reliability in

solving even the most difficult datasets.

5.7. Results of experimental phasing module

Among the 186 datasets, strong anomalous signals were

detected in 11 cases. Of these, seven were successfully solved

using AutoPD, while three of the four failures were attributed

to issues in the data reduction module, resulting in a success

rate of 87.5% for datasets that proceeded beyond this stage.

Notably, three of the successful SAD solutions exhibited

higher map–model correlation values than those obtained via

MR, underscoring the robustness and effectiveness of SAD-

based phasing in suitable cases.

For the successful datasets, the mean Rwork value was 0.224,

indicating reliable refinement quality. The map–model corre-

lation values were consistently high, reflecting strong agree-

ment between the calculated and experimental data. The
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r.m.s.d. values were generally low, signifying good structural

alignment with the experimental data. Additionally, the

completeness for these datasets exceeded 90% in most cases,

underscoring the pipeline’s capability to generate highly

complete models.

These results highlight the effectiveness of the pipeline in

solving SAD datasets while also identifying opportunities for

further optimization to address the limitations observed in the

two unsuccessful cases. Overall, the findings reinforce the

reliability and adaptability of the pipeline in leveraging SAD

data for accurate structure determination.

6. Discussion

Our study presents AutoPD, an open-source high-throughput

fully automated data processing and structure determination

meta-pipeline, specifically designed to address the challenges

introduced by advancements in synchrotron light sources and

automated data acquisition technologies. Developed for the

macromolecular crystallography beamline at HEPS in Beijing

and available for broader use, AutoPD represents a transfor-

mative step forward, seamlessly integrating processes from

data reduction to model building in macromolecular crystal-

lography.

The deployment of AutoPD on a dataset of 186 protein

structures from the PDB, all determined after the training cut-

off date for AlphaFold2, achieved a remarkable 93% success

rate in generating structural models. This high success rate

underscores the robustness and efficiency of the pipeline, as

demonstrated by its ability to produce structural models with

high map–model correlation values and near-complete

reconstruction of atomic structures. By integrating cutting-

edge AI tools with traditional crystallographic software in a

parallel and tiered workflow, AutoPD effectively tackles the

complexities of modern structure determination.

The individual modules of AutoPD work in concert to

optimize speed and accuracy. The data reduction module

delivered a 96% success rate, with Rmerge values reflecting the

quality of the processed data. The search model generation

module capitalizes on a dual-strategy approach, combining

database-derived models with AI-based predictions. This

hybrid methodology leverages the strengths of both estab-

lished and predictive models, significantly improving the

likelihood of successful MR. The MR module further rein-

forces this success, achieving a 97% success rate in contrast to

78% forMrBUMP, with superior Rwork values that underscore

its accuracy and reliability.

In the refinement and model building module, AutoPD

demonstrates the importance of a layered approach. The rapid

initial modeling provided by Buccaneer is complemented by

the advanced precision of Phenix Autobuild and IPCAS.

Notably, IPCAS consistently outperforms other tools in

challenging cases, delivering superior model quality with

higher map–model correlation coefficients and better struc-

tural completeness. For example, IPCAS successfully resolved

regions where Buccaneer and Autobuild failed. This iterative

and robust methodology highlights the capability of AutoPD

to handle even the most difficult datasets, ensuring accurate

and reliable final models.

Overall, the pipeline failed in 15 cases. After examining the

AutoPD output and consulting PDB deposition information,

we found that four of these cases could be resolved with a

second run by applying specific input parameters. These

include:

(a) Blank diffraction images (PDB entry 8sc0). All four

pipelines in the data reduction module failed due to the first 90

diffraction images being blank, as indicated by the log files

from xia2-dials and autoPROC. When the problematic images

are excluded using the parameters image_start = and

image_end =, AutoPD was able to complete successfully,

yielding a final model with a CC-overall of 0.877.

(b) Missing search model (PDB entry 8u0g). The initial MR

solution had a TFZ value of 6.3, suggesting an incorrect

placement. Upon investigation, it was found that the search

model used by the original authors (PDB entry 7udi) had been

missed. Providing 7udi explicitly as a search model allowed the

pipeline to generate a correct solution with a CC-overall

greater than 0.5. Notably, other tools such as MrBUMP also

failed to identify this model.

(c) PAE-based model splitting (PDB entry 7r3w). The initial

MR solution yielded a TFZ value of 6.1 despite using an

AlphaFold model (AF-Q8ZM00-F1) with a high pLDDT of

90.8. Analysis of the PAE plot indicated that the model

consisted of two domains with potentially incorrect relative

orientations. By enabling pae_split = true, which splits

the model on the basis of the PAE matrix, the TFZ improved

to 20.8 and a valid model was obtained with CC-overall above

0.5.

(d) Incorrect unit-cell parameter (PDB entry 7qsg). The

initial run produced a structure with an Rfree of 0.3411 and a

CC-overall of 0.495. Analysis via Phenix.xtriage revealed a

strong non-origin Patterson peak, suggesting a translation by

half the unit cell along the c axis. Adjusting the c dimension

accordingly resulted in a correct structure with improved Rfree

(0.3108) and CC-overall (0.707).

