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Quantized conductance in quasi-one-dimensional systems not only provides a hallmark of ballistic
transport, but also serves as a gateway for exploring quantum phenomena. Recently, a unique hidden Rashba
effect, which arises from the compensation of opposite spin polarizations of a Rashba bilayer in inversion
symmetric crystals with dipole fields, such as bismuth oxyselenide (Bi2O2Se), has attracted tremendous
attention. However, investigating this effect utilizing conductance quantization remains challenging. Here we
report the conductance quantization observed in a chemical vapor deposition (CVD)-grown high-mobility
Bi2O2Se nanoribbon, where quantized conductance plateaus up to 44 × 2e2=h (e is the elementary charge, h
is the Planck’s constant, and the factor 2 results from spin degeneracy) are achieved at zero magnetic field.
Because of the hidden Rashba effect, the quantized conductance remains in multiples of 2e2=h without
Zeeman splitting even undermagnetic field up to 12T.Moreover, within a specific range ofmagnetic field, the
plateau sequence follows the Pascal triangle series, namely, ð1; 3; 6; 10; 15…Þ × 2e2=h, reflecting the
interplay of size quantization in the two transverse directions. These observations are well captured by an
effective hidden Rashba bilayer model. Our results demonstrate Bi2O2Se as a compelling platform for
spintronics and the investigation of emergent phenomena.

DOI: 10.1103/vtjc-znrb

Introduction—The observation of quantized conduct-
ance, in units of 2e2=h where e is the elementary charge,
h is the Planck’s constant, and the factor 2 originates from
the spin degeneracy, serves as a hallmark of ballistic transport
in quasi-one-dimensional (quasi-1D) systems. Moreover,
conductance quantization also plays an important role in
investigating quantum phenomena, such as correlation
effects [1], and the Kronig-Penney model [2]. Quantized
conductance was first achieved in quantum point contacts
(QPCs) defined on III-V two-dimensional electron gases
(2DEGs) [3–6], leveraging their high mobility and gate
tunability, followed by metallic break junctions [7,8] and
other two-dimensional (2D) systems [9–13]. Subsequently,
advances in material quality enabled the observation of
quantized conductance in ultraclean individual 1D systems

[14–17], e.g., nanowires, nanoribbons, and nanotubes.
However, the reported quantized plateaus are mostly limited
to indices below 10 (namely, quantized conductance pla-
teau G ≤ 10 × 2e2=h).
Recently, a novel 2D semiconductor Bi2O2Se has

garnered significant attention [18–22] owing to its out-
standing electronic properties, including a moderate band
gap, small effective mass, ultrahigh carrier mobility, and
strong spin-orbit coupling (SOC), together with respon-
siveness to diverse external stimuli. Crucially, its excellent
air stability and native oxide high-κ dielectric (Bi2SeO5)
[23,24] further enhance its potential for high-performance
2D electronic devices, including 2D-FinFET [18] and gate-
all-around FET (GAAFET) [25]. Notably, previous inves-
tigations have primarily focused on 2D Bi2O2Se. Herein,
we choose quasi-1D Bi2O2Se nanoribbon as the platform to
investigate ballistic transport approaching high quantized
indices, particularly involving hidden Rashba effect and
Pascal triangle series, as detailed in the following.
First, due to the large Fermi velocity [26], suppressed

electron back-scattering [22], and the self-modulation
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doping [27], Bi2O2Se gains remarkably high mobility [21].
Interestingly, the mechanism of self-modulation doping
stems from the spatial separation between the conductive
½Bi2O2�2nþn layers and the defect-rich ½Se�2n−n layers, which
effectively minimizes impurity scattering. This exceptional
high-mobility has facilitated the demonstration of quantum
Hall effect (QHE) [28,29]. Second, the combination of the
inversion symmetry and the intrinsic dipole field in Bi2O2Se
gives rise to a unique hidden Rashba effect. This effect
provides efficient electrical tunability for spin FET [30,31],
and has been probed by angular resolved photoemission
spectroscopy and photocurrent in, e.g., WSe2 [32,33],
BSCCO(2212) [34], ZrSiTe [35], and GdSbTe [36], while
more evidence from electrical transport experiment remains
scarce. Furthermore, the hidden Rashba effect with spin-
layer locking exhibits a distinct spin texture that maintains
spin degeneracy even under high magnetic fields [28],
facilitating quasi-1D ballistic transport as a probe for this
phenomenon. Third, size quantization in a ballistic system
along two transverse directions under the harmonic-oscil-
lator-type parabolic potentials induces a complex evolution
of conductance quantization, which could follow a character-
istic pattern of the Pascal triangle series [1,37]. Considering
the electron-electron interaction [38], Bi2O2Se serves as a
promising platform for investigating correlation effects [1].
In this Letter, we report the conductance quantization

behavior, combined with the hidden Rashba effect, in high-
quality chemical vapor deposition (CVD)-grown Bi2O2Se
nanoribbons. Quantized conductance plateaus up to 44 ×
2e2=h are observed, the highest in individual 1D systems. In
particular, owing to the hidden Rashba effect resulted from
the unique Rashba bilayer structure, the conductance quan-
tization remains at multiples of 2e2=h—rather than Zeeman-
splitting-induced e2=h—even under magnetic fields up to

12 T. Furthermore, within a range of magnetic field, the
sequence of quantized conductance plateaus follows the
Pascal series. These experimental results arewell reproduced
by theoretical calculations based on an effective hidden
Rashba bilayer model.
Results—Bi2O2Se nanoribbons are grown by CVD

method [39,40], and the two-terminal devices are fabricated
by standard electron-beam lithography techniques (see
Supplemental Material Sec. A [41]). Figure 1(a) depicts a
schematic of the device, where a Bi2O2Se nanoribbon is
contacted by the source and drain, with a channel length
LSD ≈ 550 nm. Notably, Bi2O2Se features an inversion-
symmetric crystal structure, where tetragonal ½Bi2O2�2nþn
and ½Se�2n−n layers are staggered and stacked along the c axis
[68]. As schematically depicted in the left inset of Fig. 1(a),
the two Bi monolayers in the ½Bi2O2�2nþn layers form a
peculiar hidden Rashba bilayer due to opposite interlayer
polarizations [28] (labeled by Pin in different colors). The
alternating dipole fields break the local inversion symmetry
of the monolayers, giving rise to opposite strong Rashba
effects with compensated spin textures, which results in the
hidden Rashba effect [69]. In this scenario, as illustrated in
the right inset of Fig. 1(a), each band is 2-fold degenerate,
with an expected extremely small effective g factor, indicat-
ing suppressed Zeeman splitting under high magnetic fields.
Figure 1(b) depicts the confining potential of spin-degen-

erate electrons, which come from different monolayers of the
hidden Rashba bilayer. A perpendicular magnetic field B
along the z direction modulates the electrostatic confining
potential in the y direction [70], thereby effectively tuning the
size quantization in the nanoribbon. The lowest several
sublevels denoted by ni ¼ 0; 1; 2;… (where i ¼ y; z) are
the quantized states in y and z directions, respectively.
Figure 1(c) presents the atomic force microscopy (AFM)
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FIG. 1. (a) Schematic of the Bi2O2Se nanoribbon device. The left inset illustrates the layered crystal structure. The right inset depicts
the hidden Rashba effect arising from the unique Rashba bilayer structure. The bands in different colors represent different spin textures,
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image of the device, with a thickness of 50 nm. As shown in
Fig. 1(d), as a result of the size quantization in the two
transverse directions of the nanoribbon, the quantized
conductance under a range of magnetic fields follows the
characteristic sequence G ¼ ½NðN þ 1Þ=2�2e2=h (where
N ¼ 1; 2; 3;…), corresponding to the purple diagonal in
the Pascal triangle. The hiddenRashba effect, responsible for
the spin degenerate bands, leads to the persistence of
quantized conductance being multiples of 2e2=h.
To demonstrate the quantized conductance behavior of our

Bi2O2Se nanoribbon device, we performed low-temperature
(T ¼ 1.5 K) transport measurements under perpendicular
magnetic fields applied along the z direction [Fig. 1(b)]. A
series resistance of 350 Ω, determined from the deviation of
the first plateau at B ¼ 12 T from the expected conductance
of 2e2=h, was subtracted from all measured resistance data.
In addition, all the conductance traces were measured at zero
dc bias voltage, unless otherwise stated.