The remaining failures highlight limitations of current

automation and the need for further manual intervention.

These include large and complex assemblies (e.g. 7qij), multi-

domain or composite structures (e.g. 7z36), and cases with

minimal unique features (e.g. 8swd). Additionally, complex

crystallographic issues such as twinning, translational pseudo-

symmetry or incorrect space-group assignment were identified

in several cases (e.g. 7rox, 7tm4, 8cje, 8dil, 8duy). These find-

ings underscore the current limitations of automation and the

importance of expert analysis in resolving difficult cases.

Nevertheless, they also provide valuable insights for future

development of more robust decision-making strategies.

7. Conclusion

AutoPD is a groundbreaking tool in structural biology,

offering an open-source, fully automated, high-throughput

meta-pipeline that integrates state-of-the-art AI technologies

with crystallographic best practices. An adaptive decision-
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making strategy is embedded in the workflow to dynamically

select the most suitable modeling pathway according to data

quality and intermediate results, thereby improving robust-

ness and ensuring higher success rates across diverse datasets.

Its ability to efficiently produce high-quality structural models

not only accelerates the process of structure determination but

also ensures the reliability of the resulting models. As struc-

tural biology continues to advance, tools like AutoPD will be

instrumental in unraveling the complexities of biological

macromolecules, contributing significantly to scientific

discovery and medical innovation. By bridging the gap

between speed and precision, AutoPD sets a new standard for

high-throughput structure determination in the era of modern

synchrotron light sources.

8. Data and code availability

For our data testing, the input data, including both diffraction

data and sequence files, were sourced directly from the PDB.

The 186 PDB entries used were as follows: 8v4j, 8bty, 8cqm,

8u1e, 8u1j, 8u0g, 8owm, 8osw, 8dab, 8daa, 8da9, 8da8, 8da6,

8da5, 8da4, 8da3, 8bxt, 8aq8, 8d2z, 8t5t, 8cjd, 8bts, 8su6, 8sqq,

8sqo, 8snj, 7zpf, 8slh, 8slf, 8sld, 8fhj, 8e6h, 8e5s, 8skf, 8g2g, 8arc,

8arb, 8ara, 8sf3, 7uyi, 8sbx, 8sbv, 8sbo, 8sbn, 8sac, 8sa8, 8sa7,

7v0i, 8dz8, 8gca, 8fra, 8fg7, 8f8e, 8cip, 7pho, 7udi, 7u0o, 7pe4,

8g0v, 8g0u, 8g0t, 8g0s, 7pdo, 8fxq, 8fuy, 8bbu, 8ft7, 7r59, 7r3o,

7r3l, 7qsj, 7zb9, 7z3s, 7tsx, 7tsq, 7riz, 8fi4, 8fi3, 7wez, 8cx4, 8a19,

7n2s, 7n2q, 7n2o, 8f8u, 8ey5, 8ew7, 7s47, 7s46, 7qta, 8em8,

7z36, 7r0t, 7r0k, 8ad7, 8egm, 8ek7, 8egn, 7r3w, 7mdc, 7ywj,

8ees, 7t5w, 7t5v, 7t5u, 7qsa, 8dp2, 7u0u, 7u0t, 8dqb, 8dq9, 8dos,

8dor, 8doq, 7qy6, 7nzz, 7fbq, 5soi, 7xc0, 7vid, 7z0r, 8d1x, 8cso,

7v0h, 7qnp, 7q6k, 7q6j, 7qii, 7qih, 7qgf, 7kmj, 7wda, 7wcj, 7uv5,

7s5b, 7pox, 7ulz, 7unn, 7n3t, 7ulh, 7t93, 7r7j, 7mcj, 7s2s, 7s2r,

7ph1, 7raa, 7ra9, 7u5y, 7u5q, 7u5f, 7u56, 7u4h, 7u35, 7qiq,

7tmv, 7tmf, 7tmd, 7tmb, 7tm9, 7tm8, 7tm7, 7tm5, 7ti7, 7pv9,

7pv8, 7f8s, 7f8s, 7f8r, 7tcm, 7bbs, 7rjz, 7rji, 8ent, 8cje, 8swd,

8sng, 8sc0, 7qsg, 7n2p, 7rox, 8duy, 8dop, 8dil, 7qij, 7tm4. To

ensure transparency and facilitate reproducibility, the entire

collection of output folders, along with a detailed spread-

sheet cataloging the raw data and analyses conducted,

is accessible at https://docs.google.com/spreadsheets/d/1X-

x_4GIsbQ3dc4lGlCgC7WsR7O0Kk5Wo/edit?usp=drive_

link&ouid=103695451649651655457&rtpof = true&sd = true.

Additionally, the complete codebase for AutoPD is openly

available on GitHub, offering a valuable resource for further

development, review and adaptation in related projects.

Interested parties can review and download the code at https://

github.com/zhangxinhku/AutoPD, This open-access approach

underscores our commitment to advancing research in struc-

tural biology through collaboration and shared resources.
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E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B.,
Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M.,
Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Malý, M.,
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