At B ¼ 0 T [Fig. 2(a)], a series of quantized conduct-
ance plateaus with indices reaching 44 (in units of 2e2=h)
are observed as the gate voltage VG is varied. It is
noteworthy that the index of 44 not only far exceeds
the previous maximum of 10 in individual 1D systems
[see Fig. 2(e) and Supplemental Material Sec. B [41] ], but
also ranks among the highest values reported for QPCs
defined on 2D systems [3,9,71–73]. Moreover, the authen-
ticity of the high-index plateaus is supported by temper-
ature-dependent data, reference devices, and further
analysis (Supplemental Material Secs. C–E [41]). From
the fitting of the VG -dependent conductance (G) curve in
Fig. 2(a), we extract the field-effect mobility μ ∼ 1.11 ×
104 cm2V−1 s−1 (Supplemental Material Sec. F [41]). The
absence of certain plateaus (namely, ν ¼ 3; 5; 7; 9; 10;…)
in Fig. 2(a) can be generally attributed to the degenerate
subbands as schematically represented by the Fermi level
alignment conditions in Fig. 2(b). The degeneracies arise
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from the specific confining potentials in the y and z
directions, which are influenced by device geometry, inter-
face, disorder, etc. In other words, conductance plateau
transitions occur when the Fermi level aligns with the
bottoms of subbands, whose degeneracy is governed by the
confining potentials. It is crucial to point out that each
parabolic band contributes a quantized conductance of
e2=h. When B is increased to 9.75 T, the conductance trace
as a function of VG [Fig. 2(c)] exhibits two remarkable
characteristics. First, the quantized conductance remains in
units of 2e2=h, indicating the suppression of Zeeman
splitting because of the hidden Rashba effect. Second, an
unconventional quantized plateau series following the
Pascal triangle, i.e., 1; 3; 6; 10; 15 × ð2e2=hÞ, is observed,
implying a unique band degeneracy, schematically depicted
in Fig. 2(d), which will be discussed later.
We then applied a dc bias voltage Vb to investigate the

spectroscopy of the conductance quantization. Figure 3
presents the spectroscopy measurement at B ¼ 12 T,
revealing a series of quantized conductance of 1; 3; 6×
ð2e2=hÞ, which is also in good conformity with the high-
lighted diagonal of the Pascal triangle in Fig. 1(d). For clarity,
the normalized transconductance dG=dVG is plotted as a
function of VG and Vb in Fig. 3(a), where the transitions
between quantized conductance plateaus are represented by
the bright regions. Furthermore, diamond-shaped regions
outlined by dashed lines connecting the circles correspond to
the conductance plateaus quantized in multiples of 2e2=h.
In Fig. 3(b) the Fermi level alignments noted by A, B,

and C, where μs and μD denote the chemical potentials of
the source and drain, respectively, illustrate the correspond-
ing conditions in Fig. 3(a). Conductance traces measured at
different magnetic fields (Supplemental Material Sec. G
[41]) consistently maintain the quantization in units of
2e2=h. Moreover, transconductance spectroscopy under

different magnetic fields (Supplemental Material Sec. H
[41]) reveals that certain quantized plateaus (e.g.,
2G0; 3G0; 4G0;…) gradually emerge and/or disappear as
B increases, indicating an unusual magnetic field depend-
ence of the subband evolution.
To explore the evolution of quantized conductance with

magnetic field (B), we plot conductance traces as a function
of VG in Fig. 4(a) for fields ranging from 0 to 12 T in steps
of 0.25 T. The indices of the quantized conductance
plateaus are labeled (demonstration of individual conduct-
ance curves, along with alternative versions of the con-
ductance map are provided in Supplemental Material Sec. I
[41]). Notably, half-integer plateaus [including 0.5 and
1.5 × ð2e2=hÞ] do not develop under magnetic fields up to
12 T [Fig. 4(a)], reflecting the suppression of Zeeman
splitting due to the hidden Rashba effect, as can also be
seen in Fig. 2(c) and the spectroscopy of Fig. 3(a).
To further analyze the evolution of the quantized

conductance plateaus, Figs. 4(b) and 4(c) present renor-
malized transconductance (dG=dμ) and conductance maps
as a function of B and chemical potential μ, respectively
(the conversion from VG to μ, i.e., the gate lever arm, is
explained in Supplemental Material Sec. J [41]).
Particularly, in Fig. 4(b), quantized conductance plateaus
appear as dark purple regions, some of which are labeled
with their indices, whereas bright boundaries delineating
these regions stand for the evolution of subbands induced
by size quantization along the two transverse directions.
These subband evolutions are traced in Fig. 4(b), and then
they can be categorized and grouped by their slopes with
respect to μ under high magnetic fields, as shown by the
solid lines with different colors in Fig. 4(c) and detailed in
Supplemental Material Sec. K [41]. By tracking the origin
of each subband to low magnetic fields, we find that they
originate from energy quantization along both y and z
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directions: subbands of different colors correspond to quan-
tization due to the finite thickness along the z direction,
whereas those of the same color stem from the constrained
width along the y direction. Accordingly, subbands are
labeled in the form jnz; nyi in Fig. 4(c) and Fig. S14 [41],
where ny and nz denote the quantum numbers associated
with size quantization in y and z directions, respectively.
To describe the quantized conductance behavior, we

establish an effective hidden Rashba bilayer model that
includes confining potentials along both the y direction,
which is modulated by magnetic field, and z direction. In
fact, under zero magnetic field, the level spacings between
subbands quantized along the y direction—represented by
the same color in Fig. 4(c) corresponding to the same nz but
varying ny—are nearly identical. Similarly, subbands
resulting from quantization along the z direction, namely,
those represented by different colors with fixed ny but

varying nz, exhibit equal spacings as well. This naturally
suggests that the confining potentials in both y and z
directions can both be well approximated by a harmonic
oscillator potential, whose quantized energy levels possess
equidistant spacing described by Eξ ¼ ðξþ 1=2Þℏω
(where ω is the eigenfrequency, ξ is the level index).
Thus, the effective Hamiltonian for the system can be
expressed as H¼½ðpþeAÞ2=2m0�þ1

2
g0μBBσzþ1

2
m0ω2

yy2 þ
1
2
m0ω2

zz2, where m0 and g0 are the renormalized effective
mass and effective g-factor obtained from ab initio calcu-
lations based on a hidden Rashba bilayer model involving
multi-bilayers, μB denotes the Bohr magneton, σ is the
Pauli matrix, A ¼ Axex ¼ −Byex represents the vector
potential, ωy;z denote the eigenfrequencies of the confining
potentials in y and z directions, respectively.
Such an effective model describes the subbands with the

following form:

Eðny; nz;BÞ ¼ ℏΩ

�
ny þ

1

2

�
þ ℏωz

�
nz þ

1

2

�
� 1

2
g0μBB;

ð1Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ ω2

y

q
, and ωc ¼ eB=m0 is the cyclotron

frequency. Due to the unavoidable effects caused by finite
temperature and measurement noise, energy broadening
occurs, resulting in the smearing of the density of states,
which may hinder the differentiation of Zeeman splitting at
magnetic fields up to 12 T. Here, we assume a Gaussian
broadening Wðμ; ε0;ΓÞ ¼ ð1= ffiffiffiffiffiffi

2π
p

ΓÞe−ðμ−ε0Þ2=ð2Γ2Þ with
Γ ¼ 0.7 meV determined from the Gaussian fitting of the
measured spectroscopy (SupplementalMaterial Sec. L [41]).
To obtainm0 andg0 on thebasis of the hiddenRashba effect

together with interlayer coupling, we performed an ab initio
calculation for a 40-unit-cell-thick Bi2O2Se nanoribbon,
consistent with the thickness of 50 nm (Supplemental
Material Sec. M [41]). Herein, the Rashba SOC strength α
alternates in sign between successive ½Bi2O2�2nþn layers along
the z axis, analogous to a Su-Schrieffer-Heeger chain [74].
Orbital effects induced by the magnetic field are imple-
mented via the Peierls substitution, p → pþ eA. Sub-
sequently, through an exact unitary transformation, the
Hamiltonian can be expressed in the Landau levels basis
[75] as

Hll0
nn0 ¼ℏ

eB
m�

�
nþ1

2

�
δnn0δll0σ0

þ1

2
geμBBδnn0δll0σz− tδnn0δl;l0�1σ0

þð−1Þl −iαffiffiffi
2

p
lB

δll0

� ffiffiffiffiffiffiffiffiffiffi
nþ1

p
δn;n0−1σþ− ffiffiffi

n
p

δn;n0þ1σ−
�
;

ð2Þ
where n is the quantum number of Landau levels, l is the
layer index, σ� ¼ σx � iσy, lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p
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length, ge ¼ 2 is the bare Landé g-factor, and t represents the
interlayer coupling.
By taking α ¼ 1.45 eV · Å [28], we find that whenm� ¼

0.08me and correspondingly t ¼ 0.32 eV, the simulation
agrees well with the experimental data, yielding renormal-
izedm0 ¼ 0.084me and g0 ¼ 0.78. Notably, the suppression
of g0 to 0.78 is induced by the hidden Rashba effect and
interlayer hybridization (Supplemental Material Sec. M
[41]). Specifically, spin-conserved interlayer coupling
hybridizes subbands with opposite spin textures originating
from monolayers with þα and −α, namely, the hidden
Rashba effect. This effect further competes with the bare
Zeeman effect, leading to the suppressed g0 ¼ 0.78 which is
smaller than the upper bound gsup ¼ 1.18 estimated from the
experimental energy resolution (Supplemental Material
Sec. M [41]). Therefore, Zeeman splitting remains undetect-
able even at 12 T. As shown in Fig. 4(d), the simulation
exhibits good agreement with the experimental observations,
confirming the conductance quantization as a reliable
method for investigating this effect.
Finally, to better understand the Pascal-like quantized

conductance plateaus observed at high magnetic fields, we
begin with Eq. (1), which demonstrates that the subband
energy can be simplified as a linear combination ηny þ ζnz,
where η and ζ represent the coefficients. The fact that the
magnetic field modulates the confining potential in y
direction, effectively results in a corresponding adjustment
of η. The index of a conductance plateau at a specific
chemical potential μ0 corresponds to the number of sub-
bands intersecting the Fermi level, which is determined by
counting the natural-number solutions to the inequality
ηny þ ζnz ≤ μ0. For instance, in Fig. 4(b), η ¼ ζ is satisfied
around 10 T, and the amount of natural-number solutions
(subbands below the Fermi level) to ny þ nz ≤ const
defines the conductance plateau indices, which follow a
series corresponding to Pascal triangle with the transverse
dimension of 2. As a result, G ¼ ½NðNþ 1Þ=2�2e2=h, i.e.,
G ¼ 1; 3; 6; 10; 15 × ð2e2=hÞ, as observed experimentally.
Moreover, it is necessary to clarify that the missing plateaus
at zero magnetic field are due to the accidental degeneracies
arising from the given device conditions, while the Pascal
sequence at B ∼ 10 T results from the interplay of quan-
tization in the two transverse directions originating from
the two harmonic oscillators.
Conclusions—In conclusion, we have demonstrated

ballistic transport in CVD-grown Bi2O2Se nanoribbons.
We observed a record-high quantized conductance plateau
index of 44 at zero magnetic field, the maintenance of
multiples of 2e2=h even under magnetic fields up to 12 T
because of the unique hidden Rashba effect, and the Pascal
triangle series. By means of an effective hidden Rashba
bilayer model, we demonstrated spectra that agreed well
with our experiment.
The observation of ultrahigh quantized conductance

plateaus provides a clear signature of ballistic transport,

where disorder represents a significant barrier to the
practical implementation of quasi-1D materials in applica-
tions such as Majorana zero modes [76]. Furthermore, the
spin-layer locking, manifested by the peculiar hidden
Rashba effect, positions Bi2O2Se as a promising candidate
for investigating unique properties [69], including piezo-
electricity and second-harmonic generation, which were
previously thought to only exist in inversion-asymmetric
systems. Moreover, its exceptional electrical tunability and
high mobility reinforce its potential for spintronic appli-
cations, such as electrically controlled spin FET [30,31].
Beyond its relevance to applications, Bi2O2Se also offers a
fertile ground for exploring emergent phenomena, includ-
ing the spin Hall effect and nonlinear physics, and could be
a compelling platform to investigate correlation effects [1]
considering the electron-electron interaction [38].
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